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ABSTRACT 

Liver steatosis, a serious complication of obesity, results from the excess 

accumulation of TG stored in the core of cytoplasmic lipid droplets (CLD). CLD are 

organelle like structures that contain a neutral lipid core surrounded by a phospholipid 

monolayer and covered in various coat proteins. Perilipin-2, the most abundant coat 

protein of hepatic CLD, functions as an important regulator of cellular lipid metabolism 

and trafficking. Electron microscopy experiments showing direct interaction between 

CLD and organelles raise the possibility that CLD contribute to how cells integrate 

cellular lipid synthesis, storage and metabolic demands. I hypothesize that Plin2 serves as 

a scaffolding protein for CLD interactions with organelles and metabolic enzymes, and 

that loss of Plin2 function will disrupt hepatic metabolism and metabolic homeostasis. To 

test this hypothesis I characterized lipid accumulation and CLD physical and biochemical 

proteins in livers from WT and Plin2-null mice that were fasted and refed low fat (LF) or 

high fat (HF) diets.  Loss of Plin2 resulted in decreased accumulation of hepatic lipids 

and smaller CLD. In the absence of Plin2, perilipin family members Plin3 and Plin5 were 

identified on the isolated CLD from animals on both LFD and HFD. Proteomics analysis 

of CLD isolated from livers of fasted and re-fed WT and Plin2-null animals revealed that 

the loss of Plin2 alters the distribution of enzymes related to carbohydrate and lipid 

metabolism, and that dietary fat content influenced the effects of Plin2 loss on CLD 
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protein properties. Furthermore, CLD deficient of Plin2 have fewer organelle associated 

proteins compared to CLD from WT animals. KEGG pathway of CLD proteins indicated 

that the loss of Plin2 influences the CLD association of enzymes in multiple metabolic 

pathways including, carbohydrate, amino acid and lipid metabolism. Collectively, my 

data show that the protein compositions of hepatic CLD of both WT and Plin2 KO mice 

are dynamically influenced by diet, and that loss of Plin2 induces specific reorganization 

of CLD protein composition when animals were re-fed a HF diet. These results provide 

the first evidence that CLD are dynamically regulated by diet and Plin2, and that they 

may function as platforms to coordinate lipid metabolism in hepatocytes.  

 

The form and content of this abstract are approved.  I recommend its publication. 

 Approved:  James L. McManaman 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Introduction 

Obesity is the number one preventable cause of death worldwide, and can lead to 

cardiovascular disease, cancer, type II diabetes, and nonalcoholic fatty liver disease with 

an annual cost in the US of almost $215 billion a year [1, 2]. A common pathological 

feature of obesity is the excess accumulation of triglycerides (TG) in the form of 

cytoplasmic lipid droplets (CLD) in non-adipose tissues, which can lead to hepatic 

steatosis [3].  CLD are organelle-like structures that are increasingly recognized to play 

critical roles in cellular lipid metabolism by regulating lipid storage, utilization and 

trafficking [4].  Knowledge of the molecular mechanisms by which CLD regulate these 

processes are important for understanding the pathophysiological roles CLD play in 

obesity and other metabolic diseases, and for developing new treatments and therapies to 

combat these disorders. The proteins that coat CLD have been emerging as an important 

regulator of CLD functions. Specifically, five members of the perilipin family of proteins 

found in mammals, Plin1 (perilipin), Plin2 (adipophilin, ADPH), Plin3 (TIP 47), Plin4 

(S3-12), and Plin5 (Oxpat), are increasingly recognized to be important as regulators of 

lipid metabolism and storage in most tissues.   In the normal mouse liver, CLD are coated 

by Plin2, and it has been shown that Plin2 is required for hepatic TG accumulation 

associated with chronically feeding mice a high fat (HF) diet 

In this chapter, I will briefly discuss how various metabolic alterations can lead to 

hepatic steatosis, and finally I will review the current literature regarding cytoplasmic 

lipid droplets.  



 

 

2 

 

Non-Alcoholic Fatty Liver Disease 

Impaired hepatic lipid metabolism can have dramatic pathophysiological 

consequences. These alterations can lead to insulin resistance, diabetes, and hepatic 

steatosis which can progress to non-alcoholic fatty liver disease (NAFLD), hepatic 

stenosis, and in rare cases hepatic carcinoma [5]. The rise in NAFLD has made it the 

most prevalent form of liver disease in western society [6], and has directly increased the 

number of patients now awaiting liver transplants by nearly 15 fold in the last two 

decades. In the U.S., approximately 75% of all obese individuals have some form of 

hepatic steatosis compared to 15% of the non-obese individuals [7]. In children the 

occurrences of NALFD have almost doubled in the last decade from 2.6% to 5% in 

normal weight children, increased 38% in obese children, and 48% of children with type 

2 diabetes [8-10].   

NAFLD is a spectrum of disorders ranging from simple steatosis, which is 

relatively benign, to nonalcoholic steatohepatitis, and finally progression into 

fibrosis/cirrhosis. The clinical definition of NAFLD is the accumulation of lipid in 

hepatocytes that constitutes more than 5%-10% of the liver weight [11]. NAFLD has 

been recently included in part of the larger metabolic syndrome. A group of symptoms 

that include insulin resistance, diabetes, obesity, and high serum blood lipid profiles. 

NAFLD is rarely found without at least one of these accompanying pathologies, most 

commonly insulin resistance [12]. Clinical manifestation usually presents with increased 

serum biomarkers of liver injury, alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST), although in early stages of simple steatosis elevation of liver 

enzymes are not always present. Like many organ specific diseases, few non-invasive 

diagnostic techniques are definitive. Liver biopsy is used to determine the severity, and 
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classification of the disease to determine if an individual has progressed beyond simple 

steatosis to steatohepatitis that includes signs of inflammation, or the presence of fibrosis 

[5]. Imaging techniques can determine the relative amount of hepatic lipid accumulation, 

but these techniques are not sensitive enough to determine the stage of the disease [13].  

In the past two decades, research into the mechanisms causing hepatic steatosis 

has greatly increased due to the focus on diabetes and obesity. Several mouse models of 

hepatic steatosis have been developed to identify these mechanisms. Although there 

appear to be multiple genes and metabolic alterations leading to increased prevalence of 

steatosis, the primary cause is the dysregulation of lipids. Increasing hepatic lipid 

synthesis, uptake of fatty acids (FA), decrease in TG exports via very low density 

lipoproteins (VLDL), or increase in adipocyte lipolysis can lead to TG accumulation in 

the liver in the form of CLD.  

Cytoplasmic Lipid Droplets 

 CLD were first identified in the 1890’s by Richard Altmann and E.B. Wilson [14, 

15],  these structures were initially ignored for nearly a century until 1991, when 

Greenberg identified perilipin, a phosphorylated protein that coated the CLD in 

adipocytes [16]. In the past two decades, with the increasing health problems associated 

with obesity, CLD have been identified as important structures involved in the 

accumulation of excess neutral lipids. CLD are organelle like structures that contain a 

neutral lipid core surrounded by a phospholipid monolayer, and coated in a variety of 

proteins (Figure I.1) [17]. CLD function as critical regulators of cellular metabolism by 

sequestering these neutral lipids within the phospholipid monolayer, and providing a 

regulatory network of coat proteins that can respond to specific cellular demands.  The 
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five members of the perilipin family, Plin1 (perilipin), Plin2 (adipophilin), Plin3 (tail 

interacting protein 47), Plin4 (S3-12), and Plin5 (OXPAT), are the most abundant 

structural proteins on the CLD, and are the most well characterized CLD coat proteins.  

 

 

 
 

Figure I.1  Diagram of Cytoplasmic Lipid Droplet 

Diagram of CLD. Neural lipid core surrounded by phospholipid monolayer and coated in 

various proteins. Perilipin family members are the most abundant coat proteins on CLD. 

Biogenesis 

There are several competing hypotheses regarding the mechanism by which CLD 

are formed. A common feature of each hypothesis is that CLD formation begins through 

the deposition of lipids in the ER. The initial accumulation of lipids in the ER begins 

from the increased concentration of intracellular FA, derived either from lipolysis of 

lipoproteins, from free fatty acids (FFA) carried by albumin, or from activation of 

cellular de novo lipogenesis. Intracellular FA’s are activated by conjugation with acyl-

CoA through an ATP dependent enzymatic reaction, catalyzed by various acyl-CoA 
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ligases, to produce pools of activated fatty acyl-CoA’s. Glycerolipid-synthesis enzymes 

in the ER use fatty acyl-CoA’s and glycerol to form diacylglycerol (DAG). DAG’s are 

then converted to TG, or enter phospholipid synthesis pathways through enzymatic 

reaction with various diacylglycerol transferases (DGATs) [18]. The mechanisms by 

which DAG’s enter either pathway are still unclear.  

The canonical model of CLD biogenesis (ER-budding model hypothesis) 

suggests, that de novo synthesized TG accumulates between the leaflets of the ER 

membrane bilayer forming a lens. The lens subsequently buds from the membrane, 

generating a nascent CLD composed of TG core, surrounded by a phospholipid 

monolayer with associated proteins [19] (Figure I.2A). The bicelle model proposes that 

neutral lipids accumulate between the leaflets of the ER membrane, and rather than 

budding, CLD with associated lipid and protein portions of the ER membrane, are 

somehow excised from the membrane leaving behind a transient pore in the ER 

membrane [20] (Figure I.2B). There have been no definitive direct observations of any of 

these proposed mechanisms. Dissenting from the consensus that lipid is deposited within 

the leaflet of the ER, Robenek et al suggests the site of CLD  synthesis occurs within the 

cytoplasm along specialized cups of the ER [21]. Freeze fracture experiments indicate the 

site of CLD formation along these ER cups are coated with Plin2, and it was proposed 

that the Plin2 enriched sites are what trigger the accumulation of CLD (Figure I.2C).  

Perilipin Family of Proteins 

The Perilipin family is highly conserved throughout evolution. Mammalian 

homologs have been identified in species that include frogs, flies, yeast, fungi, plants and 

slime molds [22]. The fact that lipids are important components of all living organisms,  
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Figure I.2  Models of CLD Biogenesis 

Lipid droplet biogenesis by ER budding. Neutral lipids (yellow) are synthesized and 

bulge from the outer leaflet of the ER membrane (red). The nascent droplet may be 

coated by proteins (light blue) that facilitate the budding process. (B) Bilayer excision. 

Newly synthesized neutral lipids accumulate between the inner (green) and outer (red) 

leaflets of the ER membrane and cause bulging. This entire lipid lens is then excised from 

the ER, leaving a transient hole in the membrane. ER contents (yellow) might leak 

through this hole into the cytosol.  (C) Lipid is deposited along the Plin2 coated (red) 

cups at the ER outer membrane. 
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points to the general importance of this family as possible regulators of cellular lipid 

homeostasis. Despite their overall genetic conservation, members of the Perilipin family 

exhibit various degrees of sequence and structural differences [22]. Of the five 

mammalian perilipin proteins, Plin2 and Plin3 exhibit the greatest degree of sequence and 

structural homology, including an N-terminal PAT domain, 11-mer helical repeats in 

their N-terminal regions,  a four helix bundle,  and hydrophobic cleft in their C-terminal 

regions [22] (Figure I.2).  At present, only the structure of the C-terminal  region of Plin3 

has been solved [31], but modeling studies suggest that, overall, the structures of Plin2 

and Plin3 are very similar [23]. Nevertheless, the question of how closely the functions of 

Plin2 and Plin3 are related has not been established. Moreover, there is increasing 

recognition that despite significant sequence homology and structural similarities, the two 

proteins differ in their functions 

Perilipin 2 

Plin2 was first identified as an RNA transcript significantly induced during 

differentiation of cultured adipocytes and was termed adipocyte differentiation related  

protein (ADRP) [24]. Sequence analysis revealed Plin2 had similarity to other perilipin 

proteins (Plin1 and Plin3) alluding to a potential function of the protein. Indeed, upon 

lipid loading, Plin2 was found to coat CLD in a variety of cells and  tissues including 

3T3L1 cells, fibroblasts, liver and mammary gland [25-31].  In differentiating adipocytes, 

Plin2 coats the CLD early during differentiation and its mRNA levels remain elevated 

throughout differentiation. Adipocyte Plin2 protein levels, which rise during 

differentiation, gradually decrease suggesting that these levels are subject to translational 

or posttranslational regulation. Masuda et al demonstrated that Plin2 is subject to 
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Figure I.3 Schematic Diagram of the Structural Features of the Mouse Perilipin 

Proteins. 

 

The PAT-1 domain is a 100 amino acid sequence that is similar in all 5 proteins (blue).  

The 11-mer helical repeat region is required for CLD binding, S3-12 is unique in that it 

contains 87 tandem repeats (green). The four-helix bundle (gold) and the 14 aa is 

identified in all but perilipin (gold).  

 

posttranslational regulation via ubiquitination and subsequent degradation by the 

proteasome [32]. In 3T3L1 cells the observation of decreased protein levels of Plin2 also 

coincide with increased levels of Plin1 on the CLD. These observations lead to the 

hypothesis that Plin2 might compete for CLD localization during differentiation of 

3T3L1 cells [33, 34]. In the liver, Plin2 was found to  be upregulated in both human and 

murine NAFLD and alcoholic fatty liver disease (AFLD) [35]. In NAFLD and AFLD, 

Plin2 promotes the incorporation of TG into CLD resulting in enlarged CLD and 

prevention of β-oxidation [36].  Plin2 anti-sense oligonucleotide (ASO) treatment was 

shown to decrease the severity of hepatic steatosis in the leptin deficient obese mouse 

model and the diet induced obesity mouse model. ASO’s against Plin2 suppressed 

expression of lipogenic genes and reduced liver triglyceride content without affecting 

cholesterol levels. Reduced Plin2 expression also attenuated triglyceride secretion, and 

decreased serum triglyceride and ALT levels [37]. Chan et al generated a Plin2 KO 

animal through the deletion of exons 2 and 3 (Δ2,3KO) [38]. Livers of Δ2,3KO animals 
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had significant reduction in hepatic lipid accumulation and lower serum TG levels. 

However, β-oxidation, VLDL secretion, and lipogenesis were unchanged compared to 

WT controls. Measurements of Plin3 mRNA and protein expression in the liver were also 

unchanged compared to controls. Russell et al determined a flaw in the gene deletion 

strategy used to generate the Δ 2,3KO mouse [39]. Although there were no detectable 

transcripts in white adipose tissue (WAT), brown adipose tissue (BAT) or liver, further 

analysis showed a truncated transcript in the mammary gland of the Δ 2,3KO mouse, 

upon further analysis this transcript was found to produce a truncated protein that 

retained at least some Plin2 function. A second Plin2 KO mouse was generated by the 

deletion of exon 5 (D5KO). The D5KO animal was resistant to HF diet-induced hepatic 

steatosis, obesity, and adipose inflammation. The liver phenotype in D5KO mice appears 

to be specifically related to Plin2 loss, since D5KO’s had both Plin3 and Plin5 expression 

as determined by western blot and immunofluorescent microscopy [40]. These studies 

have demonstrated the importance of Plin2 in hepatic metabolism and hepatic steatosis.  

Perilipin 3 

Plin3 was initially identified as a protein that bound to the cytoplasmic tail of the 

mannose 6-phosphate receptor during its transport from the endosomal compartment to 

the trans-Golgi network. Subsequently,  Plin3, was shown to have a role in viral 

infections, where it has been identified as a necessary cofactor in HIV viral assembly 

[41]. In hepatoma cell lines infected with hepatitis C virus (HCV) core protein, Plin3 was 

found to redistribute from the cytosol to CLD upon lipid loading, the authors speculated 

this phenomenon may be due to the lack of Plin2 in the hepatoma cell lines [42]. Indeed 

Plin3 protein expression increases in the absence of Plin2 in the liver, mammary gland, 
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and in mouse embryonic fibroblasts (MEF) [39, 43]. Treatment with ASO’s against Plin3 

was found to decrease the severity of CLD accumulation in the liver without affecting 

Plin2 expression [44]. 

Perilipin 5 

Plin5 was identified as a perilipin protein that is primarily expressed in oxidative 

tissues that utilize large amounts of lipid during β-oxidation [45]. Plin5 is most notably 

localized to skeletal muscle, heart, and brown fat.  Both in vivo and in vitro studies have 

shown that expression of Plin5 correlates with both increased TG storage, and FA 

oxidation[46] . Electron micrographs have been used to demonstrate the interaction 

between mitochondria and Plin5 coated CLD. It has been suggested that these interaction 

between Plin5 coated CLD and mitochondria may actively control the fate of FA either 

by directing them towards FA oxidation or storage. Recently, it has been shown that 

Plin5 has the potential to modulate the interaction of adipose triglyceride lipase (ATGL) 

with CLD as well as with its co-factor CGI-58 [47]  in order to modulate CLD lipolysis 

[48] . Similar to Plin2, Plin5 appears to be in part regulated by the nuclear receptor 

peroxisome proliferator activated receptor PPAR [49]. Studies have shown that the 

induction with ligand FFA increases the expression of both Plin5 mRNA and protein.  

Regulation of Lipid Droplets 

With the exception of Plin1, the precise functions of the perilipin proteins are not 

well known. One suggestion is that they act as regulators of lipolysis by controlling 

access of specific lipases to the CLD core. Lipases are the major enzymes that control 

lipolysis, the conversion of TG to monoglyceride and fatty acids [50]. Hormone sensitive 

lipase (HSL) was thought to be the major contributor of TG  lipolysis, studies with HSL-
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KO mice are resistant to obesity, and rather than having increased concentrations of  TG, 

they have significant high levels of DG [51]. In 2004 ATGL was identified as the enzyme 

that catalyzed the first, and rate, limiting step in TG hydrolysis having a much higher 

affinity for TG than HSL, and ATGL deficient animals were shown to develop sever 

hepatic steatosis [52, 53].  ATGL is activated by the interaction with CGI-58, a member 

of the esterase/lipase family. Specific domains within both ATGL and CGI-58 have been 

identified that target the proteins to the CLD [54, 55].  Deletion of the tryptophan rich 

stretch in the N-terminal region of CGI-58 caused complete inactivation of ATGL 

without interference with binding between the two proteins [55]. Lu et al speculated that 

CGI-58 at the surface of CLD may remodel the phospholipid monolayer and thereby 

allow the access to the TG core by ATGL [54].  The perilipin proteins Plin2 and Plin5 

may influence the ability of ATGL or CGI58 to gain access to the CLD core. While Plin2 

is thought to prevent ATGL from interacting with the CLD, Plin5 interacts with both 

ATGL and CGI-58 [56, 57]. The significance of these mechanisms has yet to be defined. 

What has become clear is how protein interaction with the CLD can modulate the TG 

core. The loss or changes to the expression of perilipin proteins may influence the 

modulation of CLD lipolysis. 

Summary of Background and Relation to Thesis work 

This thesis set out to test the hypothesis that CLD protein composition could be 

influenced by diet and the loss of the primary coat protein Plin2. Accumulation of CLD is 

the hallmark of liver steatosis, therefore understanding how CLD are influenced by the 

metabolic status of the liver and in turn how altering CLD properties influences hepatic 

metabolic properties are important steps towards understudying how to target therapies to 
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combat steatosis. Numerous studies have demonstrated interactions between organelles, 

such as mitochondria, peroxisomes, ER, and even intracellular pathogens and CLD [58]. 

It has been hypothesized that these interactions occur because of effector proteins on both 

the CLD and organelles. In order to test these hypotheses I utilized a fasting and re-

feeding model, whereby animals are fasted for 24 hours and re-fed for 18 hours either 

low fat diet (LFD) or high fat diet (HFD). Chapter 2 outlines the various methods and 

model system used to perform experiments. Chapter 3 profiles how fasting and re-feeding 

WT animals with diets of different compositions of fat impacts the proteomic profile of 

the CLD.  Chapter 4 examines how the loss of Plin2 changes the CLD protein profile in 

response to different diets. Chapter 5 examines the physiological effect of fasting on the 

D5KO mouse compared to the WT mice. Finally, chapter 6 summarizes the culmination 

of my thesis work, and suggests further investigations that will provide more insight into 

the role of Plin2 and diet on the proteomic composition of the CLD, and how alterations 

in proteomic make up can influence hepatic metabolism.   
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CHAPTER II 

METHODS 

Materials   

Chemicals used were purchased from Sigma Chemical Company (St. Louis, MO). 

Antibodies to N- and C-terminal regions of Plin2 and to Plin3 were raised in rabbits as 

described [39].  Guinea pig antibodies specific to the N-terminal 25 amino acids of 

mouse Plin2 were purchased from Fitzgerald (North Acton, MA).  Rabbit antibodies to 

GRP78 and PDI were purchased from Novus Biologicals (Littleton, Colorado), and 

Fitzgerald Inc. (North Acton, MA) respectively.  Rabbit anti-BHMT was purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA).   Horseradish-peroxidase-conjugated and 

Alexfluor-conjugated secondary antibodies were purchased from Life Technologies 

(Grand Island, NY). IR dye-conjugated secondary antibodies were purchased from Li-

COR  Biosciences (Lincoln, Nebraska).  High fat (60 kcal%; D12492) and low fat (10 

kcal%, D12045B) diets were purchased from Research Diets Inc. (New Brunswick, NJ).   

Animals 

Male C57BL/6J mice were purchased from Jackson Labs (Bar Harbor, Maine) at 

9 weeks of age, and acclimated for 3 weeks prior to studies. Mice were individually 

housed and allowed to acclimate for one day prior to fasting and re-feeding. 

Generation of Plin2(Δ5) Mice   

Mice lacking exon 5 of the Plin2 locus were generated by Genoway (Lyon, 

France).  Briefly, a replacement targeting vector containing a distal loxP site and a FRT-

neomycin-FRT-loxP cassette were inserted into introns 4 and 5 of the Plin2 locus 

replacing exon 5 (Figure II.1).   129/SvPas ES cells were then transfected with the 
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linearized targeting vector and positive clones were selected by culturing in G418 

containing media. Homologous recombinations were identified by PCR and Southern 

blotting.  Targeted ES clones were injected into C57BL/6 blastocysts.  Chimeras were 

backcrossed with C57BL/6 females and the neomycin cassette was removed by breeding 

heterozygous animals with Flippase expressing mice.  Neomycin excised mice were then 

bred to CMV-Cre expressing mice to delete exon 5, generating Plin2(Δ5) mice.  Mixed 

background Plin2(Δ5) mice were backcrossed to C57BL/6 mice for 15 generations to 

generate congenic C57Bl/6-Plin2(Δ5) mice.  WT and Plin2(Δ5) were genotyped by PCR 

using the following mixture of primer sequences that target exon 5 and adjacent intronic 

regions of the mouse Plin2 locus:  5’- AGC AAC CTG ATG GAG ACA CTC AG -

3’(Forward); 5’- CAC TGT TCA TGA ACT GCA CCA TC -3’(Reverse 1); 5’- CCG GA 

GCA GAG CTT GGT AGA -3’(Reverse 2).   

Animal Procedures   

All procedures involving animals were approved by the Institutional Animal Care 

and Use Committee of the University of Colorado, Anschutz Medical Campus and were 

performed in accordance with published National Institutes of Health Guidelines.  

Twelve-week-old mice were fasted for 8, or 24 hours, with access to water ad libitum, 

and refed with LF (10.0% fat-derived calories, 24.0% protein-derived calories and 60%  

carbohydrate-derived calories) or HF (60.3% fat-derived calories, 18.4% protein-derived 

calories and 21.3% carbohydrate-derived calories) diets for 18 hours.  Livers were 

removed from refed animals euthanized by carbon dioxide, and weighed.  A portion of 

each liver was removed and used for CLD isolation; portions of the remainder were fixed  
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Figure II.1 Schematic Diagram Representing the Process Used to Make the D5KO 

Mouse
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in 4% paraformaldehyde and processed for paraffin imbedding [59] or flash frozen in  

 

liquid nitrogen for RNA and protein analyses.  

Metabolic Monitoring   

Three separate cohorts of mice were placed in a metabolic monitoring system that 

provided measurements of energy balance (intake and expenditure), the respiratory 

exchange ratio (RER), and activity levels (Columbus 8M Oxymax) [60].  Mice were 

individually housed in metabolic chambers and allowed to acclimate for one week prior 

to fasting and re-feeding. 

CLD and Organelle Isolation   

CLD were isolated as described previously [61] with minor modifications.  

Briefly, freshly dissected livers were homogenized on ice with an equal volume of ice 

cold homogenization medium (37.5 mM TRIS-malate, pH 6.4; 0.5 M sucrose; and 5mM 

MgCl2 pH 6.4) plus protease inhibitors (Aprotinin, Leupeptin, Peptstatin, AEBSF, PIC1, 

PIC2) per gram of tissue, using 10 strokes in a dounce homogenizer. Samples were 

divided into 4 equally loaded 1.5 ml centrifuge tubes and overlaid with PBS (1/2 volume 

of PBS/weight of liver) and centrifuged for 15 minutes at 5000 X g at 4
o
C. The 

postnuclear supernatant (PNS) layer and debris was removed with a glass pasture pipette.  

Floating fractions containing CLD was combined and washed 3 times at 4
o
C by 

successively resuspending them 300 ul of cold PBS and centrifuging for 10 minutes at 

8500 X g.  For proteomics analysis, the CLD sample was diluted in 100 ul of 10 mM Tris 

pH 7.4. For western blot analysi,s the samples were diluted in 100 ul of 5% SDS in 

10mM Tris pH 7.4 plus protease inhibitors and stored at -80
o
c.  Organelles were isolated 

by sucrose density gradient centrifugation according to Croze and Morre [62]. 
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RNA Extraction and Transcript Quantitation 

Total RNA was extracted from frozen tissue using Trizol (Life Technologies) 

according to the manufacturer's instructions. The purity, concentration, and integrity of 

total RNA from each sample were verified using a NanoDrop spectrophotometer 

(NanoDrop Technologies, Wilmington, DE). Transcript copy numbers were determined 

by quantitative real-time (QRT)-PCR analysis using a multiplexing strategy to provide an 

internal standard for normalization (18s ribosomal). QRT-PCR assays were performed in 

the Quantitative Genomics Core Laboratory at the University of Texas Health Sciences 

Center, using previously validated primers and probes (Table II.1).  All QRT-PCR assays 

used were validated at the Quantitative Genomics Core Laboratory to ensure that they 

passed the minimum requirements for efficiency, sensitivity, and selectivity. At least 

three tissue replicates were analyzed at least twice with similar results.  

Protein Extraction and Quantitation 

Protein concentrations in extracts and isolated fractions were measured using Bio-

Rad Protein Assay (Hercules, CA).  CLD-associated proteins were extracted in 5% SDS  

and stored at -80
o
C prior to analysis by SDS-PAGE and immunoblotting.  Proteins were 

separated on 10% polyacrylamide gels and stained with Coomassie blue or transferred to 

nitrocellulose membranes for immunoblot analysis, using the following primary 

antibodies and dilutions. Guinea pig anti-Plin2  (1:1,000); rabbit anti-PDI (1:500); rabbit 

anti-GRP78 (1:1000); rabbit anti-BHMT (1:500).  Infrared dye-conjugated secondary 

antibodies (Li-COR, Lincoln, Nebraska ) were used according to the manufacturer's 

specifications.  Antibody staining intensity was quantified using an Odyssey CLX system 

(Li-COR, Lincoln, Nebraska ). 
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Table II.1 QPCR Primers  

mPerilipin1 

 Assay crosses the Exon 5/6 boundary 

 

582(+) CGAGAAGGTGGTAGAGTTCC 

 

660(-) AGCCTTCTGGGTCCTCTG 

 

604(+) CTGCCACCAGACAAGGAGTCAGCC   

mPerilipin2 

 Assay crosses the Exon 4/5 boundary 

 

436(+) CAGCCAACGTCCGAGATTG 

 

495(-) CACATCCTTCGCCCCAGTT 

 

456(+) CACATCCTTCGCCCCAGTT   

mPerilipin2#2 

 Assay crosses the Exon 1/2 boundary 

 

77(+) GACCGTGCGGACTTGCTC 

 

146(-) GCCATTTTTTCCTCCTGGAGA 

 

96(+) TCCCTCAGCTCTCCTGTTAGGCGTCTC   

mPerilipin2#3 

 Assay is within exon 8 

 

 

1553(+) AGCTCAGTTATGGTCTTG 

 

1639(-) TCCTCACAAGACTAACAC 

 

1611(-) CCAGCCAGGTAAGAGAACTCC   

mPerilipin3 

 Assay is within exon 5 

 

 

423(+) GGTTTTGGCGGATACTAA 

 

490(-) AGCTAGATACCATTTCTTGAG 

 

467(-) CCAGACACTGTAGATGACACCA   

mPerilipin4 

 Assay crosses the exon 4/5 boundary 

 

304(+) CCCCTCATCTAAAGTGTC 

 

382(-) AGCTGTCTGTTCAGAAG 

 

323(+) ACCAACTCACAGATGGCAGG   

mPerilipin5 

 Assay is within exon 7 

 

 

742(+) GCAACAGGGCTACTTTG 

 

806(-) GTTCATAGGCGAGATGG 

 

770(+) TCCCTATCGGCACGCCTC   

m18s rRNA 

 

 

1335(+) CGGCTTAATTTGACTCAACAC 

 

1401(-) ATCAATCTGTCAATCCTGTCC 

 

1359(+) AAACCTCACCCGGCCCG 
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In Solution Digest and LC-MS/MS  

 Proteins from the isolated CLD was precipitated using methanol:chloroform 

(1:2).  After the protein pellet was dissolved in 2 ul of 1% Protease Max Surfactant in 

50mM ammonia bicarbonate (ABC) (Promega, Madison, WI), 83.5 ul of ABC was added 

to the sample followed by DTT to a final concentration of 5mM. The sample was 

incubated for 20 minutes at 56
o
C and then cooled to RT. Iodoacetamide was added to a 

final concentration of 15 mM and incubated at RT in the dark for 15 minutes to block the 

sulfhydryl groups.  A second addition of 1ul of 1% Protease Max Surfactant was added to 

the sample followed by 1ug of Trypsin (Promega, Madison, WI). The sample was 

digested overnight at 37
o
C. The condensate was collected by centrifugation at 12,000 x g 

for 10 seconds. The reaction was quenched by the addition of trifluroacetic acid (TFA) to 

a final concentration of 0.5% and incubated for 5 minutes at RT. The peptide fragments 

were purified and concentrated using a 10 ul μ-c18 ZipTip (Millipore, CA) according to 

the manufactures directions. The peptides were eluted in 60%acetonitrile(ACN)/0.1% 

formic acid (FA).    

LTQ XL 

HPLC-MS/MS was performed by the University of Colorado, Anschutz Medical 

Campus Mass Spectrometry/Proteomics Core Facility. Samples were analyzed by 

microcapillary HPLC tandem mass spectrometry (μLC-MS/ΜS) using an LTQ XL mass 

spectrometer (Thermo, San Jose, CA).  Samples (2.5 μL) were injected onto a reverse-

phase column via a cooled (12C) autosampler (Eksigent, Dublin, CA) connected to an 

HPLC system  (Agilent 1100, Agilent Technologies, Santa Clara CA) that was set at 70 

μL/min before the split and ~350 nL/min after the split.  HPLC buffers used were Buffer 



 

 

20 

 

A:  94.9% water, 5% acetonitrile, and 0.1% formic acid and Buffer B: 94.9% acetonitrile, 

5% water, and 0.1% formic acid.  A 90-minute HPLC gradient was used to separate 

peptides.  The gradient changed from 5% to 28% acetonitrile over 60 minutes followed 

by organic and aqueous washes on a 15 cm microcapillary HPLC column with a pulled 5 

μm nanospray tip for nano-electrospray ionization.  The column was packed in-house 

with reverse-phase stationary phase Synergi 4u, 100 Å C18 (Phenomenex, Torrance, CA).   

The column was heated to 60 C using a column heater constructed in-house.    

LTQ Orbitrap 

Samples were measured on an LTQ Orbitrap Velos mass spectrometer (Thermo 

Fisher Scientific) coupled to an Eksigent nanoLC-2D system through a nanoelectrospray 

LC−MS interface.  Peptide desalting and separation was achieved using 8 µl of sample 

was injected into a 10 μL loop using the autosampler. To desalt the sample, material was 

flushed out of the loop and loaded onto a trapping column (ZORBAX 300SB-C18, 

dimensions 5x0.3 mm 5 µm) and washed with 5% ACN, 0.1% formic acid at a flow rate 

of 1 µL/min for 10 minutes. At this time the trapping column was put online with the 

nano-pump at a flow rate of 350 nL/min. The mobile phase included water with 0.1% 

formic acid (solvent A) and 99.9 % acetonitrile with 0.1% formic acid (solvent B). A 90 

minute gradient from 6% ACN to 40% ACN was used to separate the peptides. Peptides 

were separated on a house-made 100 μm i.d. × 150 mm fused silica capillary packed with 

Jupiter C18 resin (Phenomex; Torrance, CA). Data acquisition was performed using the 

instrument supplied Xcalibur (version 2.0.6) software. The mass spectrometer was 

operated in the positive ion mode; the peptide ion masses were measured in the Orbitrap 

mass analyzer, whereas the peptide fragmentation was performed by collision-induced 
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dissociation (CID) in the linear ion trap analyzer using default settings. Twenty most 

intense ions were selected for fragmentation in each scan cycle; fragmented masses were 

excluded from further sequencing for 90s.  

Data Acquisition  

Mass spectrometry data acquisition was performed in data-dependent mode on the 

Xcalibur instrument software  (v. 2.0.6, Thermo, San Jose, CA) with a single MS1 scan 

(30 ms) followed by up to three data dependent collision induced dissociation scans 

(MS/MS, 30 ms each).  Data were converted from the Thermo *.raw data file format to 

the *.mgf format using an in-house script.  After conversion, data were searched against 

the mouse Swissprot database (downloaded 12/14/2011) using Mascot® (v. 2.2.07, 

Matrix Science Ltd., Boston, MA).  For searches, mass tolerances were set at 0.60 Da 

for both MS peaks and MS/MS fragment ions.  Trypsin enzyme specificity was applied 

allowing one missed cleavage in the database searches.  Modifications searched included 

fixed carbamidomethyl modification of cysteine and the variable oxidation modifications 

of methionine, protein N-terminal acetylation, peptide N-terminal pyro-glutamic acid 

formation.  Results from the Mascot searches were analyzed and sorted using Scaffold® 

(v. 3.00, Proteome Software, Portland, OR).   

Immunohistochemistry and Fluorescence Imaging   

Paraffin sections were processed for immunohistochemistry as described 

previously [63].   Immunoreactivity was visualized using secondary antibodies 

conjugated with Alexafluor 488 or Alexafluor 594  at dilutions of 1:500 and 1:250 

respectively.  Nuclei were stained with DAPI (Sigma Chemical Company, St Louis, 

MO).  Immunofluorescence images were captured on a Nikon Diaphot fluorescence 
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microscope. For CARS microscopy and BODIPY staining, livers from refed animals 

were perfused with paraformaldehyde, sectioned at 10 um, collected onto Cell-Tak 

coated coverslips, and vapor-fixed with paraformaldehyde for 20 min before being gently 

rehydrated with PBS.  Auto-fluorescence was quenched with 2 mg/ml glycine for 10 min.  

Sections were rinsed with PBS and stained with BODIPY 493/503 at a final 

concentration of 30 ug/ml, and DAPI at 5 ug/ml.  Coverslips were mounted in PBS and 

imaged within 3 days.  Confocal imaging of BODIPY 493/503 and DAPI was performed 

on a 3i Marianas Inverted Spinning Disk Confocal system.  All image analyses and 

rendering were performed using SlideBook Software (Intelligent Imaging Innovations, 

Inc., Denver, CO).  Coherent anti-Stokes Raman scattering (CARS) images of lipid 

droplets in tissue sections were acquired with a custom-built multiphoton microscopy 

platform optimized for CARS as previously described [64].  All images were processed 

by Photoshop (Adobe Systems Inc., Mountain View, CA).  

Immunoelectron Microscopy  

Cells were processed for immunoelectron microscopy using a modified Tokuyasu 

method [65] as described previously [66].  Briefly, pelleted cells were fixed overnight at 

4°C in PBS buffered 4% paraformaldehyde containing 5% sucrose and 100 mM HEPES, 

and infiltrated with PBS containing 2.1 M sucrose over ~10 hours, with repeated solution 

changes.  Fixed cells were transferred to an aluminum cryosectioning stub (Ted Pella, 

Inc., Redding, CA) and immediately frozen in liquid nitrogen.  Semi-thin (90 nm) 

cryosections were cut at -110°C with an UltraCut UCT/FCS cryomicrotome (Leica), 

using a diamond knife (Diatome US) and transferred to a Formvar-coated, carbon-coated, 

glow-discharged 100-mesh copper-rhodium EM grid.  Following blocking of non-
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specific antibody binding sites with 10% calf serum in PBS, the sections were labeled by 

sequential incubation with rabbit antibodies to the N-terminal domain of Plin2 [39] and 

colloidal gold conjugated secondary antibodies (Ted Pella Inc., Redding, CA) and then 

negatively stained and embedded with 1% uranyl acetate, 1% methylcellulose in distilled 

water.  Samples were viewed in a Tecnai TF20 electron microscope (FEI) operating at 

200 KeV and images collected digitally. 

Statistical Analysis  

Calculations were performed by using Prism 5.0 (GraphPad Software) and 

Microsoft Excel (Windows 2010, Microsoft).  For each variable, 2 to 6 independent 

experiments were carried out.  Differences between diet groups were tested for 

significance using an unpaired Student t test. Differences were considered significant at P 

≤ 0.05. 

Bioinformatic Analysis  

STRING 9.0 (http://string.embl.de/), Gene ontology database 

(http://geneontology.org/), and KEGG (http://www.genome.jp/kegg) were used for 

protein interaction, biological function, and pathway analysis respectively. 
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CHAPTER  III 

 

DYNAMIC REGULATION OF HEPATIC LIPID PROTEOME BY DIET
1
 

Introduction 

 Abnormal intrahepatic fat accumulation (steatosis) in the form of 

cytoplasmic lipid droplets (CLD) is an early pathophysiological feature of altered liver 

metabolism that is linked to insulin resistance and potential progression to severe liver 

disease [67, 68].  Consequently, understanding how CLD affect hepatic metabolism, and 

how nutritional status influences their functions, are important elements in defining the 

mechanistic links between hepatic steatosis and metabolic diseases. Gene disruption 

studies in mice have documented that Plin2 is required for hepatic lipid accumulation in 

response to high fat diet (HFD) feeding [37, 38].  However, other PLIN family members 

have been detected on hepatic CLD in humans and mice with fatty liver disease [59, 69], 

which suggests the possibility that diet and/or altered metabolic properties can 

dynamically influence hepatic CLD protein composition.  

Protein compositions of CLD has been characterized to varying degrees from 

multiple sources including; yeast (Saccharomyces cerevisiae)[70, 71], Drosophila [72, 

73], mouse mammary epithelial cells [61], Chinese hamster ovary K2 cell lines [74, 75], 

3T3-L1 adipocytes [76, 77], cultured human A431 epithelial cells [78], HuH7 human 

hepatoma cell line [79], cultured human hepatocyte HepG2 cell lines [42], liver tissue 

from Sprague-Dawley rats [80], human lymphoblast U937 cells from lung tissue [81], 

and mouse skeletal muscle [82].  However, information about the protein composition of 
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hepatic CLD remains relatively limited, and the effects of diet and/or metabolic 

alterations on CLD protein properties are not known in detail for any tissue.      

The highly dynamic and adaptive nature of the liver metabolism is sensitive to 

nutrient status [83].  In rodents, fasting and re-feeding is associated with alterations in 

hepatic glucose and lipid metabolism that are reflected in increased expression of lipid 

metabolizing genes and the accumulation of intrahepatic lipids [84, 85].   The nature of 

these responses is influenced by the amount of and types of dietary fat [86].  In the work 

presented here, I use a fasting and re-feeding model to test the hypothesis that the hepatic 

CLD proteome is influenced by dietary fat composition.  My data show that low fat (LF) 

and high fat (HF) diets differentially affect the types and quantities of CLD associated 

protein compositions, and these differences are associated with differences in hepatic 

metabolism and CLD properties.  Taken together, these findings indicate the hepatic CLD 

proteome is dynamically regulated by the nutrient and metabolic status of the liver and 

provide evidence that CLD may function as a platform for regulating hepatic metabolic 

activity.  

Results 

Diet Effects on Metabolism and Hepatic Lipid Storage    

Fasting and diet composition are known to influence food intake and liver 

metabolism, which in turn can affect hepatic lipid storage [87, 88].  Therefore, to define 

the effects of LF and HF diets on hepatic CLD properties, it was necessary first to 

establish the effects of these diets on energy intake and metabolism of fasted animals.  

Figure III.1A shows that energy consumption of fasted animals that were refed the HF 

diet was significantly greater than that of animals refed the LF diet.  I also found 
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Figure III.1  Diet Effects on Metabolism  

(A) Effects of LF- and HF-re-feeding on energy intake in fasted male mice. Values are 

means (± SD) for 4 animals in each group. Asterisk indicates HFD values differ from 

LFD values (p<0.01). (B) Energy usage in non-fasted, fasted and LF- and HF-refed male 

mice as determined by RER. Non-fasted and fasted values correspond to averages (± SD) 

of 8 animals obtained prior to re-feeding. LF- and HF-re-feeding values correspond to 

averages (± SD) for 4 animals in each group. Asterisk indicates values differ from non-

fasted controls (p<0.001); dagger indicates values differ from non-fasted and fasted 

values (p<0.001); double dagger indicates values differ from LF refed and non-fasted 

values (p<0.001).  
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differences in the fuel utilization properties of LF- and HF-refed animals.  Figure III.1B 

shows the respiratory exchange ratio (RER) values of mice prior to fasting, following a 

24-hour period of fast, and after re-feeding with LF- or HF-diets.   Prior to fasting, RER 

values were approximately 0.8, as fuel use reflected the broad mixture of carbohydrate, 

fat, and protein in the diet.  During fasting, RER values dropped to approximately 0.7, 

indicating a switch to fat as the primary source of energy.  Re-feeding on a LF diet 

resulted in RER values that were close to 1, which reflects the preferential use of 

carbohydrate for energy production and the likelihood that de novo lipogenesis was 

induced [60].  In contrast, mice refed the HF diet had RER values that remained closer to 

0.7, which indicated they were oxidizing fat for energy, like fasted animals.  

The distribution and properties of CLD in liver sections of LF- and HF-refed mice 

were visualized by coherent anti-Stokes Raman scattering (CARS) microscopy [89], and 

by confocal laser microscopy after staining neutral lipids with BODIPY (493/503) 

(Figure III.2A).  CLD were detected throughout the liver in both LF- and HF-refed 

animals, although both CARS and BODIPY intensities appeared to be greater in the 

central vein region (zone 3).  Consistent with the elevated fat content of HF diets, I found 

that CARS and BODIPY intensities of livers of HF-refed animals were greater than those 

of LF-refed mice.  CLD properties were further defined by 3D laser confocal microscopy 

of BODIPY stained liver sections.  Representative 3D projection images of CLD from  

central vein regions of hepatocytes of LF- and HF-refed mice (Figure III.2B), indicate 

that CLD are larger, and appear to be more numerous, in animals refed the HF diet 

relative to those refed the LF diet. Diet Effects on Hepatic CLD Protein Composition to 

determine if LF- and HF-CLD differed in their protein compositions, CLD were isolated 
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Figure III.2  Diet Effects on Hepatic Lipid Storage 

(A) Representative images of frozen liver sections from LF- and HF-refed male stained 

with BODIPY and imaged by laser confocal (BODIPY) and CARS microscopy (200X 

magnification). Asterisks indicate central veins. (B) Representative surface-view of 3D 

projection images of single cells within liver sections from LF (LFD)- and HF (HFD) -

refed mice obtained at 600X magnification. Nuclei are shown in blue. 
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from liver extracts by multiple rounds of floatation through sucrose. This method was 

previously documented showing that CLD isolated by this procedure are free of 

membrane structures and other organelles [61].   Figure III.3A shows that the CLD 

fraction is enriched in specific protein bands that differ significantly from those present in 

the starting homogenate.  In order to demonstrate the enrichment of CLD, I probed the 

homogenate, post nuclear supernatant (PNS), initial CLD, final wash and final CLD with 

antibodies to ER (GRP78), CLD (Plin2), peroxisome (PEX3), and mitochondria(VDAC) 

proteins. Figure III.3B shows that Plin2 was detected in the final CLD fraction, the final 

wash supernatant, and the initial CLD fraction, but not in the homogenate or PNS.   I did 

not detect VDAC or PEX3, in the CLD-enriched fraction despite the presence of both 

these markers in the homogenate, PNS and initial CLD. I detected GRP78 in all of the 

fractions, with the highest intensity in the initial CLD fraction, and the lowest in the final 

CLD enriched fraction. The presences of GRP78 on the final enriched CLD fraction, yet 

in much lower abundance than in the initial CLD fraction, is consistent with the idea that 

GRP78 is closely associated to the CLD, and has been reported for CLD from other cell 

types [71, 90].  The presence of GRP78 on highly enriched CLD fraction is consistent 

with evidence that CLD originate at the ER [21] and can be found in close contact 

withER membranes [91]. Furthermore, the presence of GRP78 in the final wash fraction 

at a staining intensity that is similar to that of the final enriched-CLD fraction, suggests 

that GRP78 undergoes relatively slow dissociation from CLD during wash and that 

further washing would continue to remove only small fractions of the protein from the 

CLD. These results are consistent with GRP78 having moderate affinity for CLD and 

provide evidence that mechanisms exist that selectively control CLD-protein interactions. 
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Figure III.3  Unique Protein Patterns of Isolated Hepatic CLD  

A) Coomassie blue staining profiles of proteins in liver homogenates and isolated CLD. 

B) Immunoblot analyses of equal amounts (25μg) of protein from liver homogenate, 

PNS, initial CLD, final CLD wash, and final enriched CLD fractions reacted with 

antibodies to GRP78, Plin2, PEX3, and VDAC. 

 

These results are consistent with GRP78 having moderate affinity for CLD and provide 

evidence that mechanisms exist that selectively control CLD - protein interactions. 

Liver Specific- and Common-CLD Proteins  

I used LC-MS/MS analysis of trypsin digests of CLD protein extracts as a non-

biased “shotgun” approach for identifying the proteomes of LF- and HF-CLD.  Only 

those proteins with two or more unique peptides, and that were found in repeat analyses 

of isolated CLD from duplicate fasting-re-feeding experiments, were accepted as valid 

identifications.  Overall, I identified 125 proteins on CLD from mice refed the LF diet, 

and 134 proteins on CLD from mice refed the HF diet.  The identified proteins, their 
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biological functions according to Uniprot and gene ontology (GO) database descriptions, 

and their relative abundance averages are shown in the Table III.1     

Of the proteins found on either LF- or HF-CLD, 54 (36%) were identified 

previously on CLD from other mammalian sources ( Table III.2) and appear to represent 

a common CLD proteome; whereas 98 proteins (64%) were not previously detected on 

CLD, and thus potentially represent  liver specific CLD associated proteins ( Table III.3).  

The functional categories of the common- and liver-specific CLD proteins are shown in 

Table III.2.  Proteins involved in lipid metabolism (22%), redox/detoxification (17%) and 

chaperone functions (15%) accounted for over half of the common-CLD proteins, 

whereas enzymes of amino acid (27%) and carbohydrate metabolism (16%), and 

redox/detoxification (15%) pathways made up the majority of the liver-specific CLD 

proteins.   I next used the STRING 9.0 program to examine the extent to which the 

identified proteins exhibited possible functional connections.   As shown in Figure III.4B, 

liver-specific CLD proteins are organized into a series of discrete, interacting nodes, 

suggesting the existence of multiple functional linkages between nodes, and between 

proteins within a given node.  Common-CLD proteins on the other hand appear to be less 

functionally related.  I found that common-CLD proteins comprised only two non-

interacting nodes; one related to protein processing, and another related to glycolysis.  

I used the KEGG pathway database to define potential functional interactions 

among common- and liver-specific CLD proteins (Table III.4).  I identified significant 

enrichment of common-CLD proteins in nine KEGG pathways using a false discovery 

rate (FDR) value of p<0.05.  The majority of the pathways are related to carbohydrate (4)  
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Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

 Gene Uniprot ID LFD HFD Source 

Amino Acid Metabolism (GO:0006520)      

Carbonic anhydrase 3   Ca3 P16015 0.121% 0.080% [80] 

Carbamoyl-phosphate synthase [ammonia], 

mitochondrial   

Cps1 Q8C196 0.015%  [79, 80] 

Betaine--homocysteine S-methyltransferase 1   Bhmt O35490 0.140% 0.144%  

Aspartate aminotransferase, cytoplasmic   Got1 P05201 0.094% 0.094%  

Aspartate aminotransferase, mitochondrial   Got2 P05202 0.196% 0.220%  

Glutamine synthetase   Glul P15105 0.347% 0.250%  

Phenylalanine-4-hydroxylase   Pah P16331 0.130% 0.092%  

Argininosuccinate synthase   Ass1 P16460 0.041% 0.140%  

Histidine ammonia-lyase   Hal P35492 0.054% 0.055%  

Fumarylacetoacetase   Fah P35505 0.009%   

4-hydroxyphenylpyruvate dioxygenase   Hpd P49429 0.085% 0.067%  

Arginase-1   Arg1 Q61176 0.048% 0.043%  

Sepiapterin reductase   Spr Q64105 0.060% 0.042%  

Alanine aminotransferase 1   Gpt Q8QZR5 0.121% 0.087%  

Urocanate hydratase   Uroc1 Q8VC12 0.049% 0.044%  

Cystathionine gamma-lyase   Cth Q8VCN5 0.005%   

S-adenosylmethionine synthase isoform type-1   Mat1a Q91X83  0.009%  

Formimidoyltransferase-cyclodeaminase   Ftcd Q91XD4 0.012% 0.004%  

Argininosuccinate lyase   Asl Q91YI0 0.003%   

C-1-tetrahydrofolate synthase, cytoplasmic   Mthfd1 Q922D8 0.021%   

Cytosol aminopeptidase   Lap3 Q9CPY7 0.039% 0.042%  

Dihydropyrimidinase   Dpys Q9EQF5 0.009% 0.019%  

4-trimethylaminobutyraldehyde dehydrogenase   Aldh9a1 Q9JLJ2 0.099% 0.106%  

Glycine N-methyltransferase   Gnmt Q9QXF8  0.007%  
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Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

Maleylacetoacetate isomerase   Gstz1 Q9WVL0 0.028% 0.049%  

L-serine dehydratase/L-threonine deaminase   Sds Q8VBT2  0.009%  

Adenosylhomocysteinase   Ahcy P50247 0.006% 0.004%  

Homogentisate 1,2-dioxygenase   Hgd O09173 0.041% 0.028%  

      

Protein Metabolism (GO:0044267) 

(Chaperones) 

     

Endoplasmin   Hsp90b1 P08113 0.072% 0.041% [42, 61, 78, 80-82, 

92, 93] 

Heat shock protein HSP 90-beta   Hsp90ab1 P11499  0.009% [75, 78, 82, 92, 93] 

78 kDa glucose-regulated protein   Hspa5 P20029 0.022% 0.108% [42, 74-78, 80, 81, 

92, 93] 

Heat shock cognate 71 kDa protein   Hspa8 P63017 0.093% 0.072% [78, 80, 82, 92, 93] 

Protein disulfide-isomerase   P4hb P09103 0.019% 0.030% [74, 75, 78, 80, 81, 

92, 93] 

Protein disulfide-isomerase A3   Pdia3 P27773 0.018%  [42, 75, 80, 92, 93] 

Protein disulfide-isomerase A6   Pdia6 Q922R8 0.013% 0.003% [42, 74, 75, 80, 82, 

92, 93] 

Peptidyl-prolyl cis-trans isomerase A   Ppia P17742  0.037% [74, 75] 

Phenazine biosynthesis-like  

domain-containing protein 1   

Pbld1 Q9DCG6 0.075% 0.048%  

      

Carbohydrate Meatbolism (GO:0005975)      

Isocitrate dehydrogenase [NADP] cytoplasmic   Idh1 O88844 0.016% 0.018%  

Fructose-bisphosphate aldolase B   Aldob Q91Y97 0.250% 0.193% [93] 

Alpha-enolase   Eno1 P17182 0.007%  [80, 93] 

Malate dehydrogenase, cytoplasmic   Mdh1 P14152 0.081% 0.056% [79, 80] 
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Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

Phosphoglycerate kinase 1   Pgk1 P09411 0.034% 0.062% [93] 

Triosephosphate isomerase   Tpi1 P17751 0.130% 0.142% [92] 

Pancreatic alpha-amylase   Amy2 P00688 0.003% 0.022%  

L-lactate dehydrogenase A chain   Ldha P06151 0.051% 0.042%  

Cytoplasmic aconitate hydratase   Aco1 P28271 0.009%   

Transketolase   Tkt P40142 0.020% 0.033%  

Pyruvate kinase isozymes R/L   Pklr P53657 0.032% 0.020%  

Ketohexokinase   Khk P97328 0.004%   

Sorbitol dehydrogenase   Sord Q64442 0.011% 0.041%  

Bifunctional ATP-dependent dihydroxyacetone 

 kinase/FAD-AMP lyase (cyclizing)   

Dak Q8VC30  0.010%  

UTP--glucose-1-phosphate uridylyltransferase   Ugp2 Q91ZJ5 0.028% 0.009%  

Phosphoglucomutase-1   Pgm1 Q9D0F9 0.034% 0.012%  

1,4-alpha-glucan-branching enzyme   Gbe1 Q9D6Y9 0.082% 0.098%  

Phosphoglycerate mutase 1 Pgam1 Q9DBJ1 0.014% 0.009%  

Glycogen phosphorylase, liver form   Pygl Q9ET01 0.026% 0.032%  

Fructose-1,6-bisphosphatase 1   Fbp1 Q9QXD6 0.022%   

      

Glutathione Metabolism (GO:0006749)      

Glutathione S-transferase P 1   Gstp1 P19157 0.009%  [92] 

Glutathione peroxidase 1   Gpx1 P11352 0.048% 0.043%  

Glutathione S-transferase A3   Gsta3 P30115 0.085% 0.059%  

Lactoylglutathione lyase   Glo1 Q9CPU0 0.120% 0.109%  

Glutathione S-transferase Mu 1   Gstm1 P10649 0.138% 0.156%  

      

Lipid Metabolism (GO:0006629)      

Peroxiredoxin-6   Prdx6 O08709  0.005%  
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Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

CGI58 Abhd5 Q9DBL9  0.008% [61, 74-78, 81, 92, 

93] 

3-ketoacyl-CoA thiolase A, peroxisomal   Acaa1a Q921H8 0.026% 0.048% [93] 

Acetyl-CoA acetyltransferase, cytosolic   Acat2 Q8CAY6 0.004% 0.006% [93] 

Long-chain-fatty-acid--CoA ligase 1   Acsl1 P41216  0.006% [61, 74, 80, 81] 

Estradiol 17 beta-dehydrogenase 5   Akr1c6 P70694 0.005% 0.011% [82] 

ATP synthase subunit alpha, mitochondrial   Atp5a1 Q03265 0.015%  [80] 

ATP synthase subunit beta, mitochondrial   Atp5b P56480 0.016% 0.029% [80, 93] 

Carboxylesterase 3   Ces1d Q8VCT4 0.022% 0.045% [80] 

Cytochrome b5   Cyb5a P56395 0.055% 0.035% [80, 93] 

NADH-cytochrome b5 reductase 3   Cyb5r3 Q9DCN2  0.023% [42, 74, 75, 77-79, 

81, 92, 93] 

Fatty acid synthase   Fasn P19096 0.003% 0.024% [92, 93] 

Monoglyceride lipase   Mgll O35678 0.032% 0.059% [79-81, 93] 

Epoxide hydrolase 2   Ephx2 P34914 0.007% 0.022%  

Very long-chain specific 

 acyl-CoA dehydrogenase 

Acadvl P50544 0.018% 0.080%  

Hydroxymethylglutaryl-CoA synthase Hmgcs2 P54869 0.010% 0.011%  

ATP-binding cassette sub-family D member 3   Abcd3 P55096 0.028% 0.056%  

Cytochrome P450 2E1   Cyp2e1 Q05421 0.057% 0.046%  

3-ketoacyl-CoA thiolase B, peroxisomal   Acaa1b Q8VCH0 0.143% 0.041%  

ATP-citrate synthase   Acly Q91V92  0.018%  

Inorganic pyrophosphatase   Ppa1 Q9D819  0.018%  

Peroxisomal bifunctional enzyme   Ehhadh Q9DBM2 0.015% 0.034%  

Estradiol 17-beta-dehydrogenase 11   Hsd17b11 Q9EQ06  0.011%  

Peroxisomal acyl-coenzyme A oxidase 1   Acox1 Q9R0H0 0.003% 0.009%  



 

 

 

3
6
 

Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

Phosphoenolpyruvate 

 carboxykinase, cytosolic [GTP]   

Pck1 Q9Z2V4 0.070% 0.062%  

      

Lipid Transport (GO:0006869)      

Apolipoprotein E  Apoe P08226  0.023% [80, 81, 93] 

Apolipoprotein A-I   Apoa1 Q00623 0.007% 0.025% [80, 81] 

Perilipin-2   Plin2 P43883 0.132% 0.133% [93] 

Non-specific lipid-transfer protein   Scp2 P32020 0.077% 0.297% [42, 82, 93] 

Fatty acid-binding protein, liver   Fabp1 P12710 0.016% 0.048%  

      

Nucleotide Metabolism (GO:0006975)      

Nicotinate phosphoribosyltransferase   Naprt1 Q8CC86 0.072% 0.143%  

Putative L-aspartate dehydrogenase   Aspdh Q9DCQ2 0.280% 0.170%  

3-hydroxyanthranilate 3,4-dioxygenase   Haao Q78JT3  0.017%  

   0.060% 0.068%  

Other   0.019% 0.093%  

Actin, cytoplasmic 1   Actb P60710 0.039% 0.047% [75, 78, 80, 81, 92, 

93] 

Serum albumin   Alb P07724 0.019% 0.054% [61, 80, 81, 93] 

Annexin A5   Anxa5 P48036 0.049% 0.045% [80] 

Clathrin heavy chain 1   Cltc Q68FD5 0.047% 0.046% [42, 77-82] 

Elongation factor 1-alpha 1   Eef1a1 P10126 0.024% 0.018% [75, 81, 93] 

Histone H2A type 1   Hist1h2ab P22752 0.016% 0.009% [93] 

Methyltransferase-like protein 7B   Mettl7b Q9DD20 0.054% 0.048% [78, 79, 93] 

Myosin light polypeptide 6  Myl6 Q60605  0.006% [93] 

Protein NDRG2   Ndrg2 Q9QYG0 0.053% 0.076% [75, 93] 

Ras-related protein Rab-14  Rab14 Q91V41 0.010% 0.044% [74, 77, 78, 82, 93] 
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Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

Tubulin alpha-1C chain   Tuba1c P68373  0.009% [75, 80, 93] 

Alpha-1-antitrypsin 1 Serpina1a P07758 0.007% 0.016%  

Serine protease inhibitor A3K   Serpina3k P07759 0.009%   

Histone H2B type 1-F/J/L   Hist1h2bf P10853  0.008%  

Ferritin light chain 1   Ftl1 P29391 0.107% 0.131%  

Ribonuclease UK114   Hrsp12 P52760 0.027% 0.027%  

Elongation factor 2   Eef2 P58252 0.004%   

Tubulin beta-4B chain   Tubb4b P68372 0.020% 0.015%  

Selenide, water dikinase 2   Sephs2 P97364  0.007%  

Liver carboxylesterase 31   Ces3a Q63880 0.003%   

Regucalcin   Rgn Q64374 0.063% 0.060%  

Tetratricopeptide repeat protein Ttc36 Q8VBW8 0.074% 0.062%  

Myosin-9   Myh9 Q8VDD5    

SEC14-like protein 2   Sec142 Q99J08    

Parathymosin   Ptms Q9D0J8 0.123% 0.082%  

Interferon-inducible GTPase 1  Iigp1 Q9QZ85 0.018% 0.009%  

D-dopachrome decarboxylase   Ddt O35215 0.110% 0.098%  

   0.200% 0.197%  

Redox/Detox (GO:0055114/ GO:0006805)    0.013%  

Aldehyde dehydrogenase, mitochondrial   Aldh2 P47738 0.055% 0.050% [75, 93] 

Catalase   Cat P24270 0.022% 0.031% [75, 80] 

Dehydrogenase/reductase SDR family member 1   Dhrs1 Q99L04 0.041% 0.036% [74-77, 92, 93] 

Glyceraldehyde-3-phosphate dehydrogenase   Gapdh P16858 0.003%  [92] 

L-gulonolactone oxidase   Gulo P58710  0.008% [79] 

17-beta-hydroxysteroid dehydrogenase 13   Hsd17b13 Q8VCR2  0.014% [80] 

3 beta-hydroxysteroid dehydrogenase Hsd3b3 P26150 0.046% 0.120% [92] 
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Table III.1  Effects of High- and Low - Fat Re-feeding Diets on the Hepatic CLD Proteome 

 

Peroxiredoxin-1   Prdx1 P35700 0.110% 0.079% [75] 

Peroxiredoxin-5, mitochondrial   Prdx5 P99029  0.010% [92] 

Cytochrome P450 4A14   Cyp4a14 O35728  0.024%  

Alcohol dehydrogenase 1   Adh1 P00329 0.025% 0.137%  

NADP-dependent malic enzyme   Me1 P06801  0.025%  

Superoxide dismutase [Cu-Zn]   Sod1 P08228 0.035% 0.007%  

Cytochrome P450 2D9 Cyp2d9 P11714 0.026% 0.017%  

Cytochrome P450 2D10   Cyp2d10 P24456 0.143% 0.140%  

Retinal dehydrogenase 1   Aldh1a1 P24549 0.009% 0.007%  

Cytochrome P450 2F2   Cyp2f2 P33267 0.067% 0.008%  

Pterin-4-alpha-carbinolamine dehydratase   Pcbd1 P61458  0.006%  

UDP-glucuronosyltransferase 1-1   Ugt1a1 Q63886    

Aldehyde dehydrogenase family 8 member A1   Aldh8a1 Q8BH00    

Glyoxylate reductase/hydroxypyruvate reductase   Grhpr Q91Z53 0.007% 0.011%  

Alcohol dehydrogenase [NADP+]   Akr1a1 Q9JII6 0.022% 0.013%  

Cytosolic 10-formyltetrahydrofolate dehydrogenase   Aldh1l1 Q8R0Y6 0.109% 0.144%  

   0.003% 0.014%  

Transport (GO:0006810)   0.016% 0.024%  

Major urinary protein 6   Mup6 P02762    

Serotransferrin   Tf Q921I1   [61] 

Transitional endoplasmic reticulum ATPase   Vcp Q01853 0.004% 0.008% [61, 75, 82] 

Major urinary protein 20   Mup20 Q5FW60 0.052% 0.017%  

Selenium-binding protein 2   Selenbp2 Q63836 0.003%   

      

 

Table III.2  Common CLD Associated Proteins 
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Table III.2  Common CLD Associated Proteins 

Protein Name Gene Uniprot ID 

Amino Acid Metabolism (GO:0006520)   

Carbonic anhydrase 3   Ca3 P16015 

Carbamoyl-phosphate synthase [ammonia], mitochondrial   Cps1 Q8C196 

   

Protein Metabolism (GO:0044267) 

(Chaperones)   

Endoplasmin   Hsp90b1 P08113 

Heat shock protein HSP 90-beta   Hsp90ab1 P11499 

78 kDa glucose-regulated protein   Hspa5 P20029 

Heat shock cognate 71 kDa protein   Hspa8 P63017 

Protein disulfide-isomerase   P4hb P09103 

Protein disulfide-isomerase A3   Pdia3 P27773 

Protein disulfide-isomerase A6   Pdia6 Q922R8 

Peptidyl-prolyl cis-trans isomerase A   Ppia P17742 

   

Carbohydrate Meatbolism (GO:0005975)   

Fructose-bisphosphate aldolase B   Aldob Q91Y97 

Alpha-enolase   Eno1 P17182 

Malate dehydrogenase, cytoplasmic   Mdh1 P14152 

Phosphoglycerate kinase 1   Pgk1 P09411 

Triosephosphate isomerase   Tpi1 P17751 

   

Glutathione Metabolism (GO:0006749)   

Glutathione S-transferase P 1   Gstp1 P19157 
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Table III.2  Common CLD Associated Proteins 

Lipid Metabolism (GO:0006629)   

CGI58 Abhd5 Q9DBL9 

3-ketoacyl-CoA thiolase A, peroxisomal   Acaa1a Q921H8 

Acetyl-CoA acetyltransferase, cytosolic   Acat2 Q8CAY6 

Long-chain-fatty-acid--CoA ligase 1   Acsl1 P41216 

Estradiol 17 beta-dehydrogenase 5   Akr1c6 P70694 

ATP synthase subunit alpha, mitochondrial   Atp5a1 Q03265 

ATP synthase subunit beta, mitochondrial   Atp5b P56480 

Carboxylesterase 3   Ces1d Q8VCT4 

Cytochrome b5   Cyb5a P56395 

NADH-cytochrome b5 reductase 3   Cyb5r3 Q9DCN2 

Fatty acid synthase   Fasn P19096 

Monoglyceride lipase   Mgll O35678 

   

Lipid Transport (GO:0006869)   

Apolipoprotein E  Apoe P08226 

Apolipoprotein A-I   Apoa1 Q00623 

Perilipin-2   Plin2 P43883 

Non-specific lipid-transfer protein   Scp2 P32020 

   

Other   

Actin, cytoplasmic 1   Actb P60710 

Serum albumin   Alb P07724 

Annexin A5   Anxa5 P48036 

Clathrin heavy chain 1   Cltc Q68FD5 

Elongation factor 1-alpha 1   Eef1a1 P10126 
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Table III.2  Common CLD Associated Proteins 

Histone H2A type 1   Hist1h2ab P22752  

Methyltransferase-like protein 7B   Mettl7b Q9DD20 

Myosin light polypeptide 6  Myl6 Q60605 

Protein NDRG2   Ndrg2 Q9QYG0 

Ras-related protein Rab-14  Rab14  Q91V41 

Tubulin alpha-1C chain   Tuba1c P68373 

   

Redox/Detox (GO:0055114/ GO:0006805)   

Aldehyde dehydrogenase, mitochondrial   Aldh2 P47738 

Catalase   Cat P24270 

Dehydrogenase/reductase SDR family member 1   Dhrs1 Q99L04 

Glyceraldehyde-3-phosphate dehydrogenase   Gapdh P16858 

L-gulonolactone oxidase   Gulo P58710 

17-beta-hydroxysteroid dehydrogenase 13   Hsd17b13 Q8VCR2 

3 beta-hydroxysteroid dehydrogenase Hsd3b3 P26150 

Peroxiredoxin-1   Prdx1 P35700 

Peroxiredoxin-5, mitochondrial   Prdx5 P99029 

   

Transport (GO:0006810)   

Serotransferrin   Tf Q921I1 

Transitional endoplasmic reticulum ATPase   Vcp Q01853 
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Table III.3  Liver Specific CLD Associated Proteins 

Protein Name Gene Uniprot ID 

Amino Acid Metabolism (GO:0006520)   

Adenosylhomocysteinase   Ahcy P50247 

4-trimethylaminobutyraldehyde dehydrogenase   Aldh9a1 Q9JLJ2 

Arginase-1   Arg1 Q61176 

Argininosuccinate lyase   Asl Q91YI0 

Argininosuccinate synthase   Ass1 P16460 

Betaine--homocysteine S-methyltransferase 1   Bhmt O35490 

Cystathionine gamma-lyase   Cth Q8VCN5 

Dihydropyrimidinase   Dpys Q9EQF5 

Fumarylacetoacetase   Fah P35505 

Formimidoyltransferase-cyclodeaminase   Ftcd Q91XD4 

Glutamine synthetase   Glul P15105 

Glycine N-methyltransferase   Gnmt Q9QXF8 

Aspartate aminotransferase, cytoplasmic   Got1 P05201 

Aspartate aminotransferase, mitochondrial   Got2 P05202 

Alanine aminotransferase 1   Gpt Q8QZR5 

Maleylacetoacetate isomerase   Gstz1 Q9WVL0 

Histidine ammonia-lyase   Hal P35492 

4-hydroxyphenylpyruvate dioxygenase   Hpd P49429 

Cytosol aminopeptidase   Lap3 Q9CPY7 

S-adenosylmethionine synthase isoform type-1   Mat1a Q91X83 

C-1-tetrahydrofolate synthase, cytoplasmic   Mthfd1 Q922D8 

Phenylalanine-4-hydroxylase   Pah P16331 

L-serine dehydratase/L-threonine deaminase   Sds Q8VBT2 
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Table III.3  Liver Specific CLD Associated Proteins 

Sepiapterin reductase   Spr Q64105 

Urocanate hydratase   Uroc1 Q8VC12 

Homogentisate 1,2-dioxygenase   Hgd O09173 

   

Protein Metabolism (GO:0044267) 

(Chaperones)   

Phenazine biosynthesis-like domain-containing protein 1   Pbld1 Q9DCG6 

   

Carbohydrate Meatbolism (GO:0005975)   

Isocitrate dehydrogenase [NADP] cytoplasmic   Idh1 O88844 

Cytoplasmic aconitate hydratase   Aco1 P28271 

Pancreatic alpha-amylase   Amy2 P00688 

Bifunctional ATP-dependent dihydroxyacetone kinase 

/FAD-AMP lyase (cyclizing)   Dak Q8VC30 

Fructose-1,6-bisphosphatase 1   Fbp1 Q9QXD6 

1,4-alpha-glucan-branching enzyme   Gbe1 Q9D6Y9 

Ketohexokinase   Khk P97328 

L-lactate dehydrogenase A chain   Ldha P06151 

Phosphoglycerate mutase 1 Pgam1 Q9DBJ1 

Phosphoglucomutase-1   Pgm1 Q9D0F9 

Pyruvate kinase isozymes R/L   Pklr P53657 

Glycogen phosphorylase, liver form   Pygl Q9ET01 

Sorbitol dehydrogenase   Sord Q64442 

Transketolase   Tkt P40142 

UTP--glucose-1-phosphate uridylyltransferase   Ugp2 Q91ZJ5 

   

Glutathione Metabolism (GO:0006749)   
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Table III.3  Liver Specific CLD Associated Proteins 

Lactoylglutathione lyase   Glo1 Q9CPU0 

Glutathione peroxidase 1   Gpx1 P11352 

Glutathione S-transferase A3   Gsta3 P30115 

Glutathione S-transferase Mu 1   Gstm1 P10649 

   

Lipid Metabolism (GO:0006629)   

Peroxiredoxin-6   Prdx6 O08709 

ATP-binding cassette sub-family D member 3   Abcd3 P55096 

3-ketoacyl-CoA thiolase B, peroxisomal   Acaa1b Q8VCH0 

Very long-chain specific acyl-CoA dehydrogenase Acadvl P50544 

ATP-citrate synthase   Acly Q91V92 

Peroxisomal acyl-coenzyme A oxidase 1   Acox1 Q9R0H0 

Cytochrome P450 2E1   Cyp2e1 Q05421 

Peroxisomal bifunctional enzyme   Ehhadh Q9DBM2 

Epoxide hydrolase 2   Ephx2 P34914 

Hydroxymethylglutaryl-CoA synthase Hmgcs2 P54869 

Estradiol 17-beta-dehydrogenase 11   Hsd17b11 Q9EQ06 

Phosphoenolpyruvate carboxykinase, cytosolic [GTP]   Pck1 Q9Z2V4 

Inorganic pyrophosphatase   Ppa1 Q9D819 

   

Lipid Transport (GO:0006869)   

Fatty acid-binding protein, liver   Fabp1 P12710 

   

Nucleotide Metabolism (GO:0006975)   

Putative L-aspartate dehydrogenase   Aspdh Q9DCQ2 

Nicotinate phosphoribosyltransferase   Naprt1 Q8CC86 

3-hydroxyanthranilate 3,4-dioxygenase   Haao Q78JT3 
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Table III.3  Liver Specific CLD Associated Proteins 

   

Other   

Liver carboxylesterase 31   Ces3a Q63880 

Elongation factor 2   Eef2 P58252 

Ferritin light chain 1   Ftl1 P29391 

Histone H2B type 1-F/J/L   Hist1h2bf P10853  

Ribonuclease UK114   Hrsp12 P52760 

Interferon-inducible GTPase 1  Iigp1 Q9QZ85 

Myosin-9   Myh9 Q8VDD5 

Parathymosin   Ptms Q9D0J8 

Regucalcin   Rgn Q64374 

SEC14-like protein 2   Sec142 Q99J08 

Selenide, water dikinase 2   Sephs2 P97364 

Alpha-1-antitrypsin 1 Serpina1a P07758  

Serine protease inhibitor A3K   Serpina3k P07759 

Tetratricopeptide repeat protein Ttc36 Q8VBW8 

Tubulin beta-4B chain   Tubb4b P68372 

D-dopachrome decarboxylase   Ddt O35215 

   

Redox/Detox (GO:0055114/ GO:0006805)   

Alcohol dehydrogenase 1   Adh1 P00329 

Alcohol dehydrogenase [NADP+]   Akr1a1 Q9JII6 

Retinal dehydrogenase 1   Aldh1a1 P24549 

Aldehyde dehydrogenase family 8 member A1   Aldh8a1 Q8BH00 

Cytochrome P450 2D10   Cyp2d10 P24456 

Cytochrome P450 2D9 Cyp2d9 P11714 
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Table III.3  Liver Specific CLD Associated Proteins 

Cytochrome P450 2F2   Cyp2f2 P33267 

Cytochrome P450 4A14   Cyp4a14 O35728 

Glyoxylate reductase/hydroxypyruvate reductase   Grhpr Q91Z53 

NADP-dependent malic enzyme   Me1 P06801 

Pterin-4-alpha-carbinolamine dehydratase   Pcbd1 P61458 

Superoxide dismutase [Cu-Zn]   Sod1 P08228 

UDP-glucuronosyltransferase 1-1   Ugt1a1 Q63886 

Cytosolic 10-formyltetrahydrofolate dehydrogenase   Aldh1l1 Q8R0Y6 

   

Transport (GO:0006810)   

Major urinary protein 6   Mup6 P02762  

Major urinary protein 20   Mup20 Q5FW60 

Selenium-binding protein 2   Selenbp2 Q63836 
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Figure III.4  Hepatic CLD Differs from Other Core CLD Proteomes 

 (A) Functional categories of common- and liver-specific proteins categorized according 

to gene ontology (GO) annotations. (B) Association networks of common- and liver-

specific CLD associated proteins predicted by the STRING 9.0 program with a 

confidence level of 0.8. Network edges represent predicted functional associations with 

different line colors standing for various types of evidence used in establishing the level 

of confidence. Red, fusion evidence; green, neighborhood evidence; blue, co-occurrence 

evidence; purple, experimental evidence; yellow, text-mining evidence; black, co-

expression evidence. Non-network proteins are not shown. 
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and fatty acid metabolism (3), the others were related to amino acid metabolism (1) and 

protein processing (1).  For liver-specific CLD proteins, I found significant enrichment in 

26 KEGG pathway categories.  Of these, 12 were related to amino acid metabolism, 6 

were related to carbohydrate metabolism, 4 were related to fatty acid metabolism, 3 were 

related to xenobiotic metabolism and 1 was related to glutathione metabolism.  Among 

the identified enzymes, several corresponded to large portions of the 

glycolysis/gluconeogenesis and cysteine/methionine pathways. 

Low- and High- Fat Specific CLD Proteins   

The functional classes of proteins that were uniquely associated with LF- and HF-

CLD exhibited distinct patterns (Figure III.5).   The majority of the proteins uniquely 

associated with LF-CLD are involved in amino acid (29%) and carbohydrate (23%) 

metabolism.  Whereas, most of the uniquely associated proteins on HF-CLD are related 

to lipid metabolism and redox/detoxification processes.  Using the STRING 9.0 program 

to probe for functionally interactions between LF- and HF-CLD specific proteins, I found 

that LF-CLD specific proteins formed a single high stringency interaction node 

connecting enzymes involved in amino acid and acetate metabolism.  Whereas, HF-CLD 

specific proteins formed a high stringency node related to redox/detoxification processes 

and two sets of individual connections between pyruvate and carbohydrate metabolism, 

and between methionine/cysteine and dicarboxylic acid metabolism (Figure III.5B).

Among the 17 proteins specifically found on LF-CLD, I did not detect significant 

enrichment in any KEGG pathway.  However, among the 26 proteins specifically found 

on HF-CLD, there was enrichment in 5 KEGG pathways with FDR values < 0.05, PPAR 

signaling, ascorbate metabolism, pyruvate metabolism, fatty acid metabolism and
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Figure III.5  HFD Induces Expression of Proteins from Different Pathways 

(A) Functional categories of LF- and HF-specific CLD associated proteins categorized 

according to gene ontology (GO) annotations. (B) Association networks of LF- and HF-

specific CLD associated proteins predicted by the STRING 9.0 program with a 

confidence level of 0.8. Color codes are as described in the legend to Figure III.3 
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 glyoxylate metabolism.  The identities of the HF-CLD proteins found in enriched KEGG 

pathways are shown in Table III.5 

Diet Affects Plin2 CLD Levels  

In addition to finding qualitative differences in the protein compositions of LF- 

and HF-CLD, I also found that for some proteins LF and HF diets appeared to influence 

the relative abundance, as suggested by percent spectra (Table III.2).  One of the proteins 

exhibiting a relative large change in apparent abundance was Plin2.  To determine if 

differences of Plin2 reflected actual differences in its abundance on CLD, I investigated 

Plin2 in hepatic tissue by immunofluorescence (IF) microscopy, and in isolated CLD by 

quantitative immunoblot analysis (Figure III.6).  IF analysis showed significant Plin2 

immunostaining in both LF- and HF-refed livers, with increased Plin2 staining intensity 

in livers of HF-refed livers in the central vein region (Figure III.6A).  I next determined 

the relative amounts Plin2 on isolated CLD by quantitative immunoblot analysis.  When 

compared to total CLD protein (Figure III.6B), or to total CLD TG (Figure III.6C), I 

found that HF-re-feeding increased the average amount of Plin2 associated with CLD by 

approximately 4-fold over that found for LF-refed animals. 

Fasting and HF diets are reported to increase hepatic Plin2 transcript levels [94].  

Thus, I was interested in determining whether the enrichment of Plin2 on CLD in HF 

refed mice corresponded to enhanced Plin2 mRNA expression.  As shown in Figure

Table III.4  Liver Specific- and Common-CLD Protein KEGG Pathways 

Liver Specific CLD associated proteins 

KEGG ID Pathway 
Number Of 

Genes 

P-value 

fdr 

mmu00270 Cysteine and methionine metabolism 8 8.54E-07 

mmu00350 Tyrosine metabolism 7 1.44E-05 

mmu00330 Arginine and proline metabolism 8 1.73E-05 
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Table III.4  Liver Specific- and Common-CLD Protein KEGG Pathways 

Liver Specific CLD associated proteins 

KEGG ID Pathway 
Number Of 

Genes 

P-value 

fdr 

mmu00010 Glycolysis/Gluconeogenesis 9 2.25E-05 

mmu00620 Pyruvate metabolism 7 2.25E-05 

mmu00360 Phenylalanine metabolism 5 2.26E-05 

mmu00071 Fatty acid metabolism 7 2.26E-05 

mmu00250 Alanine, aspartate and glutamate metabolism 6 3.61E-05 

mmu00982 Drug metabolism – cytochrome P450 8 9.24E-05 

mmu03320 PPAR signaling pathway 8 9.24E-05 

mmu00400 
Phenylalanine, tyrosine and tryptophan 

biosynthesis 
3 1.37E-04 

mmu00980 Metabolism of xenobiotics by cytochrome P450 7 3.10E-04 

mmu00480 Glutathione metabolism 6 6.03E-04 

mmu04146 Peroxisome 7 6.03E-04 

mmu00500 Starch and sucrose metabolism 5 9.90E-04 

mmu00450 Selenoamino acid metabolism 4 2.10E-03 

mmu00020 Citrate cycle (TCA cycle) 4 6.50E-03 

mmu00260 Glycine, serine and threonine metabolism 4 7.84E-03 

mmu00630 Glyoxylate and dicarboxylate metabolism 3 1.20E-02 

mmu00410 beta-Alanine metabolism 3 2.05E-02 

mmu00910 Nitrogen metabolism 3 2.05E-02 

mmu00280 Valine, leucine and isoleucine degradation 4 2.45E-02 

mmu00340 Histidine metabolism 3 2.78E-02 

mmu00030 Pentose phosphate pathway 3 4.16E-02 

mmu00903 Limonene and pinene degradation 2 4.24E-02 

mmu00640 Propanoate metabolism 3 4.24E-02 

Common CLD associated proteins 

mmu04146 Peroxisome 6 8.95E-04 

mmu00010 Glycolysis/Gluconeogenesis 6 8.95E-04 

mmu00071 Fatty acid metabolism 4 9.00E-03 

mmu03320 PPAR signaling pathway 4 4.64E-02 

mmu00051 Fructose and mannose metabolism 3 4.64E-02 

mmu00650 Butanoate metabolism 3 4.64E-02 

mmu00380 Tryptophan metabolism 3 4.64E-02 

mmu00620 Pyruvate metabolism 3 4.64E-02 

mmu04612 Antigen processing and presentation 4 4.64E-02 
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Table III.5  Specific HFD CLD Protein KEGG Pathways 

KEGG ID Pathway P-value (fdr) Gene 

mmu00053 Ascorbate and aldarate metabolism 2.13E-03 Gulo 

   
Aldh2 

   
Ugt1a1 

mmu03320 PPAR signaling pathway 7.47E-03 Apoa1 

   
Hmgcs2 

   
Pck1 

   
Cyp4a14 

mmu00620 Pyruvate metabolism 1.37E-02 Grhpr 

   
Pck1 

   
Aldh2 

mmu00071 Fatty acid metabolism 1.37E-02 Acadvl 

   
Aldh2 

   
Cyp4a14 

mmu00630 
Glyoxylate and dicarboxylate 

metabolism 
4.73E-02 Mthfd1 

   
Grhpr 

 

III.6D, I found that Plin2 transcript levels in total hepatic RNA were similar for HF- and 

LF-refed mice.  The data in Figure III.6D also show that hepatic Plin2 transcript levels 

are several folds greater than those of other PLIN family members, and that hepatic 

transcript expression of other PLIN family genes also are not influenced by the content of 

fat in the re-feeding diet.  Collectively these data suggest that the HF diet increases the 

association of Plin2 with CLD, elevating its relative CLD abundance, and that this effect 

is not related to Plin2 expression levels.   

High Fat Feeding Increases Plin2 Surface Density on CLD   

As a CLD surface associated protein, an increase in the relative amount of Plin2 

on CLD could be due to loss of other CLD-associated proteins, or absolute increases in 

its surface density. To distinguish between these two mechanisms, I quantified the effects  
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of HF exposure on the surface density of Plin2 by electron microscopy after immuno-

gold labeling.  For these experiments I used a cell line that constitutively expresses 

recombinant mouse Plin2 under control of the CMV promoter [95] to avoid potential 

effects of fat exposure on Plin2 expression.  Figure III.6 shows that CLD in these cells 

increased in size following feeding with 100 M oleic acid (OA), and that the number of 

anti-Plin2 conjugated-gold particles on the surface of individual CLD increased as a 

function of time in OA-supplemented media.  The average surface densities of anti-Plin2 

conjugated-gold particles on CLD in cells incubated in control media without OA 

supplementation (T 0hr), and cells supplemented with OA for 4 or 24 hrs are shown in 

the graph in Figure III.6E.  The CLD surface density of Plin2 increased following 

incubation in OA supplemented medium by about 2-fold over the T0 density after 4 hrs 

(p<0.01) and 6-fold after 24 hrs (p<0.001).  These data provide direct evidence that the 

surface density of Plin2 on CLD is dynamically regulated and increased under conditions 

of high fat exposure.  

Endoplasmic Reticulum Chaperone Proteins Localize to Hepatic CLD   

ER proteins, including several with chaperone function, have been identified on 

isolated CLD from various mammalian cells and tissues [61, 74, 76, 78, 93], as well as

from drosophila larvae [73].  I detected GRP78 in highly enriched hepatic CLD by 

immunoblotanalysis (Figure III.8), and I found GRP78 and numerous other chaperone-

related proteins on LF- and HF-CLD by proteomic analysis (Table III.1).  Hepatic 

GRP78 expression is upregulated in response to ER stress [96], and elements of the ER 

stress pathway are known to play crucial roles in regulating hepatic lipid metabolism, 

including lipogenesis [97].  To assess possible LF- and HF-diet re-feeding effects on 
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Figure III.6 Diet Effects Plin2 on CLD 

(A) Representative confocal Plin2 immunofluorescence (green) images of liver sections 

from fasted male mice refed with LF (LFD) – and HF (HFD)-diets and stained with 

antibodies to Plin2. Nuclei (blue) were stained with DAPI. Asterisks indicate central 

veins. (B) Quantitative immunoblot analysis of Plin2 levels in enriched CLD protein 

extracts from fast-fed male mice on LF (LFD)- or HF(HFD)-diets. Insets show 

immunoblots of 25 μg of CLD protein from 3 mice. The graph shows the average (± SD) 

Plin2 levels normalized to 25 μg of total CLD protein from LF (N = 3) and HF (N = 3) 

mice. (C) CLD Plin2 levels normalized to CLD TG content. Values are means (± SD) for 

LF (N = 3) and HF (N = 3) refed animals. Asterisks in B and C indicate HFD values 

differ from LFD values (p<0.0001). (D) Transcript levels of PLIN family members in 

livers of fasted and refed mice on LFD and HFD quantified by qRT-PCR using primers 

listed in Table II.1. Values are means± SD normalized to 18S RNA. Asterisks indicate 

Plin2 transcript levels are significantly elevated over transcript levels for Plins 1,3,4, and 

5.  

 

  

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0067631
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Figure III.7 Diet Effects Plin2 Surface Density on CLD 

Effects of HF feeding on Plin2 surface density in HEK293 cells stably expressing Plin2-

VSV. Images are representative electron micrographs of anti-PLIN2-gold particle labeled 

cells that were cultured in oleic acid-supplemented media for 0h, 4h or 24h. An enlarged 

micrograph of a CLD at 24h is shown. Average (± SD) Plin2 surface densities on CLD at 

each time point are shown for 50–75 CLD from triplicate cultures. The experiment was 

repeated twice with similar results. Asterisks indicate statistically significant differences 

from T = 0 time point, double dagger indicates statistically significant differences 

between 4h and 24h time points 
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chaperone-CLD interactions in the liver, and better understand the nature of these 

interactions, I quantified CLD-GRP78 levels in response to LF- and HF-re-feeding, and 

directly investigated the association of GRP78 with CLD in hepatic tissue by IF analysis 

(III.8D).   The levels of GRP78 in liver homogenates of LF- and HF-refed mice did not 

differ significantly from each other, or from GRP78 levels found in livers of non-fasted 

mice, which suggests that hepatic CLD responses are not associated with obvious ER 

stress.   Furthermore, I did not find significant differences in the amount of CLD-

associated GRP78 in LF- and HF-refed livers, demonstrating that unlike the Plin2 

response, CLD levels of GRP78 are not influenced by diet.    

Evidence of direct association between GRP78 and CLD in intact cells has been 

obtained in adipocytes [98].  To verify that GRP78 directly associates with CLD in intact 

hepatocytes, I visualized liver sections from fasted mice that were refed with the HF diet 

and immunostained for Plin2 and GRP78 with laser confocal microscopy (Figure III.8D).  

GRP78 immunostaining was detected in the ER network of hepatocytes and on the 

surface of their CLD.  In contrast to the relatively uniform staining intensity of Plin2 on 

CLD, GRP78 localized as discrete patches on the CLD surface, in a pattern similar to that 

described for CLD in adipocytes [98].Protein disulfide isomerase (PDI) is another

prominent ER chaperone protein that I identified by proteomic analysis of hepatic 

CLD from LF-and HF-refed mice (Table III.1).  I validated the association of PDI with 

isolated CLD by immunoblot analysis, and confirmed its CLD localization by laser 

confocal imaging of immunostained stained liver sections (Figure III.8E).   Similar to 

GRP78, PDI localized as discrete patches on the surface of Plin2-positive CLD.   

Collectively, the GRP78 and PDI immunostaining data validate proteomic evidence of 
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Figure III.8 ER Proteins are Associated with CLD 
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Figure III.8 ER Proteins are Associated with CLD 

(A) Quantitative immunoblot analysis of GRP78 levels in liver extracts from non-fasted 

male mice (Control) and fast-fed male mice on LF- or HF-diets. Insets show 

immunoblots of 50 μg of total liver homogenate protein from 3 mice probed with 

antibodies to GRP78 or β-actin. The graph shows the average (± SD) GRP78 levels 

normalized to β-actin from Control (3), LF- (LFD) (N = 3) and HF- (HFD) (N = 3) refed 

mice. (B) Quantitative immunoblot analysis of GRP78 levels in enriched CLD protein 

extracts from fast-fed male mice on LF- or HF-diets. Insets show immunoblots of 25 μg 

of CLD protein from 3 mice. The graph shows the average (± SD) GRP78 levels 

normalized to 25 μg of CLD protein from LF- (LFD) (N = 3) and HF- (HFD) (N = 3) 

refed mice. (C) CLD GRP78 levels normalized to CLD TG content. Values are means (± 

SD) for LFD (N = 3) and HFD (N = 3) refed animals. (D) Representative confocal 

immunofluorescence images of liver sections from HF refed mice stained with antibodies 

to Plin2 (red) and GRP78 (green). (E) Representative confocal immunofluorescence 

images of liver sections from HF refed mice stained with antibodies to Plin2 (red) and 

PDI (green). Nuclei in images in D and E (blue) were stained with DAPI. Arrows in D 

and E indicate localization of GRP78 or PDI on CLD. Bar is 10 μm. 
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ER chaperone protein-CLD association and suggest that chaperones exhibit distinct 

organizational patterns on the CLD surface.  

LF and HF Re-feeding Differentially Affect CLD Levels of the Methionine-

Metabolizing Enzyme BHMT   

Pathway analysis, revealed significant enrichment of enzymes associated with the 

cysteine-homocysteine-methionine pathway on liver-CLD (Table VII.1).  Figure III.9A, 

shows the relationship between the identified proteins and specific steps of the cysteine-

methionine metabolism pathway.  Betaine homocysteine S-methyltransferase (BHMT), a 

critical regulatory enzyme of this pathway [99], is an abundant liver protein and one of 

the top proteomic hits on CLD from LF- and HF-fed mice.  In mice, loss of BHMT 

hasbeen shown to induce hepatosteatosis [100], and high fat feeding has been shown to 

increase hepatic BHMT transcript levels [101].  I was thus interested in determining if 

diet affected the amount of BHMT associated with CLD.  Figure III.9B shows that 

BHMT levels in whole liver extracts from LF- and HF-refed animals were significantly 

(77% and 128% respectively) higher than those of non-fasted control animals.  Although 

hepatic BHMT levels in animals re-fed the HF-diet tended to be higher than those of LF-

refed animals, the differences did not reach statistical significance.  In contrast, levels of

BHMT associated LF-CLD were about 3-times higher than that found associated with 

HF-CLD when normalized to either total CLD protein, or to CLD-TG content (Figure 

III.9 C and D).  These results provide direct evidence for the presence of BHMT on CLD, 

and demonstrate that its CLD association is altered by diet.  
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Figure III.9 Methionine-Cysteine Pathway Proteins Associated with CLD 

(A) Schematic diagram representing the methionine/cysteine pathway. Boxes represent 

proteins, circles represent metabolites. Green colored boxes indicate proteins identified 

on hepatic CLD. (B) Quantitative immunoblot analysis of BHMT levels in liver extracts 

from non-fasted male mice (Control) and refed male mice on LF- or HF-diets. Insets 

show immunoblots of 50 μg of total liver homogenate protein from 3 mice probed with 

antibodies to BHMT or β-actin. The graph shows the average (± SD) BHMT levels 

normalized to β-actin from Control (3), LFD (N = 3) and HFD (N = 3) refed mice. 

Asterisks indicate LFD and HFD values differ from Control values (p<0.005). (C) 

Quantitative immunoblot analysis of BHMT levels in CLD protein extracts from refed 

male mice on LF- or HF-diets. Insets show immunoblots of 25 μg of CLD protein from 3 

mice. The graph shows the average (± SD) BHMT levels normalized to 25 μg of CLD 

protein from LFD (N = 3) and HFD (N = 3) mice. (D) CLD BHMT levels normalized to 

CLD TG content. Values are means (± SD) for LFD (N = 3) and HFD (N = 3) refed 

animals. Asterisks in C and D indicate HFD values differ from LFD values (p<0.001). 
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Discussion 

Neutral lipid accumulation in the liver, a critical determinant of hepatic lipid 

homeostasis and liver health [85, 102, 103], is affected by diet and alterations in 

metabolic function [104, 105].  CLD are responsible for storage and mobilization of 

neutral lipid stores through the actions of specific surface associated proteins.  Although 

earlier studies have identified proteins associated with hepatic CLD from mice [61, 80], 

the data presented here provide the first comprehensive non-biased description of the 

mouse hepatic CLD proteome.  The novel findings of this study are that the hepatic CLD 

protein composition appears to be distinct from that of CLD from other sources; enzymes 

of multiple metabolic pathways are present on hepatic CLD; and the protein composition 

of hepatic CLD from fasted and refed mice is qualitatively and quantitatively influenced 

by dietary fat content, and corresponds to alterations in hepatic metabolic 

properties.Together, these findings provide evidence that CLD properties are dynamically 

regulated by the metabolic status of the liver, and that CLD may function in coordinating 

diverse metabolic activities within liver cells. 

Metabolic Functions of Hepatic CLD  

The primary biological function of CLD is generally understood to be neutral 

lipid storage, which is thought to involve the integrated actions of ER enzymes and 

specific CLD-associated proteins [106].  In agreement with this concept, multiple 

proteomic studies have consistently detected various ER proteins, lipid metabolism 

enzymes and members of the PLIN family of CLD-associated proteins on isolated CLD 

from multiple mammalian sources [42, 61, 74-82, 92, 93].  There is also growing 

evidence that CLD may sequester proteins, thereby indirectly contributing to other 
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cellular functions [107].  My study provides evidence that, at least within the liver, CLD 

may also function as a platform for coordinating metabolic functions by bringing together 

elements of specific metabolic pathways.  Although additional work is needed to 

formally establish this concept, I found that the hepatic CLD protein composition is 

significantly enriched in enzymes composing KEGG pathways related to amino acid, 

carbohydrate, lipid and xenobiotic metabolism.  Further, the identified proteins 

comprised multiple networks of functionally linked enzymes that, in some cases, 

correspond to intact portions of metabolic pathways.  While I cannot rule out that some of 

the identified proteins represent adventitious associations of abundant liver proteins with 

CLD resulting from tissue disruption, the presence of multiple, metabolically related, 

enzymes on isolated CLD indicate that their CLD association is not simply an accident of 

isolation.  For instance, this conclusion is supported by the observation that CLD levels 

of BHMT, an abundant cytoplasmic liver enzyme [108], are differentially affected by 

dietary fat content, thereby suggesting that the association is physiologically regulated.  

Additionally, my observations that the ER chaperone proteins GRP78 and PDI localize to 

the CLD surface provide direct in situ evidence that proteins from other cellular 

compartments can be detected on CLD in intact hepatocytes.  Although functions for 

CLD-associated GRP78 and PDI have not been identified, the presence of chaperone 

proteins provides a mechanism for achieving correct folding of proteins on the CLD 

surface.  Collectively these data argue that protein composition of hepatic CLD represent 

bone fide interactions that are related to the physiological functions of the liver.   
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CLD Properties Reflect Differences in Liver Metabolism   

My data indicate that the differential effects of LF- and HF-diet on hepatic CLD 

protein compositions reflect, in part, differences in hepatic metabolic properties.  Indirect 

calorimetry measurements documented that LF- and HF-re-feeding differentially affected 

the energy metabolism of fasted mice, inducing lipogenesis and the use of carbohydrates 

for fuel in LF-refed animals, while stimulating the use of fat for fuel in HF-refed animals. 

Consistent with these metabolic differences, I found a selective enrichment of enzymes 

involved in amino acid and carbohydrate metabolism, and de novo fatty acid synthesis on 

LF-CLD.  In contrast, enzymes and proteins involved in fatty acid metabolism and lipid 

transport were enriched on HF-CLD.   Additional studies are required to assess the 

functional significances of these differences.  However, it is likely that protein 

composition differences will reflect subtle modulations of CLD activity, rather than overt 

changes in their function, since I did not detect large qualitative differences in the protein 

compositions of LF- and HF-CLD.  

This concept is supported by observations that CLD binding of BHMT, a key 

enzyme in cysteine-methionine metabolism, is differentially affected by dietary fat 

content and metabolic status of the liver, and is independent of total tissue BHMT levels.  

In conjunction with evidence that multiple members of the cysteine-methionine metabolic 

pathway are present on hepatic CLD, the ability of diet to influence CLD-BHMT 

interactions raises the possibility that CLD may contribute to hepatic metabolic functions 

by helping to coordinate cysteine-methionine metabolism by providing a platform for 

cytosolic enzymatic reactions.  
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Diet Induces Alterations in CLD Surface Organization  

 Diet effects on liver metabolic properties, including transcript expression and 

protein profiles, have been identified in both long-term and fasting-re-feeding studies [83, 

84, 109, 110].  There is also increasing recognition that diet influences the molecular 

properties of hepatic organelles, including mitochondria and ER [111, 112].  My data 

expand the effects of diet to include hepatic CLD, documenting directly that the amount 

of dietary fat affects their molecular properties.  The observed effects include alterations 

in CLD-associated levels of Plin2 and BHMT, both of which are functionally linked to 

fatty liver formation in mice [4, 100].  Plin2 is a structural CLD-associated protein [113] 

that plays an essential role in the effects of HF diet on hepatic lipid accumulation [37, 

38].  The finding that HF re-feeding increases the CLD surface density of Plin2 provides 

evidence that its surface organization is dynamically regulated and those alterations in the 

surface properties of Plin2 may contribute to its lipid storage functions. As yet, it is 

unclear how diet-induced changes in Plin2 surface density affect hepatic CLD properties.  

However, the observations that increased Plin2 surface density appears to be associated 

with larger CLD raise the possibility that Plin2 surface properties may contribute to the 

regulation of CLD size, which in the liver appears to be influenced by dietary fat content. 

Consistent with these data in the liver, the McManaman laboratory previously 

demonstrated that loss of Plin2 was associated with a decrease in the size of CLD in 

mammary glands of pregnant mice [39]. Additional work is needed to determine how 

Plin2 regulates hepatic CLD size.  

 In summary, my study has described the mouse hepatic CLD proteome, and 

demonstrated that it is markedly different from that of CLD in other cells and tissues.  I 

have also shown that the hepatic CLD proteome is dynamically influenced by dietary fat 
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content, and related to differences in liver metabolic properties.  The proteins found on 

hepatic CLD are enriched in enzymes with extensive functional connections known to be 

important for liver metabolism. These findings are consistent with growing evidence that 

CLD protein compositions are influenced by cellular function, metabolic disorders and/or 

the physical properties of CLD [59, 69, 76], and they provide support for an expanded 

role for CLD in regulating cellular metabolic properties beyond that of lipid storage. 

These data should allow new hypotheses and insights into the cellular mechanism by 

which the liver response to metabolic changes and challenges. 
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CHAPTER  IV 

PERILIPIN-2 FUNCTIONS AS A SCAFFOLDING PROTEIN TO REGULATE 

HEPATIC LIPID ACCUMULATION AND CYTOPLASMIC LIPID DROPLET  

Introduction 

As a major regulator of energy homeostasis, the liver is a primary target of 

obesity-associated metabolic alterations [102], and disruption of hepatic lipid metabolism 

is proposed to play a fundamental role in the initiation and progression of many 

metabolic diseases [114, 115].  As incidences of diseases associated with hepatic lipid 

dysregulation rise, understanding of the mechanisms that regulate lipid synthesis, 

accumulation, and secretion in liver cells, is important towards understanding how these 

dysfunctions contribute to disease. 

Multiple PLIN family members are found in hepatic tissue [59, 69].  Depending 

on physiological status, genotype, and species, Plins 1-3 have been detected on CLD in 

hepatocytes and stellate cells of human, mouse, and bovine liver [44, 59, 69], while Plin5 

has been detected on hepatocyte CLD in livers of Plin2-null mice after prolonged high fat 

(HF) diet feeding [40].  Information about the precise roles of PLIN family members in 

regulating hepatic lipid metabolism, however, is still relatively limited.  In mice, PLINs 2 

and 3 have both been shown to be important for hepatic lipid accumulation in response to 

chronic HF diet feeding [37, 38, 40, 44].  However, their mechanisms of action appear to 

differ, since the presence of one does not appear to fully compensate for loss of the other 

[37, 38, 40, 44].  

In rodents, fasting and re-feeding is associated with hepatic lipid accumulation 

[40], and up-regulation of genes associated with lipid synthesis and storage, including 
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Plin2 [83, 84, 94].  In chapter III, I demonstrated that differences in the hepatic lipid 

content, and the properties and protein compositions of CLD, in fasted mice that were re-

fed with high or low fat diets were associated with differences in CLD Plin2 levels [40].  

In the work presented here, I tested the hypothesis that Plin2 is a primary determinant of 

acute hepatic lipid accumulation and CLD properties in fasted and re-fed mice, and that 

its expression differentially affects how these properties are influenced by dietary fat 

content.   

Results    

Food Intake and Metabolic Activities of Fasted and Re-fed Mice   

Fasting and diet composition are known to influence food intake, liver 

metabolism, and hepatic lipid storage in mice [87, 88, 116].  Previously, long-term HF 

diet feeding studies in mice revealed that loss of Plin2 was associated with reduced food 

intake and decreased amounts of adipose relative to WT mice [40].  Therefore, to 

understand how Plin2 affects hepatic lipid responses to fasting and re-feeding with HF- 

or LF-diets it was necessary first to establish whether its loss affected food intake or the 

metabolic responses in this model.   Figure IV.1A shows that body weights of fasted WT 

and D5KO mice re-fed with LF- or HF-diets were similar.  In agreement with my 

previous report [116], I found greater food consumption in fasted WT mice re-fed the HF 

diet compared to those re-fed the LF diet (Figure IV.1B).  However, there was no 

difference in food consumption of fasted D5KO mice re-fed either the LF- or the HF-diet. 

I also found no significant differences in liver weights of fasted WT and D5KO animals 

re-fed LF- or HF-diets (Figure IV.1C), although liver weights of D5KO mice re-fed the 

HF diet tended to be lower than those of WT mice re-fed this diet.  Figure IV.1D shows 
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Figure IV.1 Physiological Effects of Fasting and Re-feeding on WT and D5KO Mice 

Effects of LF- and HF-re-feeding on body weight (A), food intake (B) and liver weights 

(C) in fasted male mice. Values are means (± SD) for 3 animals in each group.  (D) 

Respiratory exchange ratios (RER) of non-fasted, 24 hour fasted (24 Hrs) and 24 hour 

fasted mice that were re-fed with LF (LFD) or HF (HFD) diets.  Non-fasted and fasted 

values correspond to averages (± SD) of 8 animals obtained prior to re-feeding. LF- and 

HF-re-feeding values correspond to averages (± SD) for 3 animals in each group.  The 

asterisk indicates significance at p<0.05 compared to WT mice (Figure IV.1B).   
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respiratory exchange ratios (RER) for WT and D5KO mice prior to fasting, following a 

24 hour period of fast, and after re-feeding with LF- or HF-diets.  Prior to fasting, RER 

values of both WT and D5KO mice were approximately 0.8, as fuel use reflected the 

broad mixture of carbohydrate, fat, and protein in their diets.  During fasting, RER values 

dropped to approximately 0.7 in both WT and D5KO mice, indicating a switch to fat as 

the primary source of energy.  These data documented that loss of Plin2 was not 

associated with significant effects on basal metabolic properties prior to or during fasting.  

Re-feeding on a LF diet resulted in RER values that were close to 1.0 in WT animals, 

reflecting the preferential use of carbohydrate for energy production, and the likelihood 

that de novo lipogenesis was induced under these conditions [117].  RER values of LF 

diet re-fed D5KO mice were closer to 0.9, which was significantly less than that of WT 

mice on this diet, and suggests that loss of Plin2 was associated with decreased use of 

carbohydrates for energy in these animals.  RER values for both WT and D5KO mice re-

fed the HF diet were close to 0.7, indicating that they were utilizing fat for energy, and 

that loss of Plin2 does not affect this response . 

Effects of Plin2 Loss on Hepatic Lipid Accumulation in Fasted and Re-fed Mice   

Observations that Plin2 deficiency prevents fatty liver induced by long-term HF 

feeding in murine models of obesity, suggest that it may be a physiological determinant 

of hepatic lipid accumulation [37, 38].  However, Plin2 deletion was also associated with 

decreased food intake and reduction in adipose content in HF re-fed mice [40], raising the 

possibility that impaired hepatic lipid accumulation in Plin2 deficient mice was 

secondary to more general metabolic alterations.  To address this possibility, I estimated 

the effects of Plin2 loss on acute hepatic lipid accumulation in the fasting and re-feeding 
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model by staining frozen liver sections with BODIPY to specifically label neutral lipids 

within cells [116, 118].  Representative fluorescence images of BODIPY stained neutral 

lipids in liver sections of fasted WT and D5KO mice re-fed with HF- or LF-diets are 

shown in Figure IV.2A.  In agreement with my previous studies [116], I found more 

extensive lipid accumulation in livers of WT mice re-fed the HF diet compared to those 

re-fed the LF diet.  In contrast, lipid accumulation in livers of D5KO mice re-fed the HF 

diet appeared to be similar to those re-fed the LF diet, and less than that found in livers of 

WT mice on comparable diets.  To confirm these observations, I quantified the amount of 

BODIPY staining in multiple liver sections from cohorts of fasted and re-fed WT and 

D5KO mice (Figure IV.2B).   The level of BODIPY staining in livers of WT animals re-

fed the HF diet were nearly five times that found in livers of WT mice re-fed the LF diet 

or in D5KO mice re-fed HF- or LF-fat diets.  In Plin2-DK5O mice, BODIPY staining 

levels were similar for livers of HF- or LF- diet re-fed animals and comparable to that 

found in LF re-fed WT mice. 

Hepatocyte metabolic properties, including lipid and glucose metabolism, and 

lipid accumulation, vary between the periportal (zone 1) and centralobular (zone 3) zones 

[119-122]. In non-fasted mice chronically re-fed a HF diet, Plin2 positive CLD 

accumulation initially begins in zone 3 after about one week and becomes more 

prominent in zone 2 by 3 weeks [59].  To determine if hepatic lipid accumulation 

following fasting and re-feeding exhibits zone specificity, and if zone specificity of lipid 

accumulation is affected by dietary fat content and Plin2 expression, I quantified the 

zonal distribution of BODIPY stained lipid in hepatic sections from fasted and re-fed WT 

and D5KO mice (Figure IV.3).  There was a trend to greater relative amounts of lipid in
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Figure IV.2 Loss of Plin2 Decreases Hepatic Accumulation  

(A) Hepatic lipid accumulation from representative liver sections from WT and D5KO 

mice on LFD and HFD.  (B) Quantitative measurements of total lipid accumulation from 

BODIPY stained liver sections. Values are means (± SD) for 3 animals in each group. 

Asterisk indicate WT-HFD values differ from WT-LFD, D5KO-LFD, and D5KO-HFD 

values (p<0.0001). 
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Figure IV.3 Loss of Plin2 Decreases Hepatic CLD Distribution 

 

Quantitative measurements of total lipid accumulation in zones 1-3 as determined by 

BODIPY-stained liver sections.  Values are means (± SD) for 3 animals in each group, 

with 3 sections for each zone. Asterisks indicate WT-HFD values of zone 1 differ in 

values from WT-HFD zone 2 (p<0.05), dagger indicates WT-HFD values of zone 1 differ 

in values from WT-HFD zone 3 (p<0.05).  Plus/minus sign indicate D5KO-HFD values 

of zone 3 differ in values from D5KO-HFD zone 1, double dagger indicate D5KO-HFD 

values of zone 3 differ in values from D5KO-HFD of zone 2(p<0.05).  Neutral lipids 

were imaged from frozen liver sections using BODIPY (green) and nuclei were identified 

with DAPI (blue). 3i Marianas Inverted Spinning Disk was used for imaging and 

Slidebook 5.5 software was used for quantitation. 
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zone 3 compared to zones 1 or 2 in livers of WT mice re-fed the LF diet, but it did not 

reach significance. However, in WT mice fed the HF diet, relative lipid levels in zone 3 

were significantly greater than zones 1 or 2, and relative lipid levels in zone 2 were 

significantly greater than zone 1 levels. I did not detect zonal differences in relative lipid 

accumulation in D5KO mice re-fed the LF diet. Surprisingly, I found that relative lipid 

accumulation was significantly increased in zones 1 and 2 compared to zone 3 in D5KO 

mice re-fed the HF diet.  Collectively, these results indicate that Plin2 selectively 

contributes to hepatic lipid accumulation associated with re-feeding fasted animals a HF 

diet, and that it plays a role in establishing the zone dependence of this process.   

The Effects of Dietary Fat Content and Plin2 Expression on CLD Lipid Content   

CLD size corresponds to the quantity of stored lipid, and possibly reflects other 

aspects of their function [123].  To determine if dietary fat levels and Plin2 expression 

affect lipid storage in individual CLD, I quantified CLD size distributions in livers of HF- 

and LF-re-fed WT and D5KO mice (Figure IV.4).  3D-projection images of BODIPY 

stained CLD in hepatocytes of HF- and LF-re-fed WT and D5KO mice (Figure IV.4A), 

reveal significant differences in the number and size of their CLD; with hepatocytes from 

HF re-fed WT mice having greater numbers of CLD, and a greater percentage of large 

CLD, than hepatocytes from LF-re-fed WT mice or from HF- or LF-re-fed D5KO mice.  

Quantification of CLD size distribution (Table IV.1 and Figure IV.4B) shows that 

in livers of fasted WT mice re-fed the HF diet, the distribution of CLD sizes conforms to 

a Gaussian curve (P=0.016) with CLD diameters ranging from very small (< 1 um) to 

relative larger (> 5 um) sizes, and a median of  2.16 m. The CLD size distributions in 

hepatocytes of fasted WT animals re-fed the LF diet (P=0.49), or in hepatocytes of fasted
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Figure IV.4 The Loss of Plin2 and Diet Decreases the Size of Hepatic CLD   

The loss of Plin2 decreases the size of the CLD as determined from BODIPY imaging. 

(A) Representative surface-view of 3D projection images of single cells within liver 

sections from LF (LFD)- and HF (HFD) -re-fed  WT and D5KO mice obtained at 600X 

magnification. Neutral lipids were imaged from frozen liver sections using BODIPY 

(green) and nuclei were identified with DAPI (blue). (B) Histogram analysis of size 

distribution from liver sections from LF (LFD)- and HF (HFD) –re-fed  WT and D5KO 

mice. Values are for 3 animals in each group, 25 images per animal. 
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Table IV.1  CLD Size Properties 

  WT LFD WT HFD D5KO LFD D5KO HFD 

Gaussian (P-

value) 

(D’Agostino 

& Person 

omnibus) 

0.49 0.016 0.06 0.87 

Median 

(min to max) 

1.5  

(0.21 – 9.970) 

2.16 

(0.21 – 9.98) 

0.945 

(0.21 – 7.56) 

1.2 

(0.21- 9.970) 

Mann-

Whitney U  

(two tailed) 

  P- Value P- Value P- Value 

  WT LFD    <0.001 <0.001 <0.001 

  WT HFD     <0.001 <0.001 

  D5KO 

LFD 

      <0.001 

  D5KO 

HFD 

        

Kruskal-

Wallis test 

P <0.001 

 

D5KO mice re-fed the LF (P= 0.06) or HF-diets (P=0.87)) were significantly narrower 

and did not conform to a normal Gaussian distribution [124] (Figure IV.4B).  The median 

diameter of CLD in hepatocytes of fasted WT LF-re-fed animals (1.5 um), D5KO LF-re-

fed (0.945 um), and D5KO HF-re-fed (1.2 um) were significantly less than that of the HF 

re-fed WT mice.  These data demonstrate that lipid storage within individual hepatic 

CLD is increased by HF re-feeding relative to that of CLD in livers of LF re-fed mice, 

and that Plin2 deletion appears to interfere with this function.    

Plin3 and Plin5 Localize to Hepatic CLD in Fasted and Re-fed D5KO   

Plin3 has been shown to function in regulating hepatic lipid accumulation in WT 

mice following prolonged HF diet feeding [44], and there is cell culture evidence that it 
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compensates for the loss of Plin2 in regulating CLD accumulation in some cell types 

[125].  However, in livers of D5KO mice re-fed a HF diet for 12 weeks, Plin5 was found 

to selectively coat the few CLD present in their hepatocytes, whereas Plin3 coated CLD 

in stellate cells [40].  To define how Plin2 deletion affects the PLIN composition of CLD 

in hepatocytes in the fasting and re-feeding model, I immunostained livers sections of 

D5KO mice that were fasted and re-fed the HF diet with antibodies to Plins 1, 3, 4, and5.  

Figure IV.5A shows that many hepatocyte CLD were positive for both Plin 3 and Plin5 

(white arrow), whereas others stained for Plin3 (red, large white arrowhead) or Plin5 

(green, small white arrowhead) but not both.   

Differences in the amount of Plin2 on hepatic CLD from fasted WT mice re-fed 

LF- or HF diets suggest that its CLD surface density is regulated by diet, and that 

differences in Plin2 CLD surface density may contribute to its physiological functions 

[116].  To determine if hepatic CLD levels of other PLIN family members are regulated  

by diet, I quantified the levels of Plin3 and Plin5 on isolated hepatic CLD from fasted 

D5KO mice following re-feeding with LF- or HF-diets.  Figure IV.5B shows that the 

amount of Plin3 associated with CLD isolated from livers of HF re-fed animals was 

significantly less than that found on CLD from LF diet re-fed animals.  In contrast, the 

amount of Plin5 on isolated CLD was not affected by dietary fat content.     

Hepatic Plin5 transcript levels are increased by fasting [45], whereas Plin3 

transcript levels are increased by prolonged HF diet feeding [44].  Consequently, I was 

interested in determining if the effects of diet on relative differences in hepatic CLD 

levels Plin3 and Plin5 are related to differences in their transcript levels.   Figure IV.5C 

shows relative hepatic transcript levels for PLIN family members in livers of fasted WT
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Figure IV.5 The Loss of D5KO Mice Express Hepatic Plin3 and Plin5   

(A) Representative confocal immunofluorescence images of liver sections from HF re-fed 

D5KO mice stained with antibodies to Plin3 (green) and Plin5 (red). Nuclei in images in 

D and E (blue) were stained with DAPI. Arrows (white) localization of Plin3 and Plin5, 

(red) Plin5 and (green) Plin3. (B) Quantitative immunoblot analysis of Plin3 and Plin5 

levels in enriched CLD protein extracts from fast-re-fed male D5KO mice on LF (LFD) - 

or HF (HFD)-diets. Insets show immunoblots of 25 μg of CLD protein from 3 mice. The 

graph shows the average (± SD) Plin3 or Plin5 levels normalized to 25 μg of total CLD 

protein from LF (N = 3) and HF (N = 3) mice. (C) Transcript levels of PLIN family 

members in livers of fasted and re-fed WT and D5KO mice on LFD and HFD quantified 

by qRT-PCR. Values are means± SD normalized to 18S RNA from 4 animals in each 

group. Asterisks indicate significance P <0.05.  
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and D5KO mice re-fed with the LF or the HF diet.  With the exception of Plin1, 

transcripts for other PLIN family members were detected in livers of fasted mice on 

either of the re-feeding diets.  Plin2 transcripts levels in WT livers are 30- to 50-times 

greater than transcript levels of PLINs 3-5, and were not affected by the content of fat in 

the re-feeding diet.  Hepatic Plin3 transcript levels in livers of WT or D5KO mice were 

also not affected by dietary fat content.   On the other hand, Plin5 transcript levels in 

livers of WT mice re-fed the LF diet were significantly decreased over those D5KO re-

fed LF diet, whereas they were similar between diets in livers of D5KO and WT mice.   

Interestingly, I found that Plin4 transcript levels in livers of LF D5KO mice were 

significantly increased above those in livers of WT LF re-fed mice. However, the type of 

diet did not affect Plin4 transcript levels in either WT or D5KO mice.  These data 

indicate that in previously fasted mice the effects of dietary fat on hepatic CLD levels of 

Plins 2, 3, or 5 are mediated by translational or post-translational mechanisms, and not by 

effects of fat content on their respective transcript levels.   

Diet Effects on Hepatic CLD Protein Composition   

The effects of Plin2 loss on hepatic lipid accumulation and zonal distribution, 

CLD size, and Plin3 and Plin5 associations with CLD suggest that it may be a primary 

determinant of hepatic CLD properties.  To test this hypothesis, I used LC-MS/MS 

analysis of trypsin digests of CLD protein extracts to define the protein composition 

profiles of hepatic CLD from WT and D5KO mice re-fed with LF- or HF- diets.  For 

these experiments, I analyzed three biological replicates from each group in triplicate.  

Only those proteins present in all three biological replicates, and in each of the triplicate 

runs, were considered for further analysis.  Proteins with two or more unique peptides 
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

   
WT LFD WT HFD D5KO LFD D5KO HFD 

Amino Acid Metabolism 

  (GO:0006520) 

Gene  

names Accession Mean SD Mean SD Mean SD Mean SD 

Adenosyl-homocysteinase   Ahcy P50247 0.27% 0.17%     0.43% 0.01% 0.44% 0.02% 

Arginase-1   Arg1 Q61176 0.27% 0.15%     0.51% 0.02% 0.52% 0.04% 

Argininosuccinate lyase   Asl Q91YI0         0.40% 0.02% 0.53% 0.03% 

Argininosuccinate synthase   Ass1  P16460 0.42% 0.28% 0.14% 0.05% 0.49% 0.05% 0.61% 0.12% 

Betaine--homocysteine S-methyltransferase 1   Bhmt O35490 0.89% 0.53% 0.31% 0.08% 0.75% 0.20% 1.03% 0.24% 

Carbonic anhydrase 3 Ca3  P16015 0.31% 0.19%     0.40% 0.16% 0.45% 0.03% 

Carbamoyl-phosphate synthase 

 [ammonia], mitochondrial   Cps1 Q8C196 0.91% 0.61% 0.07% 0.03% 0.20% 0.15% 1.00% 0.43% 

Cystathionine gamma-lyase   Cth Q8VCN5         0.10% 0.01% 0.14% 0.02% 

Dihydropyrimidinase   Dpys Q9EQF5             0.10% 0.01% 

Fumarylacetoacetase   Fah P35505         0.19% 0.05% 0.23% 0.03% 

Formimidoyltransferase cyclodeaminase   Ftcd Q91XD4             0.15% 0.06% 

Glutamine synthetase   Glul  P15105         0.24% 0.11% 0.26% 0.05% 

Glycine N-methyltransferase   Gnmt Q9QXF8 0.19% 0.06% 0.13% 0.05% 0.28% 0.01% 0.35% 0.02% 

Aspartate aminotransferase, cytoplasmic   Got1 P05201         0.22% 0.01% 0.27% 0.03% 

Alanine aminotransferase 1   Gpt  Q8QZR5             0.12% 0.04% 

Homogentisate 1,2-dioxygenase   Hgd  O09173             0.10% 0.01% 

4-hydroxyphenylpyruvate dioxygenase   Hpd P49429         0.17% 0.03% 0.33% 0.00% 

Cytosol aminopeptidase   Lap3  Q9CPY7         0.05% 0.03% 0.11% 0.01% 

S-adenosylmethionine synthase  

isoform type-1   Mat1a Q91X83 0.14% 0.03%     0.30% 0.09% 0.31% 0.10% 

Phenylalanine 4 hydroxylase   Pah P16331         0.13% 0.02% 0.22% 0.05% 
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

Urocanate hydratase   Uroc1 Q8VC12             0.06% 0.03% 

 
  

                

Protein Metabolism (GO:0044267) 

Chaperones                     

78 kDa glucose-regulated protein   Grp78 P20029 0.21% 0.01% 0.15% 0.06% 0.21% 0.07% 0.31% 0.15% 

Heat shock protein HSP 90-alpha Hsp90aa1  P07901         0.07% 0.03% 0.12% 0.02% 

Heat shock protein HSP 90-beta   Hsp90ab1 P11499     0.10% 0.06% 0.47% 0.05% 0.55% 0.10% 

Endoplasmin   Hsp90b1  P08113     0.06% 0.00%     0.09% 0.06% 

Heat shock cognate 71 kDa protein   Hspa8 P63017 0.30% 0.11% 0.21% 0.11% 0.57% 0.07% 0.59% 0.04% 

Protein disulfide-isomerase   P4hb P09103 0.29% 0.11% 0.14% 0.11% 0.14% 0.07% 0.22% 0.06% 

Protein disulfide-isomerase A3   Pdia3  P27773 0.11% 0.03% 0.11% 0.09% 0.05% 0.01% 0.08% 0.03% 

Protein disulfide-isomerase A6   Pdia6  Q922R8 0.06% 0.01% 0.98% 0.13%     0.08% 0.02% 

Peptidyl-prolyl cis-trans isomerase A   Ppia P17742             0.15% 0.02% 

Uricase Uox P25688 0.12% 0.05% 0.31% 0.02%         

   

                

Carbohydrate Meatbolism (GO:0005975) 
                    

Fructose-bisphosphate aldolase B   Aldob  Q91Y97 0.57% 0.21% 0.08% 0.03% 0.55% 0.03% 0.50% 0.04% 

Bifunctional ATP-dependent 

dihydroxyacetone kinase/FAD-AMP lyase 

(cyclizing) Dak Q8VC30         0.24% 0.06% 0.21% 0.04% 

Alpha-enolase   Eno1  P17182 0.16% 0.08%     0.29% 0.02% 0.32% 0.05% 

Fructose-1,6-bisphosphatase 1   Fbp1  Q9QXD6 0.26% 0.17%     0.37% 0.12% 0.47% 0.01% 

Glyceraldehyde-3-phosphate dehydrogenase   Gapdh P16858 0.26% 0.11%     0.30% 0.02% 0.33% 0.02% 

Glycerol-3-phosphate dehydrogenase 

 [NAD(+)], cytoplasmic Gpd1  P13707             0.06% 0.02% 
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

Isocitrate dehydrogenase [NADP] 

cytoplasmic   Idh1 O88844         0.20% 0.08% 0.30% 0.02% 

L-lactate dehydrogenase A chain   Ldha  P06151         0.17% 0.03% 0.20% 0.02% 

Malate dehydrogenase, cytoplasmic   
Mdh1  P14152 0.09% 0.06%     0.13% 0.02% 0.17% 0.01% 

Phosphoglycerate kinase 1   Pgk1  P09411         0.14% 0.05% 0.17% 0.07% 

Phosphoglucomutase-1   Pgm1  Q9D0F9             0.08% 0.02% 

Glycogen phosphorylase, liver   Pygl Q9ET01             0.08% 0.01% 

Sorbitol dehydrogenase   Sord  Q64442         0.18% 0.02% 0.24% 0.01% 

Transketolase   Tkt P40142             0.11% 0.02% 

Maleylacetoacetate isomerase   Gstz1 Q9WVL0         0.06% 0.01% 0.07% 0.05% 

Triosephosphate isomerase   Tpi1  P17751         0.17% 0.02% 0.18% 0.01% 

 
  

                

Glutathione Metabolism (GO:0006749) 
                    

Glutathione peroxidase 1   Gpx1 P11352 0.06% 0.02%     0.17% 0.03% 0.23% 0.04% 

Glutathione S-transferase A3   Gsta3  P30115 0.14% 0.05%     0.17% 0.02% 0.21% 0.04% 

Glutathione S-transferase Mu 1   Gstm1 P10649 0.27% 0.01% 0.13% 0.05% 0.51% 0.11% 0.46% 0.05% 

Glutathione S-transferase P 1   Gstp1  P19157 0.32% 0.11% 0.28% 0.10% 0.29% 0.07% 0.37% 0.02% 

Microsomal glutathione S-transferase 1 Mgst1 Q91VS7     0.09% 0.03%     0.05% 0.02% 

   

                

Lipid Metabolism (GO:0006629) 
                    

ATP-binding cassette sub-family D member 3   Abcd3  P55096 0.08% 0.02% 0.24% 0.14%         

CGI58 Abhd5 Q9DBL9         0.22% 0.01% 0.10% 0.01% 

3-ketoacyl-CoA thiolase B, peroxisomal   Acaa1b Q8VCH0 0.14% 0.05%             
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

3-ketoacyl-CoA thiolase, mitochondrial Acaa2 Q8BWT1 0.12% 0.08% 0.63% 0.32%         

Very long-chain specific acyl-CoA 

dehydrogenase Acadvl  P50544     0.04% 0.02%         

ATP-citrate synthase   Acly Q91V92         0.20% 0.05%     

Peroxisomal acyl-coenzyme A oxidase 1   Acox1  Q9R0H0 0.16% 0.02% 0.15% 0.03%     0.14% 0.02% 

Long-chain-fatty-acid--CoA ligase 1   Acsl1 P41216 0.41% 0.12% 1.60% 0.26% 0.43% 0.20% 0.25% 0.02% 

Estradiol 17 beta-dehydrogenase 5   Atp5a1 Q03265 0.21% 0.14% 0.14% 0.06%         

ATP synthase subunit alpha, mitochondrial   Atp5b P56480 0.27% 0.10% 0.49% 0.11%     0.22% 0.08% 

ATP synthase subunit beta, mitochondrial   Ces1d  Q8VCT4 0.10% 0.02% 0.08% 0.02%         

Carboxylesterase 3   Ces3a  Q63880 0.18% 0.07% 0.09% 0.02% 0.15% 0.05% 0.22% 0.04% 

Cytochrome b5   Cyb5a  P56395     0.10% 0.06% 0.11% 0.01%     

NADH-cytochrome b5 reductase 3   Cyb5r3 Q9DCN2 0.87% 0.31% 0.86% 0.07% 0.30% 0.04% 0.17% 0.04% 

Cytochrome P450 2E1   Cyp2e1  Q05421 0.12% 0.03% 0.14% 0.03%         

Peroxisomal bifunctional enzyme   Ehhadh Q9DBM2 0.21% 0.08% 0.52% 0.08% 0.06% 0.01% 0.21% 0.08% 

Epoxide hydrolase 2   Ephx2  P34914 0.20% 0.14%     0.08% 0.06% 0.21% 0.06% 

Fatty acid synthase   Fabp1  P12710 0.33% 0.14% 0.14% 0.06% 0.33% 0.05% 0.35% 0.02% 

Hydroxymethylglutaryl-CoA synthase Fasn P19096 0.22% 0.15%     0.95% 0.04%     

Estradiol 17-beta-dehydrogenase 11   Hmgcs2 P54869 0.16% 0.06% 0.13% 0.08%     0.23% 0.09% 

Corticosteroid 11-beta-dehydrogenase 

isozyme  Hsd11b1  P50172     0.09% 0.06%         

Estradiol 17-beta-dehydrogenase 11   
Hsd17b11  Q9EQ06 0.35% 0.06% 0.11% 0.02% 0.23% 0.03% 0.05% 0.00% 

17-beta-hydroxysteroid dehydrogenase 13   Hsd17b13 Q8VCR2 0.87% 0.25% 0.08% 0.05% 0.69% 0.10% 0.31% 0.02% 

Peroxisomal multifunctional enzyme type 2 Hsd17b4 P51660 0.05% 0.02% 0.14% 0.06%         

Estradiol 17 beta-dehydrogenase 5   Hsd17b5 P70694         0.23% 0.05% 0.24% 0.03% 
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

3-keto-steroid reductase Hsd17b7 O88736         0.19% 0.02%     

Lanosterol synthase Lss Q8BLN5 0.07% 0.02% 0.06% 0.04% 0.24% 0.06%     

Monoglyceride lipase   Mgll O35678 0.29% 0.10% 0.07% 0.04% 0.10% 0.06%     

Sterol-4-alpha-carboxylate 3-dehydrogenase Nsdhl Q9R1J0 0.18% 0.07% 0.06% 0.02% 0.22% 0.04%     

Peroxiredoxin-6   Prdx6  O08709 0.12% 0.07%     0.24% 0.06% 0.27% 0.03% 

Phosphoenolpyruvate carboxykinase, 

cytosolic [GTP] Pepck Q9Z2V4             0.15% 0.03% 

Very long-chain acyl-CoA synthetase Slc27a2 O35488 0.06% 0.02% 0.17% 0.05%         

   

                

Lipid Transport (GO:0006869)                     

Apolipoprotein A-I   Apoa1 Q00623     0.11% 0.01% 0.08% 0.03% 0.13% 0.06% 

 

Apoa4 P06728     0.10% 0.04%         

Apolipoprotein E  Apoe P08226 0.26% 0.25% 0.22% 0.05% 0.23% 0.04% 0.18% 0.02% 

 

Pgrmc1  O55022     0.05% 0.02%         

Perilipin-2   Plin2 P43883 1.93% 0.72% 0.09% 0.01%         

Perilipin-3 Plin3  Q9DBG5     0.05% 0.01% 0.48% 0.08%     

Perilipin-5 Plin5  Q8BVZ1         0.19% 0.13%     

Non-specific lipid-transfer protein   Scp2  P32020 0.09% 0.04% 0.23% 0.06% 0.11% 0.06% 0.22% 0.02% 

SEC14-like protein 2   Sec14l2 Q99J08             0.11% 0.05% 

PCTP-like protein Stard10 Q9JMD3             0.07% 0.02% 

   

                

Nucleotide Metabolism (GO:0006975)                     

Nucleoside diphosphate kinase B Nme2  Q01768             0.08% 0.01% 

   

                

Other                     
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

D-dopachrome decarboxylase   Ddt O35215 0.04% 0.02%     0.14% 0.02% 0.18% 0.02% 

Cell death activator CIDE-B Cideb O70303     0.06% 0.03% 0.10% 0.02%     

Catechol O-methyltransferase Comt  O88587         0.07% 0.02% 0.12% 0.02% 

Major urinary protein 6 Mup6 P02762 0.09% 0.06% 0.37% 0.13%     0.14% 0.08% 

Serine protease inhibitor A3K   Serpina3k  P07759 0.04% 0.02%     0.17% 0.05% 0.19% 0.01% 

Polyubiquitin-B Ubb P0CG49          0.12% 0.01% 0.10% 0.02% 

Elongation factor 1-alpha 1   Eef1a1  P10126 0.19% 0.11% 0.10% 0.06% 0.24% 0.06% 0.25% 0.01% 

Alpha-1-antitrypsin 1-2 Serpina1b  P22599     0.07% 0.02% 0.18% 0.05% 0.17% 0.02% 

Ribonuclease UK114   Hrsp12  P52760 0.13% 0.08%     0.25% 0.08% 0.33% 0.02% 

Alpha-actinin-4 Actn4 P57780             0.04% 0.02% 

Elongation factor 2   Eef2 P58252             0.16% 0.10% 

Eukaryotic initiation factor 4A- Eif4a1  P60843             0.07% 0.01% 

Heterogeneous nuclear ribonucleoprotein K Hnrnpk  P61979             0.05% 0.01% 

14-3-3 protein epsilon Ywhae P62259             0.11% 0.02% 

Profilin-1 Pfn1 P62962             0.07% 0.03% 

14-3-3 protein zeta/delta Ywhaz P63101         0.16% 0.06% 0.19% 0.02% 

Phosphatidylethanolamine-binding protein 1 Pebp1  P70296             0.08% 0.01% 

Regucalcin   Rgn  Q64374 0.20% 0.12%     0.32% 0.10% 0.34% 0.04% 

Inorganic pyrophosphatase Ppa1  Q9D819         0.09% 0.01% 0.11% 0.01% 

Phenazine biosynthesis-like  

domain-containing protein 1 Pbld1  Q9DCG6             0.04% 0.01% 

Methyltransferase-like protein 7B   Mettl7b Q9DD20 0.86% 0.34% 0.28% 0.05% 0.69% 0.02% 0.33% 0.03% 

Bile salt export pump Abcb11  Q9QY30     0.05% 0.01%         

Interferon-inducible GTPase 1  Iigp1 Q9QZ85 0.17% 0.08% 0.08% 0.02%         
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

Redox/Detox (GO:0055114/ GO:0006805)                     

Alcohol dehydrogenase [NADP+]  

dehydrogenase 1 Adh1  P00329 0.31% 0.23%     0.32% 0.05% 0.26% 0.03% 

Apoptosis-inducing factor 2 Aifm2  Q8BUE4 0.08% 0.02% 0.07% 0.03%         

Retinal dehydrogenase 1   Aldh1a1  P24549 0.31% 0.19%     0.37% 0.07%     

Cytosolic 10-formyltetrahydrofolate 

dehydrogenase   Aldh1l1  Q8R0Y6 0.28% 0.13%     0.45% 0.07% 0.55% 0.07% 

Fatty aldehyde dehydrogenase Aldh3a2  P47740 0.07% 0.02%             

Cytochrome P450 2D10   Cyp2d10  P24456 0.14% 0.09% 0.20% 0.11%         

Cytochrome P450 2D26 Cyp2d26  Q8CIM7 0.06% 0.03% 0.99% 0.10%         

Cytochrome P450 2D9 Cyp2d9 P11714             0.04% 0.01% 

Cytochrome P450 2F2   Cyp2f2  P33267 0.08% 0.03% 0.09% 0.03%         

Cytochrome P450 4A14   Cyp4a14 O35728     0.05% 0.01%         

Dehydrogenase/ reductase SDR family 

member 1   Dhrs1  Q99L04 1.09% 0.29% 0.20% 0.09% 0.78% 0.09% 0.34% 0.05% 

Dehydrogenase/reductase SDR 

 family member on chromosome X homolog  Dhrsx  Q8VBZ0         0.05% 0.03%     

Dimethylaniline monooxygenase  

[N-oxide-forming] 5 Fmo5 P97872     0.23% 0.15%         

Glyoxylate reductase/ hydroxypyruvate 

reductase   Grhpr Q91Z53             0.10% 0.01% 

L-gulonolactone oxidase   Gulo P58710 0.79% 0.15% 0.21% 0.07% 0.66% 0.16% 0.14% 0.04% 

3-hydroxyanthranilate 3,4-dioxygenase  Haao Q78JT3         0.06% 0.03% 0.08% 0.01% 

3 beta-hydroxysteroid dehydrogenase Hsd3b3 P26150 0.30% 0.14% 0.16% 0.03% 0.31% 0.06% 0.08% 0.02% 

3 beta-hydroxysteroid dehydrogenase type 7 Hsd3b7 Q9EQC1 0.14% 0.07% 0.09% 0.03% 0.17% 0.05%     

NADP-dependent malic enzyme Me1  P06801         0.09% 0.01%     

Peroxiredoxin-1   Prdx1  P35700 0.27% 0.08% 0.54% 0.05% 0.29% 0.07% 0.28% 0.06% 
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Table IV.2  Isolated Hepatic CLD Proteome from WT and D5KO Mice 

Peroxiredoxin-5, mitochondrial   Prdx5 P99029             0.08% 0.01% 

Retinol dehydrogenase 7 Rdh7 O88451 0.07% 0.04% 0.12% 0.07%         

UDP-glucose 6-dehydrogenase Ugdh  O70475             0.06% 0.03% 

UDP-glucuronosyltransferase 1-1   Ugt1a1 Q63886 0.09% 0.04% 0.05% 0.04%         

UDP-glucuronosyltransferase 2A3 Ugt2a3 Q8BWQ1     0.09% 0.01%         

UDP-glucuronosyltransferase 2B17 Ugt2b17  P17717     0.04% 0.03%         

Superoxide dismutase [Cu-Zn]   Sod1 P08228             0.11% 0.07% 

Catalase   Cat  P24270 0.25% 0.05% 0.19% 0.09% 0.18% 0.06% 0.28% 0.06% 

 
  

                

Transport (GO:0006810)                     

Serum albumin Alb  P07724 0.67% 0.16% 0.35% 0.03% 1.30% 0.26%     

Ferritin light chain 1 Ftl1  P29391         0.17% 0.05%     

Ras-related protein Rab-11B Rab11b P46638     0.09% 0.02% 0.10% 0.02%     

Ras-related protein Rab-14 Rab14 Q91V41 0.12% 0.10% 0.16% 0.06%         

Ras-related protein Rab-18 Rab18 P35293     0.09% 0.06%         

Ras-related protein Rab-1B Rab1b Q9D1G1     0.05% 0.04%         

Ras-related protein Rab-2A Rab2a  P53994     0.10% 0.03%         

Ras-related protein Rab-7A Rab7a  P51150 0.10% 0.00% 0.06% 0.02%         

Selenium-binding protein 2 Selenbp2  Q63836 0.37% 0.21% 0.21% 0.04% 0.65% 0.05%     

Serotransferrin   Tf Trf Q921I1         0.24% 0.12%     

Transitional endoplasmic reticulum ATPase   Vcp Q01853         0.22% 0.05% 0.20% 0.01% 
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and two or more unique spectra were accepted as valid identifications.  Using these 

criteria, I identified respectively 77 and 78 proteins on CLD from WT mice, and 116 and 

93 proteins on CLD from D5KO mice re-fed the HF and LF diets.  The identified 

proteins, their Uniprot identification numbers, and estimates of their relative abundance 

as determined by their percentage of total spectra for WT and D5KO mice, are shown in 

Table IV.2.  The identified proteins are organized according to Gene Ontology (GO) 

molecular function categories [126].   

 

Effects of Plin2 Loss on Gene Ontology (GO) Categories of CLD Proteins  

 To identify possible functional interactions between Plin2 and the fat content of 

the re-feeding diet, I compared the number of proteins within specific GO molecular 

function and sub-cellular localization categories on D5KO CLD to that of WT CLD for 

each diet (Figure IV.6).  Within GO molecular function categories (Figure IV.6A), I 

found that carbohydrate and amino acid metabolism enzymes were enriched, and lipid 

metabolism and redox/detox enzymes were depleted, on D5KO CLD relative to WT CLD 

for both LF- and HF-re-fed mice.  I also found that lipid transport proteins were enriched 

on D5KO CLD relative to WT CLD in LF re-fed mice, whereas in HF fed mice there was 

a depletion of general transport, and lipid transport proteins on D5KO CLD compared to 

WT CLD.  

With respect to GO sub-cellular localization categories (Figure IV.6B), I found 

that loss of Plin2 was associated with CLD enrichment in cytoplasmic and nuclear 

proteins.  In the case of cytoplasmic proteins, the magnitude the enrichment was 

markedly greater for CLD from HF diet re-fed animals.  I also found that proteins 

classified as ER or peroxisomal, were depleted on CLD from LF- or HF-diet re-fed
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Figure IV.6 Loss of Plin2 Alters Proteins Associated with Specific Functions and 

Subcellular Localization  

 Loss of Plin2 changes CLD proteome based on (A)  function and (B) subcellular 

localization according to gene ontology (GO) annotations. Percent of control was 

calculated from the number of proteins from each category for D5KO normalized to the 

number of proteins from each category from WT on the same diet. Dotted line represents 

100% indicating no change in either direction. 
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D5KO mice compared to CLD from WT mice re-fed these diets.  In addition, I found a 

marked depletion of proteins classified as CLD-associated on CLD isolated from HFD re-

fed D5KO mice relative to CLD from WT mice re-fed this diet.  

KEGG Pathway Interactions of WT and D5KO CLD Proteins 

I previously detected enzymes associated with multiple metabolic pathways on 

hepatic CLD from fasted and re-fed WT mice, and found that the fat content of the re-

feeding diet produced metabolic pathway-specific alterations in enzyme composition 

[116].  To determine how Plin2 loss affects the organization and composition of CLD-

associated metabolic pathways, I mapped CLD-associated proteins from LF- and HF-re-

fed WT and D5KO mice onto metabolic pathways using KEGG pathway analysis 

algorithms [127].  Initially, I combined the CLD proteomic results from LF- and HF-re-

fed animals to simplify analysis, and define how Plin2 loss affects metabolic pathway 

organization on CLD independent of potential diet influences.  As shown in Figure IV.7, 

enzymes found on hepatic WT and D5KO CLD (indicated by individual colored dots; 

green are common to WT and D5KO CLD, blue are specific to WT CLD and red are 

specific to D5KO CLD) correspond to specific, and interacting, metabolic networks 

(indicated by correspondingly colored lines).  Enzymes composing intact fatty acid 

synthesis and elongation pathways were present on CLD from WT mice (green and blue 

dots and lines).  WT CLD also contained enzymes composing components of other 

pathways, including specialized lipid and methionine-homocysteine metabolism 

pathways. The fatty acid metabolism pathway is also represented on D5KO CLD, but 

enzymes needed for fatty acid elongation are missing from these CLD, as indicated by 

the blue (WT specific) dots and lines in this pathway.  However, D5KO CLD possesses 
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intact portions of carbohydrate, amino acid, and nucleotide metabolism pathways, 

including the TCA and urea cycles, which are not found on WT CLD (red dots and lines). 

Tables IV.3 – IV.5 contains the list of specific metabolic KEGG pathways and the 

proteins that were identified within each of these pathways from WT, D5KO, and the 

proteins shared between the WT and D5KO proteome. 

 

Plin2 E3ffects on CLD Protein Abundance   

Because a number of enzymes were common to WT and D5KO CLD (green dots, 

Figure IV.7), I was interested next in whether Plin2 loss might alter CLD function by 

influencing their relative abundance on the CLD surface.  To investigate this possibility, I 

estimated the effects of Plin2 loss on the relative abundance of the common proteins by 

determining the ratio of their spectral count values for D5KO CLD to that of WT CLD 

for each diet.  The average spectral count ratio of each protein for animals re-fed the LF- 

or HF-diets is shown in Table IV.5. Complete lists of these values for LF- and HF-re-fed 

are shown in Tables IV.6 and IV.7 respectively.  Volcano plots of these data used to 

identify significant effects of Plin2 loss and diet on the average relative abundances of 

individual proteins (Figure IV.8).  Differences were considered significant if p-values 

were less than 0.05, and relative abundance changes corresponded to a 100% or greater 

increase, or a 50% or greater decrease relative to WT CLD values as indicate by values 

lying above the lines and outside the shaded regions in Figures IV.8A and IV.8B.   

Relative few CLD proteins from livers of D5KO mice re-fed the LF diet had abundances 

that differed significantly from those of WT mice on this diet (Figure IV.8A).  Among 

those that did, were three enzymes with abundances that were more than 3.5 fold over
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Figure IV.7 . Loss of Plin2 Alters Protein Association from Specific Pathways   

KEGG analysis was used to determine proteins in the metabolic pathways specific to D5KO (red), WT (Blue) or both (green). 
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Table IV.3  KEGG Identities of Proteins on Hepatic CLD of WT and D5KO Mice 

KEGG Pathway ID Gene KEGG Enzyme ID 

Metabolic pathways (mmu: 01100) 

mmu:101502 Hsd3b7 EC:1.1.1.181) 

mmu:11430 Acox1 EC:1.3.3.6) 

mmu:11522 Adh1 EC:1.1.1.1) 

mmu:11668 Aldh1a1 EC:1.2.1.36) 

mmu:11720 Mat1a EC:2.5.1.6) 

mmu:11758 Prdx6 EC:1.11.1.9 1.11.1.15) 

mmu:11846 Arg1 EC:3.5.3.1) 

mmu:11898 Ass1 EC:6.3.4.5) 

mmu:11947 Atp5b EC:3.6.3.14) 

mmu:12116 Bhmt EC:2.1.1.5) 

mmu:13850 Ephx2 EC:3.3.2.10 3.1.3.76) 

mmu:14081 Acsl1 EC:6.2.1.3) 

mmu:14104 Fasn 

EC:2.3.1.85 2.3.1.38 2.3.1.39 2.3.1.41 

3.1.2.14 1.3.1.10 4.2.1.59 1.1.1.100) 

mmu:14121 Fbp1 EC:3.1.3.11) 

mmu:14433 Gapdh EC:1.2.1.12) 

mmu:15360 Hmgcs2 EC:2.3.3.10) 

mmu:16987 Lss EC:5.4.99.7) 

mmu:17449 Mdh1 EC:1.1.1.37) 

mmu:18194 Nsdhl EC:1.1.1.170) 

mmu:19733 Rgn EC:3.1.1.17) 

mmu:20280 Scp2 EC:2.3.1.176) 

mmu:227231 Cps1 EC:6.3.4.16) 

mmu:230163 Aldob EC:4.1.2.13) 

mmu:23945 Mgll EC:3.1.1.23) 

mmu:268756 Gulo EC:1.1.3.8) 

mmu:269378 Ahcy EC:3.3.1.1) 

mmu:433182 Gm5506 

 mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Peroxisome (mmu: 04146) 

mmu:11430 Acox1 EC:1.3.3.6) 

mmu:12359 Cat EC:1.11.1.6) 

mmu:13850 Ephx2 EC:3.3.2.10 3.1.3.76) 

mmu:14081 Acsl1 EC:6.2.1.3) 

mmu:18477 Prdx1 EC:1.11.1.15) 

mmu:20280 Scp2 EC:2.3.1.176) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 
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Table IV.3  KEGG Identities of Proteins on Hepatic CLD of WT and D5KO Mice 

   Carbon Metabolism (mmu: 01200) 

mmu:14121 Fbp1 EC:3.1.3.11) 

mmu:14433 Gapdh EC:1.2.1.12) 

mmu:17449 Mdh1 EC:1.1.1.37) 

mmu:19733 Rgn EC:3.1.1.17) 

mmu:227231 Cps1 EC:6.3.4.16) 

mmu:230163 Aldob EC:4.1.2.13) 

mmu:433182 Gm5506 

 

   PPAR signaling (mmu: 03320) 

mmu:11430 Acox1 EC:1.3.3.6) 

mmu:11806 Apoa1 

 mmu:14080 Fabp1 

 mmu:14081 Acsl1 EC:6.2.1.3) 

mmu:15360 Hmgcs2 EC:2.3.3.10) 

mmu:20280 Scp2 EC:2.3.1.176) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Biosynthesis of amino acids (mmu:01230) 

mmu:11846 Arg1 EC:3.5.3.1) 

mmu:11898 Ass1 EC:6.3.4.5) 

mmu:14433 Gapdh EC:1.2.1.12) 

mmu:227231 Cps1 EC:6.3.4.16) 

mmu:230163 Aldob EC:4.1.2.13) 

mmu:433182 Gm5506 

 

   Glutathione Metabolism (mmu:00480) 

mmu:14775 Gpx1 EC:1.11.1.9) 

mmu:14859 Gsta3 EC:2.5.1.18) 

mmu:14862 Gstm1 EC:2.5.1.18) 

mmu:14870 Gstp1 EC:2.5.1.18) 

mmu:56615 Mgst1 EC:2.5.1.18) 

   Metabolism of xenobiotics by cytochrome P450 (mmu: 00980) 

mmu:11522 Adh1 EC:1.1.1.1) 

mmu:14859 Gsta3 EC:2.5.1.18) 

mmu:14862 Gstm1 EC:2.5.1.18) 

mmu:14870 Gstp1 EC:2.5.1.18) 

mmu:56615 Mgst1 EC:2.5.1.18) 
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Table IV.3  KEGG Identities of Proteins on Hepatic CLD of WT and D5KO Mice 

Drug metabolism by cytochrome P450 (mmu: 00982) 

mmu:11522 Adh1 EC:1.1.1.1) 

mmu:14859 Gsta3 EC:2.5.1.18) 

mmu:14862 Gstm1 EC:2.5.1.18) 

mmu:14870 Gstp1 EC:2.5.1.18) 

mmu:56615 Mgst1 EC:2.5.1.18) 

   Glycolysis/Gluconeogenesis (mmu: 00010) 

mmu:11522 Adh1 EC:1.1.1.1) 

mmu:14121 Fbp1 EC:3.1.3.11) 

mmu:14433 Gapdh EC:1.2.1.12) 

mmu:230163 Aldob EC:4.1.2.13) 

mmu:433182 Gm5506 

 

   Fatty acid metabolism (mmu: 00071) 

mmu:11430 Acox1 EC:1.3.3.6) 

mmu:11522 Adh1 EC:1.1.1.1) 

mmu:14081 Acsl1 EC:6.2.1.3) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Pentose Phosphate Pathway (mmu: 00030) 

mmu:14121 Fbp1 EC:3.1.3.11) 

mmu:19733 Rgn EC:3.1.1.17) 

mmu:230163 Aldob EC:4.1.2.13) 

   Arginine and Proline Metabolism (mmu:00330) 

mmu:11846 Arg1 EC:3.5.3.1) 

mmu:11898 Ass1 EC:6.3.4.5) 

mmu:227231 Cps1 EC:6.3.4.16) 

   Cysteine and Methionine (mmu: 00270) 

mmu:11720 Mat1a EC:2.5.1.6) 

mmu:12116 Bhmt EC:2.1.1.5) 

mmu:269378 Ahcy EC:3.3.1.1) 

   Fat digestion and absorption  (mmu: 04975) 

mmu:11806 Apoa1 

 mmu:14080 Fabp1 

 

   Tryptophan Metabolism (mmu: 00380)  

mmu:12359 Cat EC:1.11.1.6) 
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Table IV.3  KEGG Identities of Proteins on Hepatic CLD of WT and D5KO Mice 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Primary bile acid biosynthesis (mmu:00120) 

mmu:101502 Hsd3b7 EC:1.1.1.181) 

mmu:20280 Scp2 EC:2.3.1.176) 

   Butanoate metabolism (mmu: 00650) 

mmu:15360 Hmgcs2 EC:2.3.3.10) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Arachidonic acid metabolism (mmu: 00590) 

mmu:13850 Ephx2 EC:3.3.2.10 3.1.3.76) 

mmu:14775 Gpx1 EC:1.11.1.9) 

   Retinol metabolism (mmu:00830) 

mmu:11522 Adh1 EC:1.1.1.1) 

mmu:11668 Aldh1a1 EC:1.2.1.36) 

   HIF-1 Signaling (mmu: 04066) 

mmu:14433 Gapdh EC:1.2.1.12) 

mmu:433182 Gm5506 

 

   Fructose and mannose metabolism (mmu: 00051) 

mmu:14121 Fbp1 EC:3.1.3.11) 

mmu:230163 Aldob EC:4.1.2.13) 

   Valine, leucine and isoleucine degradation (mmu: 00280) 

mmu:15360 Hmgcs2 EC:2.3.3.10) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Insulin signaling pathway (mmu:04910) 

mmu:14104 Fasn 

EC:2.3.1.85 2.3.1.38 2.3.1.39 2.3.1.41 

3.1.2.14 1.3.1.10 4.2.1.59 1.1.1.100) 

mmu:14121 Fbp1 EC:3.1.3.11) 

   Ascorbate and aldarate metabolism (mmu: 00053) 

mmu:19733 Rgn EC:3.1.1.17) 

mmu:268756 Gulo EC:1.1.3.8) 

   Steroid hormone biosynthesis ( mmu: 00140) 

mmu:16987 Lss EC:5.4.99.7) 
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mmu:18194 Nsdhl P) dependent steroid dehydrogenase-like  

   Glyoxylate and dicarboxylate metabolism (mmu: 00630) 

mmu:12359 Cat EC:1.11.1.6) 

mmu:17449 Mdh1 EC:1.1.1.37) 

   Glycine, serine and threonine metabolism (mmu: 00260) 

mmu:12116 Bhmt EC:2.1.1.5) 

mmu:14711 Gnmt EC:2.1.1.20) 

   Alanine, aspartate and glutamate metabolism (mmu: 00250) 

mmu:11898 Ass1 EC:6.3.4.5) 

mmu:227231 Cps1 EC:6.3.4.16) 

   Nitrogen metabolism (mmu: 00910) 

mmu:12350 Car3 EC:4.2.1.1) 

mmu:227231 Cps1 EC:6.3.4.16) 

   Oxidative phosphorylation  (mmu:00190) 

mmu:11947 Atp5b EC:3.6.3.14) 

   beta-Alanine metabolism (mmu: 00410) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Phenylalanine Metabolism (mmu: 00360) 

mmu:11758 Prdx6 EC:1.11.1.9 1.11.1.15) 

   Biosynthesis of unsaturated fatty acids (mmu: 01040) 

mmu:11430 Acox1 EC:1.3.3.6) 

    Retrograde endocannabinoid signaling (mmu: 04723) 

mmu:23945 Mgll EC:3.1.1.23) 

   Amino sugar and nucleotide sugar metabolism (mmu: 00520) 

mmu:109754 Cyb5r3 EC:1.6.2.2) 

   Propanoate metabolism (mmu: 00640) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Fatty Acid biosynthesis 

mmu:14104 Fasn EC:2.3.1.85 2.3.1.38 2.3.1.39 2.3.1.41 
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3.1.2.14 1.3.1.10 4.2.1.59 1.1.1.100) 

   Pyruvate metabolism (mmu: 00620) 

mmu:17449 Mdh1 EC:1.1.1.37) 

   Vitamin digestion and absorption (mmu: 04977) 

mmu:11806 Apoa1 

 

   alpha-Linolenic metabolism (mmu: 00592) 

mmu:11430 Acox1 EC:1.3.3.6) 

   Adipocytokine signaling pathway (mmu: 4920) 

mmu:14081 Acsl1 EC:6.2.1.3) 

   One carbon pool by folate (mmu: 00670)  

mmu:107747 Aldh1l1 EC:1.5.1.6) 

   Tyrosine Metabolism (mmu:00350) 

mmu:11522 Adh1 

 

   Glycerolipid metabolism (mmu: 00561) 

mmu:23945 Mgll EC:3.1.1.23) 

   Lysine degradation (mmu: 00310) 

mmu:74147 Ehhadh EC:1.1.1.35 5.3.3.8 4.2.1.17) 

   Degradation of aromatic compounds (mmu: 01220) 

mmu:19733 Rgn EC:3.1.1.17) 

   Citrate cycle (TCA) (mmu: 00020) 

mmu:17449 Mdh1 EC:1.1.1.37) 

   Synthesis and degradation of ketone bodies (mmu: 00072) 

mmu:15360 Hmgcs2 EC:2.3.3.10) 
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Table IV.4 KEGG Identities of Proteins Unique to Hepatic CLD of WT Mice 

KEGG Pathway ID Gene KEGG Enzyme ID 

Metabolic pathways (mmu: 01100) 

 mmu:104158 Ces1d EC:3.1.1.1 3.1.1.67 

 mmu:11370 Acadvl EC:1.3.8.9 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

 mmu:11946 Atp5a1 

  mmu:13106 Cyp2e1 EC:1.14.13.n7 

 mmu:13119 Cyp4a14 EC:1.14.15.3 

 mmu:15483 Hsd11b1 EC:1.1.1.146 

 mmu:15488 Hsd17b4 EC:4.2.1.107 4.2.1.119 1.1.1.n12 

 mmu:22262 Uox EC:1.7.3.3 

 mmu:235674 Acaa1b EC:2.3.1.16 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:52538 Acaa2 EC:2.3.1.16 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Metabolism of xenobiotics by cytochrome P450 (mmu: 00980) 

 mmu:13101 Cyp2d10 EC:1.14.14.1 

 mmu:13106 Cyp2e1 EC:1.14.13.n7 

 mmu:13107 Cyp2f2 

  mmu:15483 Hsd11b1 EC:1.1.1.146 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

 mmu:76279 Cyp2d26 EC:1.14.14.1 

   Drug metabolism by cytochrome P450 (mmu: 00982) 

 mmu:13101 Cyp2d10 EC:1.14.14.1 

 mmu:13106 Cyp2e1 EC:1.14.13.n7 

 mmu:14263 Fmo5 EC:1.14.13.8 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

 mmu:76279 Cyp2d26 EC:1.14.14.1 

   Fatty acid metabolism (mmu: 00071) 

 mmu:11370 Acadvl EC:1.3.8.9 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

 mmu:13119 Cyp4a14 EC:1.14.15.3 

 mmu:235674 Acaa1b EC:2.3.1.16 

 mmu:52538 Acaa2 EC:2.3.1.16 
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Peroxisome (mmu: 04146) 

 mmu:15488 Hsd17b4 EC:4.2.1.107 4.2.1.119 1.1.1.n12 

 mmu:19299 Abcd3 

  mmu:235674 Acaa1b EC:2.3.1.16 

 mmu:26458 Slc27a2 EC:6.2.1.3 

   Pentose and glucuronate interconversion (mmu: 00040) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Valine, leucine and isoleucine degradation (mmu: 00280) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

 mmu:235674 Acaa1b EC:2.3.1.16 

 mmu:52538 Acaa2 EC:2.3.1.16 

   Ascorbate and aldarate metabolism (mmu: 00053) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Steroid hormone biosynthesis ( mmu: 00140) 

 mmu:15483 Hsd11b1 EC:1.1.1.146 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Drug metabolism  (mmu: 00983) 

 mmu:104158 Ces1d EC:3.1.1.1 3.1.1.67 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Retinol metabolism (mmu:00830) 

 mmu:13119 Cyp4a14 EC:1.14.15.3 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   PPAR signaling (mmu: 03320) 

 mmu:13119 Cyp4a14 EC:1.14.15.3 

 mmu:235674 Acaa1b EC:2.3.1.16 

 mmu:26458 Slc27a2 EC:6.2.1.3 
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   Starch and sucrose (mmu: 00500) 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Porphyrin and chlorophyll metabolism (mmu: 00860) 

 mmu:394436 Ugt1a1 EC:2.4.1.17 

 mmu:72094 Ugt2a3 EC:2.4.1.17 

   Arachidonic acid metabolism (mmu: 00590) 

 mmu:13106 Cyp2e1 EC:1.14.13.n7 

 mmu:13119 Cyp4a14 EC:1.14.15.3 

   ABC transporters (mmu: 02010) 

 mmu:19299 Abcd3 

  mmu:27413 Abcb11 

 

   Oxidative phosphorylation  (mmu:00190) 

 mmu:11946 Atp5a1 

 

   Fat digestion and absorption  (mmu: 04975) 

 mmu:11808 Apoa4 

 

   Tryptophan Metabolism (mmu: 00380)  

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Caffeine metabolism (mmu: 00232) 

 mmu:22262 Uox EC:1.7.3.3 

   beta-Alanine metabolism (mmu: 00410) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Primary bile acid biosynthesis (mmu:00120) 

 mmu:15488 Hsd17b4 EC:4.2.1.107 4.2.1.119 1.1.1.n12 

   Bile secretion (mmu: 04976) 

 mmu:27413 Abcb11 

 

   Purine metabolism (mmu:00230) 
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 mmu:22262 Uox EC:1.7.3.3 

   Glycerolipid metabolism (mmu: 00561) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Biosynthesis of unsaturated fatty acids (mmu: 01040) 

 mmu:235674 Acaa1b EC:2.3.1.16 

   Histidine metabolism (mmu: 00340) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Fatty acid elongation (mmu: 00062) 

 mmu:52538 Acaa2 EC:2.3.1.16 

   Lysine degradation (mmu: 00310) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Linoleic acid metabolism (mmu: 00591) 

 mmu:13106 Cyp2e1 EC:1.14.13.n7 

   Propanoate metabolism (mmu: 00640) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Glycolysis/Gluconeogenesis (mmu: 00010) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Pyruvate metabolism (mmu: 00620) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 

   Vitamin digestion and absorption (mmu: 04977) 

 mmu:11808 Apoa4 

 

   alpha-Linolenic metabolism (mmu: 00592) 

 mmu:235674 Acaa1b EC:2.3.1.16 

   Arginine and Proline Metabolism (mmu:00330) 

 mmu:11671 Aldh3a2 EC:1.2.1.3 
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Table IV.5 KEGG Identities of Proteins Unique to Hepatic CLD of D5KO Mice  

KEGG Pathway ID Gene KEGG Enzyme ID 

Metabolic pathways (mmu: 01100) 

mmu:104112 Acly EC:2.3.3.8 

mmu:107766 Haao EC:1.13.11.6 

mmu:107869 Cth EC:4.4.1.1 

mmu:109900 Asl EC:4.3.2.1 

mmu:110095 Pygl EC:2.4.1.1 

mmu:12846 Comt EC:2.1.1.6 

mmu:14085 Fah EC:3.7.1.2 

mmu:14317 Ftcd EC:2.1.2.5 4.3.1.4 

mmu:14645 Glul EC:4.1.1.15 6.3.1.2 

mmu:14718 Got1 EC:2.6.1.1 

mmu:14874 Gstz1 EC:2.5.1.18 5.2.1.2 

mmu:15233 Hgd EC:1.13.11.5 

mmu:15445 Hpd EC:1.13.11.27 

mmu:15490 Hsd17b7 EC:1.1.1.62 1.1.1.270 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:16828 Ldha EC:1.1.1.27 

mmu:17436 Me1 EC:1.1.1.40 

mmu:18103 Nme2 EC:2.7.4.6 2.7.13.3 

mmu:18478 Pah EC:1.14.16.1 

mmu:18534 Pck1 EC:4.1.1.32 

mmu:18655 Pgk1 EC:2.7.2.3 

mmu:20322 Sord EC:1.1.1.14 

mmu:21881 Tkt EC:2.2.1.1 

mmu:21991 Tpi1 EC:5.3.1.1 

mmu:22235 Ugdh EC:1.1.1.22 

mmu:225913 Dak EC:2.7.1.29 4.6.1.15 2.7.1.28 

mmu:243537 Uroc1 EC:4.2.1.49 

mmu:64705 Dpys EC:3.5.2.2 

mmu:66988 Lap3 EC:3.4.11.5 3.4.11.1 

mmu:72157 Pgm2 EC:5.4.2.2 

mmu:76238 Grhpr EC:1.1.1.79 1.1.1.81 

mmu:76282 Gpt EC:2.6.1.2 

   Biosynthesis of amino acids (mmu:01230) 

mmu:107869 Cth EC:4.4.1.1 

mmu:109900 Asl EC:4.3.2.1 

mmu:14645 Glul EC:4.1.1.15 6.3.1.2 
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mmu:14718 Got1 EC:2.6.1.1 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:18478 Pah EC:1.14.16.1 

mmu:18655 Pgk1 EC:2.7.2.3 

mmu:21881 Tkt EC:2.2.1.1 

mmu:21991 Tpi1 EC:5.3.1.1 

mmu:76282 Gpt EC:2.6.1.2 

Carbon Metabolism (mmu: 01200) 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:17436 Me1 EC:1.1.1.40 

mmu:18655 Pgk1 EC:2.7.2.3 

mmu:21881 Tkt EC:2.2.1.1 

mmu:21991 Tpi1 EC:5.3.1.1 

mmu:225913 Dak EC:2.7.1.29 4.6.1.15 2.7.1.28 

   Tyrosine Metabolism (mmu:00350) 

mmu:12846 Comt EC:2.1.1.6 

mmu:14085 Fah EC:3.7.1.2 

mmu:14718 Got1 EC:2.6.1.1 

mmu:14874 Gstz1 EC:2.5.1.18 5.2.1.2 

mmu:15233 Hgd EC:1.13.11.5 

mmu:15445 Hpd EC:1.13.11.27 

Glycolysis/Gluconeogenesis (mmu: 00010) 

mmu:16828 Ldha EC:1.1.1.27 

mmu:18534 Pck1 EC:4.1.1.32 

mmu:18655 Pgk1 EC:2.7.2.3 

mmu:21991 Tpi1 EC:5.3.1.1 

mmu:72157 Pgm2 EC:5.4.2.2 

   Pyruvate metabolism (mmu: 00620) 

mmu:16828 Ldha EC:1.1.1.27 

mmu:17436 Me1 EC:1.1.1.40 

mmu:18534 Pck1 EC:4.1.1.32 

mmu:76238 Grhpr EC:1.1.1.79 1.1.1.81 

      

Alanine, aspartate and glutamate metabolism (mmu: 00250) 

mmu:109900 Asl EC:4.3.2.1 
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mmu:14645 Glul EC:4.1.1.15 6.3.1.2 

mmu:14718 Got1 EC:2.6.1.1 

mmu:76282 Gpt EC:2.6.1.2 

   Arginine and Proline Metabolism (mmu:00330) 

mmu:109900 Asl EC:4.3.2.1 

mmu:14645 Glul EC:4.1.1.15 6.3.1.2 

mmu:14718 Got1 EC:2.6.1.1 

mmu:66988 Lap3 EC:3.4.11.5 3.4.11.1 

   Phenylalanine Metabolism (mmu: 00360) 

mmu:14718 Got1 EC:2.6.1.1 

mmu:15445 Hpd EC:1.13.11.27 

mmu:18478 Pah EC:1.14.16.1 

   2-Oxocarboxylic acid metabolism (mmu: 01210) 

mmu:14718 Got1 EC:2.6.1.1 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:76282 Gpt EC:2.6.1.2 

   Peroxisome (mmu: 04146) 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:20655 Sod1 EC:1.15.1.1 

mmu:54683 Prdx5 EC:1.11.1.15 

   HIF-1 Signaling (mmu: 04066) 

mmu:16828 Ldha EC:1.1.1.27 

mmu:18655 Pgk1 EC:2.7.2.3 

mmu:22041 Trf 

 

   Citrate cycle (TCA) (mmu: 00020) 

mmu:104112 Acly EC:2.3.3.8 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:18534 Pck1 EC:4.1.1.32 

   Starch and sucrose (mmu: 00500) 

mmu:110095 Pygl EC:2.4.1.1 

mmu:22235 Ugdh EC:1.1.1.22 

mmu:72157 Pgm2 EC:5.4.2.2 
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Cysteine and Methionine (mmu: 00270) 

mmu:107869 Cth EC:4.4.1.1 

mmu:14718 Got1 EC:2.6.1.1 

mmu:16828 Ldha EC:1.1.1.27 

   Amino sugar and nucleotide sugar metabolism (mmu: 00520) 

mmu:22235 Ugdh EC:1.1.1.22 

mmu:72157 Pgm2 EC:5.4.2.2 

   Glutathione Metabolism (mmu:00480) 

mmu:15926 Idh1 EC:1.1.1.42 

mmu:66988 Lap3 EC:3.4.11.5 3.4.11.1 

   Pyrimidine metabolism (mmu:00240) 

mmu:18103 Nme2 EC:2.7.4.6 2.7.13.3 

mmu:64705 Dpys EC:3.5.2.2 

   Purine metabolism (mmu:00230) 

mmu:18103 Nme2 EC:2.7.4.6 2.7.13.3 

mmu:72157 Pgm2 EC:5.4.2.2 

   Fructose and mannose metabolism (mmu: 00051) 

mmu:20322 Sord EC:1.1.1.14 

mmu:21991 Tpi1 EC:5.3.1.1 

   Histidine metabolism (mmu: 00340) 

mmu:14317 Ftcd EC:2.1.2.5 4.3.1.4 

mmu:243537 Uroc1 EC:4.2.1.49 

   Insulin signaling pathway (mmu:04910) 

mmu:110095 Pygl EC:2.4.1.1 

mmu:18534 Pck1 EC:4.1.1.32 

   Glyoxylate and dicarboxylate metabolism (mmu: 00630) 

mmu:14645 Glul EC:4.1.1.15 6.3.1.2 

mmu:76238 Grhpr EC:1.1.1.79 1.1.1.81 

   Steroid hormone biosynthesis (mmu: 00140) 

mmu:12846 Comt EC:2.1.1.6 

mmu:15490 Hsd17b7 EC:1.1.1.62 1.1.1.270 



 

 

106 

 

Table IV.5 KEGG Identities of Proteins Unique to Hepatic CLD of D5KO Mice  

   Glycine, serine and threonine metabolism (mmu: 00260) 

mmu:107869 Cth EC:4.4.1.1 

mmu:76238 Grhpr EC:1.1.1.79 1.1.1.81 

   Phenylalanine, tyrosine and tryptophan biosynthesis (mmu: 00400) 

mmu:14718 Got1 EC:2.6.1.1 

mmu:18478 Pah EC:1.14.16.1 

   PPAR signaling (mmu: 03320) 

mmu:17436 Me1 EC:1.1.1.40 

mmu:18534 Pck1 EC:4.1.1.32 

   Oxidative phosphorylation  (mmu:00190) 

mmu:67895 Ppa1 EC:3.6.1.1 

   Tryptophan Metabolism (mmu: 00380) 

mmu:107766 Haao EC:1.13.11.6 

   beta-Alanine metabolism (mmu: 00410) 

mmu:64705 Dpys EC:3.5.2.2 

Pentose and glucuronate interconversion (mmu: 00040) 

mmu:22235 Ugdh EC:1.1.1.22 

   Galactose metabolism (mmu: 00052) 

mmu:72157 Pgm2 EC:5.4.2.2 

   Glycerophospholipid metabolism (mmu: 00564) 

mmu:14555 Gpd1 EC:1.1.1.8 

   Propanoate metabolism (mmu: 00640) 

mmu:16828 Ldha EC:1.1.1.27 

   Metabolism of xenobiotics by cytochrome P450 (mmu: 00980) 

mmu:13105 Cyp2d9 EC:1.14.14.1 

      

Adipocytokine signaling pathway (mmu: 4920) 

mmu:18534 Pck1 EC:4.1.1.32 
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Drug metabolism by cytochrome P450 (mmu: 00982) 

mmu:13105 Cyp2d9 EC:1.14.14.1 

   One carbon pool by folate (mmu: 00670)  

mmu:14317 Ftcd EC:2.1.2.5 4.3.1.4 

   
Glycerolipid metabolism (mmu: 00561) 

mmu:225913 Dak EC:2.7.1.29 4.6.1.15 2.7.1.28 

   Pantothenate and CoA biosynthesis (mmu: 00770) 

mmu:64705 Dpys EC:3.5.2.2 

   Ascorbate and aldarate metabolism (mmu: 00053) 

mmu:22235 Ugdh EC:1.1.1.22 

    Steroid biosynthesis (mmu: 00100) 

mmu:15490 Hsd17b7 EC:1.1.1.62 1.1.1.270 

   Inositol phosphate metabolism (mmu:00562) 

mmu:21991 Tpi1 EC:5.3.1.1 

   Selenocompound metabolism (mmu: 00450) 

mmu:107869 Cth EC:4.4.1.1 

   Drug metabolism  (mmu: 00983) 

mmu:64705 Dpys EC:3.5.2.2 

   Nitrogen metabolism (mmu: 00910) 

mmu:14645 Glul EC:4.1.1.15 6.3.1.2 
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Table IV.6  D5KO Proteins Enriched and Depleted  on LFD compared to WT 

 

Gene Ontology Category Gene  

Accession 

Number 

Fold 

Change P-value 

Amino Acid Metabolism 

  (GO:0006520)         

Betaine--homocysteine S-

methyltransferase 1   Bhmt O35490 5.92 0.03 

Argininosuccinate synthase   Ass1  P16460 4.38 0.04 

Carbamoyl-phosphate synthase 

 [ammonia], mitochondrial   
Cps1 Q8C196 1.60 0.36 

Glycine N-methyltransferase   Gnmt Q9QXF8 3.90 0.00 

 
    

Carbohydrate Meatbolism (GO:0005975) 
        

Fructose-bisphosphate aldolase B   
Aldob  Q91Y97 3.13 0.02 

 
    Protein Metabolism (GO:0044267) 

Chaperones         

Endoplasmin   Hsp90b1  P08113 0.96 0.94 

Protein disulfide-isomerase   P4hb P09103 1.02 0.90 

Heat shock protein HSP 90-beta   
Hsp90ab1 P11499 9.54 0.01 

78 kDa glucose-regulated protein   
Grp78 P20029 1.11 0.74 

Protein disulfide-isomerase A3   
Pdia3  P27773 0.53 0.12 

Heat shock cognate 71 kDa protein   
Hspa8 P63017 2.85 0.02 

Protein disulfide-isomerase A6   
Pdia6  Q922R8 0.98 0.95 

 
    

Glutathione Metabolism (GO:0006749) 
        

Glutathione S-transferase Mu 1   
Gstm1 P10649 4.63 0.00 

Glutathione S-transferase P 1   
Gstp1  P19157 2.60 0.01 

Microsomal glutathione S-transferase 1 Mgst1 Q91VS7 0.56 0.03 
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Table IV.6  D5KO Proteins Enriched and Depleted  on LFD compared to WT 

     Lipid Metabolism (GO:0006629)         

Fatty acid synthase   Fabp1  P12710 2.71 0.01 

Long-chain-fatty-acid--CoA ligase 1   Acsl1 P41216 0.46 0.01 

Estradiol 17-beta-dehydrogenase 11   Hmgcs2 P54869 1.64 0.14 

Cytochrome b5   Cyb5a  P56395 1.25 0.33 

ATP synthase subunit alpha, 

mitochondrial   Atp5b P56480 0.90 0.74 

Carboxylesterase 3   Ces3a  Q63880 1.06 0.70 

17-beta-hydroxysteroid dehydrogenase 13   Hsd17b13 Q8VCR2 0.32 0.01 

Peroxisomal bifunctional enzyme   Ehhadh Q9DBM2 1.06 0.79 

NADH-cytochrome b5 reductase 3   Cyb5r3 Q9DCN2 0.33 0.02 

Estradiol 17-beta-dehydrogenase 11   Hsd17b11  Q9EQ06 0.16 0.02 

Peroxisomal acyl-coenzyme A oxidase 1   Acox1  Q9R0H0 1.74 0.15 

 
    Lipid Transport (GO:0006869)         

Apolipoprotein E  Apoe P08226 0.51 0.00 

Non-specific lipid-transfer protein   Scp2  P32020 2.01 0.15 

Apolipoprotein A-I   Apoa1 Q00623 0.58 0.45 

 
    Other         

Major urinary protein 6 Mup6 P02762 1.12 0.22 

Elongation factor 1-alpha 1   Eef1a1  P10126 1.75 0.26 

Alpha-1-antitrypsin 1-2 Serpina1b  P22599 4.53 0.02 

Methyltransferase-like protein 7B   Mettl7b Q9DD20 0.39 0.01 

 
    Redox/Detox (GO:0055114/ 

GO:0006805)         

Retinol dehydrogenase 7 Rdh7 O88451 0.95 0.86 

Catalase   Cat  P24270 1.91 0.08 

Cytochrome P450 2D10   Cyp2d10  P24456 1.00 1.00 

3 beta-hydroxysteroid dehydrogenase Hsd3b3 P26150 0.24 0.00 

Peroxiredoxin-1   Prdx1  P35700 3.19 0.04 

L-gulonolactone oxidase   Gulo P58710 0.29 0.03 

Dehydrogenase/ reductase SDR family 

member 1   Dhrs1  Q99L04 0.34 0.01 

 
    Transport (GO:0006810)         

Serum albumin Alb  P07724 3.45 0.00 

Selenium-binding protein 2 Selenbp2  Q63836 6.65 0.00 
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Table IV.7  D5KO Proteins Enriched and Depleted  on HFD compared to WT 

Gene Ontology Category Gene  

Accession 

Number 

Fold 

Change P-value 

     Amino Acid Metabolism 

  (GO:0006520)         

Betaine--homocysteine S-

methyltransferase 1   Bhmt O35490 0.84 0.55 

Carbonic anhydrase 3 Ca3  P16015 1.27 0.09 

Argininosuccinate synthase   Ass1  P16460 1.17 0.66 

Adenosyl-homocysteinase   Ahcy P50247 1.61 0.26 

Arginase-1   Arg1 Q61176 1.85 0.10 

Carbamoyl-phosphate synthase 

 [ammonia], mitochondrial   
Cps1 Q8C196 0.22 0.21 

S-adenosylmethionine synthase isoform 

type-1   Mat1a Q91X83 2.12 0.12 

Glycine N-methyltransferase   Gnmt Q9QXF8 1.45 0.17 

 
    

Carbohydrate Meatbolism 

(GO:0005975) 
        

Malate dehydrogenase, cytoplasmic   
Mdh1  P14152 1.53 0.35 

Glyceraldehyde-3-phosphate 

dehydrogenase   Gapdh P16858 1.14 0.55 

Alpha-enolase   Eno1  P17182 1.80 0.07 

Fructose-bisphosphate aldolase B   
Aldob  Q91Y97 0.97 0.90 

Fructose-1,6-bisphosphatase 1   
Fbp1  Q9QXD6 1.46 0.27 

 
    

Protein Metabolism (GO:0044267) 

Chaperones 
        

Protein disulfide-isomerase   P4hb P09103 0.49 0.26 

78 kDa glucose-regulated protein   
Grp78 P20029 1.00 1.00 

Protein disulfide-isomerase A3   
Pdia3  P27773 0.47 0.04 
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Table IV.7  D5KO Proteins Enriched and Depleted  on HFD compared to WT 

Heat shock cognate 71 kDa protein   
Hspa8 P63017 1.89 0.03 

 
    Glutathione Metabolism 

(GO:0006749)         

Glutathione S-transferase Mu 1   Gstm1 P10649 1.88 0.06 

Glutathione peroxidase 1   Gpx1 P11352 2.67 0.06 

Glutathione S-transferase P 1   Gstp1  P19157 0.89 0.69 

Glutathione S-transferase A3   Gsta3  P30115 1.16 0.54 

 
    Lipid Metabolism (GO:0006629)         

Peroxiredoxin-6   Prdx6  O08709 2.05 0.08 

Monoglyceride lipase   Mgll O35678 0.34 0.17 

Fatty acid synthase   Fabp1  P12710 1.00 1.00 

Hydroxymethylglutaryl-CoA synthase Fasn P19096 4.33 0.01 

Epoxide hydrolase 2   Ephx2  P34914 0.40 0.12 

Long-chain-fatty-acid--CoA ligase 1   Acsl1 P41216 1.07 0.59 

Carboxylesterase 3   Ces3a  Q63880 0.85 0.72 

Lanosterol synthase Lss Q8BLN5 3.67 0.04 

17-beta-hydroxysteroid dehydrogenase 

13   Hsd17b13 Q8VCR2 0.79 0.24 

Peroxisomal bifunctional enzyme   Ehhadh Q9DBM2 0.28 0.08 

NADH-cytochrome b5 reductase 3   Cyb5r3 Q9DCN2 0.34 0.10 

Estradiol 17-beta-dehydrogenase 11   Hsd17b11  Q9EQ06 0.65 0.05 

Sterol-4-alpha-carboxylate 3-

dehydrogenase Nsdhl Q9R1J0 1.26 0.13 

     Lipid Transport (GO:0006869)         

Apolipoprotein E  Apoe P08226 0.89 0.83 

Non-specific lipid-transfer protein   Scp2  P32020 1.19 0.70 

     Other         

D-dopachrome decarboxylase   Ddt O35215 3.94 0.01 

Serine protease inhibitor A3K   Serpina3k  P07759 4.25 0.07 

Elongation factor 1-alpha 1   Eef1a1  P10126 1.24 0.65 

Ribonuclease UK114   Hrsp12  P52760 1.96 0.28 

Regucalcin   Rgn  Q64374 1.64 0.13 

Methyltransferase-like protein 7B   Mettl7b Q9DD20 0.81 0.47 
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Table IV.7  D5KO Proteins Enriched and Depleted  on HFD compared to WT 

Redox/Detox (GO:0055114/ 

GO:0006805)         

Alcohol dehydrogenase [NADP+]  

dehydrogenase 1 Adh1  P00329 1.01 0.99 

Catalase   Cat  P24270 0.71 0.16 

Retinal dehydrogenase 1   Aldh1a1  P24549 1.18 0.52 

3 beta-hydroxysteroid dehydrogenase Hsd3b3 P26150 1.03 0.92 

Peroxiredoxin-1   Prdx1  P35700 1.10 0.02 

L-gulonolactone oxidase   Gulo P58710 0.83 0.28 

Cytosolic 10-formyltetrahydrofolate 

dehydrogenase   Aldh1l1  Q8R0Y6 1.60 0.06 

Dehydrogenase/ reductase SDR family 

member 1   Dhrs1  Q99L04 0.71 0.15 

3 beta-hydroxysteroid dehydrogenase 

type 7 Hsd3b7 Q9EQC1 1.23 0.19 

     Transport (GO:0006810)         

Serum albumin Alb  P07724 1.94 0.12 

Selenium-binding protein 2 Selenbp2  Q63836 1.76 0.12 

 

WT CLD values, and one that was less than 50% of its WT value.  In contrast, I found 22 

proteins on hepatic CLD from D5KO mice re-fed that HF diet that differed significantly 

in abundance from that found on CLD from HF re-fed WT mice (Figure IV.8B).  Of 

these, 9 exhibited significantly decreased relative abundance, and 13 exhibited 

significantly increased relative abundance.  Among the 13 proteins with increased 

abundance, two were members of the one-carbon metabolism pathway (BHMT and 

glycine –methyltransferase), and several related to the glutathione pathway.  Among the 9 

proteins with decreased abundance on D5KO CLD, several were associated with steroid 

biosynthesis.  The identities and KEGG pathway assignments of CLD proteins with 

significant differences in relative abundances between WT and D5KO CLD on LF- and 

HF-diets are listed in table IV.6 and table IV.7.  
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Figure IV.8 . Loss of Plin2 Has Greater Effect with HFD  

Volcano plots of D5KO vs. WT on (A) LFD and (B) HFD. Area in the shaded box 

represent fold changed less than two. Straight line represents P <0.05. Areas outside the 

shaded box and above the line represent proteins that have more than a twofold change in 

either direction compared to WT and are have a p value less than 0.05 (open circles). 

Areas inside the shaded box and below the line represents proteins that have less than a 

twofold change in either direction, and have p value greater than 0.05 (dark circles).  
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Effects of Plin2 and Diet on CLD Associated Metabolic Pathways   

I used the proteomics data, and volcano plot results to map specific KEGG 

pathway modifications associated with Plin2 loss following LF- or HF-re-feeding 

conditions (Figures IV.9 and IV.10).  Modifications were classified as enriched (red), 

depleted (blue), or unchanged (black) relative to WT CLD on each diet.   Figure IV.9 

shows that in LF-re-fed mice, loss of Plin2 is associated with enrichment of enzymes of 

the fatty acid synthesis pathway and enzymes that link fatty acid synthesis and fatty acid 

elongation pathways.  There were also increased amounts of enzymes related to amino 

acid metabolism, as well as portions of the glycolysis, urea and TCA cycles.  Conversely, 

enzymes of the fatty acid elongation pathway and portions of other lipid metabolism and 

detoxification pathways were depleted by loss of Plin2.  Figure IV.10 shows that in HF-

re-fed mice,  loss of Plin2 is associated with increases in enzymes related to distinct 

portions of the amino acid, nucleotide and citrate metabolism pathways and the urea 

cycle, and decreases in enzymes of the fatty acid elongation pathway, and portions of 

other lipid metabolism and detoxification pathways.  

Discussion 

Observations that Plin2 deficiency impairs fatty liver formation in mice 

chronically re-fed a HF diet [37, 38, 40] suggest that Plin2 is a critical regulator of 

hepatic lipid accumulation.  However, physiological adaptations occur during prolonged 

HF diet feeding [128-131] that may influence phenotypic responses to reduced Pln2 

expression, and complicate understanding of its physiological roles.  In this study, I used 

acute fasting and feeding model that avoid adaptive responses to define how Plin2 loss 

affects hepatic lipid accumulation and CLD properties.  The major findings of my study
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Figure IV.9 . Diet Influences Different Metabolic Pathways on CLD Proteome in D5KO Mice   

KEGG analysis was used to determine proteins in the metabolic pathways that were depleted (red), enriched (blue), or unchanged 

(black) on CLD from LF- re-fed D5KO compared to WT. 
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Figure IV.10. Diet Influences Different Metabolic Pathways on CLD Proteome in D5KO Mice   

KEGG analysis was used to determine proteins in the metabolic pathways that were depleted (red), enriched (blue), or unchanged 

(black) on CLD HF-re-fed D5KO compared to WT. 
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are that Plin2 deletion impairs lipid accumulation induced by acute re-feeding fasted mice 

a HF diet; that normal zone specificities of hepatic lipid accumulation associated with HF 

diet re-feeding are disrupted in Plin2-null mice; that Plin2 loss reduces the size and alters 

the protein composition of CLD; and that dietary fat content and Plin2 interact in 

regulating CLD protein composition.  Collectively, these results provide direct evidence 

that Plin2 is a physiologically important determinant of hepatic lipid accumulation and 

CLD properties, and that it may contribute to how the liver integrates metabolic 

responses to increased lipid exposure.     

The Role of Plin2 in Hepatic Metabolism and Lipid Accumulation  

The ability of Plin2 deletion to prevent obesity and fatty liver in mice re-fed HF 

diet for prolonged periods is associated with reduced food intake, lower adiposity, and 

decreased positive energy imbalance [40].   In contrast, in the fasting and re-feeding 

model, I found that the effects of Plin2 loss on hepatic lipid properties of HF re-fed mice 

were not associated with alterations in body or liver weights, adiposity, or reduction in 

food intake.  Indirect calorimetry experiments further demonstrated that Plin2 deletion 

did not affect the general metabolic properties of the mice prior to, or in response to, 

fasting.  Although the magnitude of RER values of D5KO mice re-fed the LF diet was 

less than that found for WT mice, overall the RER responses of D5KO mice to re-feeding 

LF- or HF-diets were physiologically appropriate and consistent with those of WT mice.  

Thus, within the context of fasting and re-feeding with a HF diet, my results are 

consistent with the hypothesis that Plin2 plays a direct role in regulating hepatic lipid 

properties that is independent of effects on energy consumption, body weight or 

substantial alterations in metabolic responses to fasting and re-feeding. 
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Specific Functions of Plin2 in Hepatocyte Lipid Biology   

[40]The degree to which members of the PLIN family are able to substitute for 

one another in regulating cellular lipid properties remains an open question.  Plin3 shares 

significant sequence and structural similarity to Plin2 [132, 133], and based on cell 

culture evidence [125], it has been suggested that Plin3 is able to substitute for loss of 

Plin2 in regulating lipid storage.  However, data from this  study add to the growing body 

of evidence that Plin3 does not fully substitute for loss of Plin2 in regulating HF diet re-

feeding effects on lipid accumulation, or CLD properties in the mouse liver [37, 38, 40].  

My data also adds to evidence that Plin5 does not compensate for Plin2 loss in regulating 

hepatic CLD accumulation in response to prolonged HF diet feeding [40].   

Conversely, results showing that Plin2 loss did not significantly affect hepatic 

lipid levels, their zonal distribution, or CLD size in fasted mice re-fed the LF diet suggest 

that its hepatic functions may be influenced by diet and/or the metabolic properties of the 

liver.  Additional studies are required to understand how diet, metabolism, and Plin2 

interact in regulating hepatic lipid accumulation.  However, my proteomic data 

demonstrating that the effects of Plin2 loss on CLD protein compositions depend on the 

fat content of the diet, and indirect calorimetry data demonstrating that Plin2 loss 

selectively affected RER values of LF-re-fed mice, provide evidence that interactions 

may involve more than one mechanism.  Interestingly, my observation that LF diet re-

feeding of fasted D5KO mice led to an increase in CLD levels of Plin3 relative to that 

observed in HF-re-fed mice, suggests that the hepatic functions of Plin3 also may be 

influenced by diet and/or metabolism.  Understanding how diet, hepatic metabolism, and 

the functions of Plin2, and possibly other PLIN family members, are integrated in 

regulating hepatic lipid accumulation will be addressed in future studies.  
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Plin2 Contributes to the Zone Dependence of Hepatic Lipid Accumulation   

The metabolic functions of hepatocytes are understood to vary according to the 

specific hepatic zone in which they are located, and to reflect nutrient, metabolite, 

hormone and oxygen concentration gradients in the hepatic blood supply that decrease or 

increase from zone 1 to zone 3 [134, 135].  Previous studies in rodents have shown that 

fasting and re-feeding a high carbohydrate diet induces lipogenic gene expression that 

begins in zone 1 and progresses to zone 3 [136].  However, lipid accumulation responses 

were not reported in these studies, and zone specific responses to re-feeding fasted 

animals a HF diet have not been previously identified.  My results show that significant 

zone-specific responses in lipid accumulation following fasting and re-feeding occur only 

in mice re-fed with the HF diet.  Combined with data in WT mice showing that hepatic 

lipid content in LF-re-fed animals is reduced relative to that of HF-re-fed animals, 

differences in the zone specificity of lipid accumulation provide evidence that the 

mechanisms underlying LF- and HF-diets effects on lipid accumulation are spatially 

distinct within the liver parenchyma.   

The mechanisms determining zone specificity of hepatic lipid accumulation are 

likely to be complex, and may include zone-specific differences in several of the 

processes regulating hepatic lipid metabolism.  For instance, de novo lipid synthesis and 

lipid oxidation activities of the liver have been reported to be zone specific [137, 138].  

My finding that the zone specificity of lipid accumulation in HF-re-fed mice is disrupted 

by loss of Plin2, suggest that the processes regulating lipid storage associated with 

elevated amounts of dietary lipids may also exhibit zone specificity.  Additional studies 

are needed to understand how Plin2 contributes to the zone dependence of lipid 
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accumulation.  However, Plin2 expression and lipid accumulation are increased by 

hypoxia [139, 140], which is more pronounced in zone 3 compared to other zones [59].  

Thus, zone specificity of lipid accumulation in HF-re-fed WT mice may reflect, in part, 

hypoxia driven Plin2 expression in zone 3.  

Plin2 Regulation of CLD Properties   

CLD size reflects the quantity of stored lipid, and possibly other aspects of their 

function [123].  Hepatocyte CLD size is influenced by diseases, or exposure to drugs and 

toxic agents that disrupt hepatic metabolism, and can vary over a considerable range [59, 

141].  My observations that the average CLD diameter in livers of fasted WT mice re-fed 

the HF diet are significantly larger than those of LF-re-fed mice, demonstrate that the 

dietary fat content is another physiological influence of hepatic CLD size in WT mice.   

It is unclear what determines variations in hepatic CLD size.  Observations in 

mice chronically fed HF diets with or without ethanol, suggest that larger CLD found in 

livers of ethanol-exposed animals may be related to differences in PLIN family member 

composition, and/or to post-translational modification of CLD associated proteins [59].  

However, definitive evidence those members of the PLIN family are physiologically 

important regulators of hepatic CLD size has been lacking.  My data, documenting that 

Plin2 loss results in a 50% reduction in hepatic CLD size compared to WT mice re-fed 

LF- or HF-diets, provide the first direct evidence that Plin2 is a physiologically important 

determinant of hepatic CLD size.  Further, the finding that Plin3 and Plin5 coat the 

smaller hepatic CLD found in D5KO mice demonstrates functional differences exist in 

the abilities of PLIN family members to regulate CLD growth.   
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Plin2 Scaffolding Functions   

How Plin2 regulates hepatic lipid accumulation and CLD size are not understood 

in detail.  Multiple cell culture and in vivo experiments suggest that Plin2 functions as a 

barrier to lipolysis and that this function is the primary mechanism by which it regulates 

CLD lipid storage functions [142, 143].  However, the possibility that PLIN proteins have 

scaffolding functions that link CLD protein composition and properties to the cells 

metabolic status has also been raised [113].   Previous studies documenting effects of 

dietary fat content on CLD protein composition, including Plin2 levels, in livers of fasted 

and re-fed WT mice [116] are consistent with possible functional linkages between 

hepatic CLD protein composition and the liver’s metabolic status.  Evidence from the 

present study, demonstrating that Plin2 is a physiological determinant of the protein 

composition and size of hepatic CLD, support the concept that it possesses scaffolding 

functions that regulate CLD lipid storage functions in the liver.  Additional work is 

needed to formally establish this concept.  However, the observations that dietary fat 

content influences the effects of Plin2 deletion on hepatic CLD protein composition are 

consistent with it having scaffolding functions, and the possibility that these scaffolding 

functions contribute to the coordination of hepatic CLD protein composition with the 

liver’s metabolic properties.  

In summary, my study demonstrates that Plin2 is a physiologically important 

determinant of hepatic lipid accumulation associated with re-feeding fasted animals a HF 

diet.  The function of Plin2 in the liver appears to be specifically related to regulating the 

ability of CLD to accommodate increased lipid storage, as Plin2 is not essential for CLD 

formation, or apparently for lipid storage induced in response to de novo lipogenesis.   

My observations also provide the first evidence that Plin2 possesses scaffolding functions 
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that contribute to its role in regulating CLD properties and possibly to integrating lipid 

storage and metabolic functions of the liver.   
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CHAPTER  V 

CONCLUSIONS AND DISCUSSION 

Summary and Conclusion 

Cytoplasmic lipid droplets are now being recognized to play important roles in 

cellular homeostasis. In the liver, CLD provide a temporary, yet dynamic depot for TG 

storage that hepatocytes can access based upon the energy demands of the cell. The 

dysregulation of TG storage is the hallmark of hepatic steatosis [11]. Access to mass 

spectrometry based proteomics has improved our ability to identify the proteins that coat 

the CLD phospholipid monolayer through the analysis of more than 15 proteomic profiles 

of CLD from different tissues and cell lines [42, 61, 74-82, 92, 93]. My thesis work is the 

first to provide information about the proteomic profile of isolated CLD from the liver, 

and the first to exam the effects of two independent variables, environment (diet), and 

genetics (loss of Plin2) on CLD proteome.  From the data presented in this thesis, I 

propose that Plin2 is a necessary scaffolding protein that is required for the interactions of 

specific enzymes that help to facilitate metabolic reactions (Figure V.1). Furthermore, the 

perilipin proteins act as adaptor proteins that can interact with the surface of the CLD 

monolayer and various organelles to facilitate metabolic functions. The data provided in 

this thesis are evidence that the CLD proteomic profile reflects the metabolic status of the 

liver, through alterations in CLD size and quantity, differences in the composition of 

proteins associated with specific metabolic enzymes, and through changes in pathways 

involved in metabolic processes (Figure V.2). 

The vast amount of data generated from a single proteomics experiment can be 

significant. Isolated CLD contained 75-125 proteins after the use of a stringent criterion 
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Figure V.1 Model of CLD Interactions with Organelle Membrane and Enzymes on 

the CLD in the Presences (A) or Absence (B) of Plin2  
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to determine which proteins to include in the profile. I was able to obtain evidence of 

complex protein interactions involving discrete metabolic pathways on isolated hepatic 

CLD utilizing web-based programs for analysis (STRING and KEGG). These findings 

suggest that CLD may act as metabolic platforms by sequestering and enhancing 

interactions among enzymes of specific metabolic pathways, including those involved in 

methionine-choline and glucogenic metabolism.  Evidence also suggests the loss of Plin2 

on CLD from HF re-fed animals may disrupt pathways that were once intact such as the 

loss of enzymes from FA metabolic pathways.  The proposal that CLD function in the 

compartmentalization of metabolic pathway reactions is analogous to the known 

functions of other organelles, such as mitochondria, in compartmentalizing specific 

biological functions. Alternatively, the CLD may provide an additional level of 

regulation by excluding specific enzymes within a given pathway, which may be 

controlled through the expression of specific perilipin proteins.  

Multiple studies have shown CLD are associated with various organelles. The 

most dramatic evidence for this support comes from the interaction between Plin5 and the 

mitochondria. Fractionation experiments have demonstrated how Plin5 can be localized 

to both the mitochondria and the CLD,  and how disrupting the interactions of Plin5 can 

inhibit both TG storage and oxidation via mitochondria β-oxidation pathway [46].  This 

concept was further supported by proteomics data from isolated skeletal muscle CLD, 

which showed significant numbers of mitochondrial proteins within the enriched CLD 

fraction [82]. My work has shown that WT and D5KO mice had significant differences in 

the number of organelle specific proteins that were enriched with the isolated CLD. 

Isolated CLD from D5KO animals had fewer ER and peroxisomal associated proteins, 
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but had a significantly greater numbers of cytoplasmic proteins than CLD isolated from 

WT mice. There is still much work that is needed to make significant conclusions about 

these data. However, one could surmise the loss of interactions between CLD and 

organelles in the D5KO mice could lead to disruption of lipid metabolism through 

uncoupling of CLD to ER or peroxisomes.  

In addition to proteomic profiles, I was also able to demonstrate that CLD size 

changed according to diet.  In general, CLD generated from WT animals consuming LFD 

were much smaller than those on HFD. My observations that Plin2 loss reduces CLD size 

in mice re-fed the HFD, bun not the LFD, suggests that Plin2 plays a diet specific role in 

regulating the ability of CLD to store TG. The nature of these interactions between Plin2 

and diet involved in regulating TG storage in CLD has not been identified. However, 

chylomicrons are the source of FA substrates for hepatic TG synthesis in HF re-fed mice, 

whereas FA mobilized from adipose, or synthesized de novo within the liver, are the 

source of FA used for hepatic TG synthesis in LF re-fed mice. Thus Plin2 may be 

functionally linked to lipoprotein lipase depended uptake and transport of dietary fatty 

acids into the liver.  

Significance to Human Health 

The purpose of biomedical research is to increase our understanding of biological 

systems in the effort to further our ability to improve human health.  Obesity, type II 

diabetes, and non-alcoholic fatty liver disease have become a major health epidemic 

throughout the world. Understanding the complex mechanisms that lead to these diseases 

are an important foundation for finding new interventions in combating these health 

problems. The work presented here examines how the dynamic natures of the protein
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Figure V.2 Summary of Data from WT and D5KO Studies in Chapters III and IV  

 

composition of CLD are influenced by diet and genetics. There are still many questions 

that must be answered before moving forward with translational studies in humans. 

However, it is clear that Plin2 plays an important role in the metabolic regulation of CLD 

in the mouse hepatocytes. Moreover, these data support numerous studies linking high fat 

diets to changes in overall metabolism. These data also suggest that diets high in fat 

change the metabolic composition in the liver compared to low fat diets.  

Drug Targets 

 Much of biomedical research has focused over the years on finding potential drug 

targets to combat various diseases, and this has become the generic answer to the 
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fundamental questions regarding the validity of research, specifically in publicly funded 

university settings. The proteomics data presented here provides many potential drug 

targets that may help to decrease the severity of hepatic steatosis, most notably Plin2. The 

primary question that remains to be answered about Plin2 is what role does it play in 

overall metabolic function in the liver, and what is the role of other perilipin proteins 

such as Plin3 and Plin5 in prevention of CLD accumulation in hepatocytes? Moreover, 

additional work is needed to understand how the loss of Plin2 influences the total 

metabolic activity of an organism. It is clear that in the absence of Plin2 CLD 

accumulation can occur during fasting, and over longer durations of feeding high fat diet 

Plin2 deficient animals appear to be resistant to obesity and hepatic steatosis. Targeting 

proteins like Plin2 may lead to decreasing hepatic steatosis and even obesity. However, 

this may also lead to disruptions in metabolic homeostasis that result in additional side 

effects. Given the significant numbers of individuals, and the extraordinary cost involved 

in treating diseases and complications from obesity, all viable treatment options should 

be explored.  

Personalized Medicine 

The advances in technology, which have exponentially increased our 

understanding of the basic molecular and biochemical changes that lead to disease, have 

also increased our ability to examine the molecular and biochemical differences between 

individuals. The notion of individual personalized medicine is more pertinent to the data 

presented in my thesis than a generic argument of defining a new drug target. Beyond 

drugs that could target Plin2, further studies in humans should be explored to determine if 

those individuals who appear to be more prone to obesity and hepatic steatosis possess 
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genetic factors, such as single nucleotide polymorphisms (SNP) or genetic dysregulation 

of proteins that have been identified on the CLD.  Recently Magne et al. discovered a 

SNP in the human form of Plin2 that was found to decrease hepatic steatosis and serum 

TG [144]. This discovery is further evidence that personalized medicine will be an 

important tool towards combating human disease, but proteomics data, such as those 

from my study, provides a potential list of targets that could be more fully investigated.  

This information may provide insight for individual treatment through understanding the 

specific metabolic demands, sensitivity towards particular nutrients, and alteration of 

hormones that may be regulated through complex pathways in part through the protein 

profile of CLD specific to individual genetic composition.   

Future Directions 

CLD as a Platform for Enzyme Activity 

The thesis work I present here opens the door to many more questions. Are   CLD 

capable of providing a platform for enzymatic reactions to take place?   The cytosol is 

described as being a matrix for cellular reactions. CLD could provide proteins the 

necessary scaffold to efficiently perform enzymatic reactions in an organized manner.  

CLD proteins like Plin2 and Plin5, which are suggested to associate with specific 

organelles like the ER and mitochondria, could direct CLD to specific compartments of 

the cytosol depending on the metabolic demands of the cell. Although I have been able to 

provide support for this idea, there has yet to be a significant biochemical study to prove 

this hypothesis. In order to address this question several experiments should be 

performed. I would first determine if isolated hepatic CLD maintained any ability to 

undergo enzymatic reactions. The ideal technology for performing this experiment would 



 

 

130 

 

be the use of non-targeted mass spectrometry based metabolomics.  Large quantities of 

isolated CLD would be necessary. I would begin looking at reactions involving C-13 

labeled glucose and tracking the progression of glucose over time to determine if glucose 

oxidation were taking place on the isolated CLD. Based on these results, I would 

continue with other substrates, from identified pathways such as the methionine-choline 

pathway, which has been  identified as a target of NAFLD.    

Proteomics 

To gain a true insight into the hepatic CLD of D5KO mice, I would embark on a 

series of proteomic experiments to determine how the loss of Plin2 changes the total liver 

proteome. The data presented in my thesis assumes the loss of Plin2 only affects the CLD 

proteome. I would examine the isolated CLD proteome from fasted mice at different time 

points to determine if there is a significant difference in the CLD coat during fasting.  

This would also be advantageous to examine in a D5KO liver specific KO model, and a 

rescue experiment with Plin2 Adenovirus to determine if the proteomic profile returns to 

the WT CLD proteome.  
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