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ABSTRACT

Enrichment analysis is the primary method biologists use for the initial interpretation

of genome-scale experimental data. With the hallmark of improved explanatory power

through complexity reduction, knowledge base-driven enrichment analysis is used ubiqui-

tously in the biomedical community to lend insight into underlying biological mechanisms

at play in complex biological phenomena. By combining statistical reasoning approaches

common to biology with the powerful deductive reasoning capabilities offered by descrip-

tion logics, the work presented in this thesis significantly advances the state-of-the-art of

knowledge based-enrichment analysis. We present several methodologies that, when used

collectively, vastly increase available gene annotations in both number and type. Using the

maturing community of biomedical ontologies, we demonstrate that with careful consider-

ation it is possible to integrate a large portion of the Open Biomedical Ontologies while

maintaining logical soundness. Our method takes advantage of available GO and phenotype

ontology annotations and uses the principle of deductive entailment to mine this integrated

set of ontologies to produce novel, high quality annotations to a variety of biomedical on-

tologies previously not annotated to genes. Taking advantage once again of the logical

definitions integrating the ontologies, our method improves on the typically returned lists

of enriched concepts provided by many tools by enabling the return of enriched modules

of biology. By providing interconnected modules of enriched concepts, the researcher is

afforded larger pieces of biology with which to incorporate into their hypotheses. Novel

gene annotations are validated quantitatively through an intrinsic analysis that evaluates

entailed gene annotations against experimentally verified protein localization data as well

as curated gene-chemical interactions. Overall performance is gauged extrinsically through

retrospective analyses of previously published research as well as the analysis of a number

of targeted gene lists. Our methodology overcomes clear limitations of previous approaches
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and is complementary to many of the recent enrichment efforts that have begun to integrate

disparate data types. Our method responds to past calls for enrichment methodologies to

incorporate more than just the Gene Ontology, and in doing so we have addressed a number

of the current challenges that face the field of contemporary enrichment analysis. Given

that integration of ontologies by the biomedical community through the use of logical def-

initions is an ongoing process, the utility of our methodology will only improve over time

thus enabling a more comprehensive, intuitive, and adaptable resource to help biologists

better interpret and understand their genome-scale experimental data.

The form and content of this abstract are approved. I recommend its publication.

Approved: Lawrence E. Hunter
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CHAPTER I

INTRODUCTION

Enrichment analysis is the primary method biologists use for the initial interpreta-

tion of genome-scale experimental data (Tipney and Hunter, 2010; Khatri et al., 2012).

With the hallmark of improved explanatory power through complexity reduction, knowl-

edge base-driven enrichment analysis affords biologists insight into the underlying biological

mechanisms at play in the phenomenon under study (Khatri et al., 2012). Using known

associations of genomic context (e.g. genes, proteins, etc.) with biological concepts (e.g.

biological processes, cellular components, pathways, diseases, etc.), enrichment analysis de-

livers statistically overrepresented (enriched) biological concepts deemed pertinent to the

phenomenon under study. Despite its widespread use and importance, however, the power

of enrichment analysis is restricted by a limited supply of available links from genomic con-

text to biological concepts. This limitation is compounded by the tendency of enrichment

tools to return enriched terms to the researcher in disjoint lists, putting the entire burden

of integrating those enriched concepts into a compelling hypothesis on the researcher. This

thesis introduces several novel methods that, collectively, significantly advance the state of

the art in knowledge based-enrichment analysis. Not only does the proposed methodology

increase the number of linkages from genomic contexts to the most predominantly used con-

cepts for enrichment analysis (Gene Ontology concepts), but it also increases the variety of

concept types available for enrichment analysis; and does so in a way that makes use of data

that already exists while simultaneously guaranteeing high quality linkages through the use

of deductive logic. By basing this methodology on the community of existing biomedical

ontologies and demonstrating how they can be integrated in a logically sound manner, the

method is ensured of returning modules of enriched concepts that are inherently inter-linked

thus giving the researcher a head start in the task of hypothesis generation.

The basis for the proposed methodology is the maturing collection of biomedical ontolo-

gies collectively developed by the biomedical community. Ontologies, classically described

as a “specification of a conceptualization” (Gruber, 1993), facilitate formal representation

of the concepts, properties of concepts, and relationships between concepts, usually for a
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specific domain (Chandrasekaran et al., 1999). Concepts in an ontology have a unique iden-

tifier, label, definition and potentially other properties and are structured by a hierarchical

backbone of child-parent relationships. For example, the Cell Ontology (CL) structures the

concept dopaminergic neuron [CL:0000700] as the child of neuron [CL:0000540], which is

itself a child of neural cell [CL:0002319], which is a child of the ontology root concept cell

[CL:0000000]1. This child-parent hierarchy is required to follow the true path rule which

states that any path from a concept to the root of an ontology must be true or the ontol-

ogy is in need of restructuring (Gene Ontology Consortium, 2001). Concepts in biomedical

ontologies tend to represent classes as opposed to instances of things (i.e. the concept neu-

ron [CL:0000540] refers to neurons in general and not a particular neuron in some specific

brain) and are permitted multiple parents. For example neuron [CL:0000540] is also a child

of electrically signaling cell [CL:0000404]. In recent years a concerted effort has been made

to supplement the hierarchical structure of biomedical ontologies with non-child-parent re-

lationships (Mungall et al., 2011). For example, the Cell Ontology also states that neuron

[CL:0000540] develops from neuroblast [CL:0000031] and that it is capable of transmis-

sion of nerve impulse [GO:0019226]. Such supplemental relations result in the definition of

ontology terms with respect to other ontology terms. These logical definitions (also known

as ontology cross-products) have resulted in an increase in integration between ontologies

and are a key component to the enrichment analysis methodology proposed by this thesis.

Biomedical ontologies exist for a wide range of conceptual types ranging from cells to

anatomy to phenotypes to chemicals and beyond (Smith et al., 2007; Rubin et al., 2006).

They have proven to be not only beneficial, but essential in the organization and use of

biomedical knowledge and are used in a wide range of tasks spanning hypothesis genera-

tion (Subramanian et al., 2005), semantic indexing (Bettembourg et al., 2012; Doms and

Schroeder, 2005; Müller et al., 2004; Vanteru et al., 2008), natural language processing

(Hunter et al., 2008), clinical decision support (Samwald et al., 2015), and text annotation

efforts (Bada et al., 2012). The acceptance and use of ontologies within the biomedical

1Note on typography: Throughout this thesis, when an ontology concept is explicitly mentioned in the
text its label will be italicized and its unique identifier will be included in square brackets, e.g. neuron
[CL:0000540]. Relations defined and used by ontologies will be highlighted using typewriter font with
underscores replacing spaces, e.g. develops from.
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community began with the development of the Gene Ontology (GO) in the late 1990s. The

GO was born from a practical need to synchronize the functional genomic annotation being

conducted by several independent model organism databases (Ashburner et al., 2000). Use

of the GO as a common vocabulary enabled interoperability amongst the different model

organism databases and facilitated robust cross-species transfer of functional annotation

via homology. Not only does the Gene Ontology Consortium maintain and develop the

GO, which consists of three separate ontologies representing biological processes (GO BP),

cellular components (GO CC), and molecular functions (GO MF), it also maintains sets

of curated linkages from genes/proteins to GO concepts that have been cataloged by the

model organism databases. These linkages, commonly referred to as “gene annotations”2

because they annotate a particular gene with a particular biological concept. There exist

annotations of genes to non-ontological concepts. Examples include annotations to path-

ways (Zhang et al., 2005; Huang et al., 2009b; Glaab et al., 2012; Chen et al., 2013), diseases

(Zhang et al., 2005; Chen et al., 2013), drugs (Zhang et al., 2005; Chen et al., 2013), mi-

croRNAs (Zhang et al., 2005; Chen et al., 2013), etc. While valuable in their own right,

these types of annotations out of the scope of this thesis as our focus is on annotations to

ontology concepts. It is the presence of these kinds of gene annotations however, includ-

ing annotations to ontology concepts, on which knowledge based-enrichment analysis was

founded.

The critical innovative aspect of this thesis is the generation of high quality, novel gene

annotations for a variety of conceptual types not previously directly annotated to genes.

Not only does the proposed methodology support the generation of gene annotations to new

conceptual types, but it also produces novel annotations to previously used concepts, e.g.

GO concepts. It is this increase in both the number and available types of gene annotations

that significantly advances the state-of-the-art in knowledge based-enrichment analysis. Re-

cent efforts to integrate biomedical ontologies using logical definitions are the basis of the

proposed methodology (Mungall et al., 2011). These efforts have led to the continued inte-

gration of a core set of biomedical ontologies. Starting from available GO and phenotype

2Unless specifically mentioned, any use of the word “annotation” in this thesis refers to gene annotations,
i.e. linkages from genes or proteins to ontology concepts.
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gene annotations, the proposed methodology computes novel gene annotations by leverag-

ing the principle of deductive entailment which asks the question: if a gene is annotated to

concept A, and concept A is logically defined through some relation R to concept B, then

would an annotation from the gene to concept B via R always be true? By asking this

question and deductively traversing the logical definitions emanating from GO and phe-

notype concepts that are already referenced by gene annotations, novel gene annotations

are discovered. For example, since the protein HTRA2 [UniProt:O43464] is annotated to

the GO biological process forebrain development [GO:0030900], and forebrain development

[GO:0030900] is logically defined with respect to forebrain [UBERON:0001890] via the

results in development of [RO:0002296] relation, the proposed methodology defines a

novel gene annotation from HTRA2 [UniProt:O43464] to forebrain [UBERON:0001890] via

the principle of deductive entailment.

Computing a large enough number of ontological entailments to enable enrichment re-

quires the merging of a substantial set of disparate ontologies. Paradoxically, the recent

ontology integration efforts sometimes result in incompatibilities among some of the ontolo-

gies (Hoehndorf et al., 2011b). These incompatibilities often manifest as logical inconsis-

tencies, e.g. if a concept is mistakenly defined as the child of two parents who are declared

to be disjoint concepts, and can indicate errors in knowledge representation or differences

in representation philosophy. It is important to resolve these inconsistencies to ensure the

deductive entailment chains are valid. Adding to the significance of the methodology pro-

posed in this thesis is the successful integration of the majority and most prominent of the

Open Biomedical Ontologies (OBOs) (Smith et al., 2007) into a logically consistent whole.

We report on the etiology of observed inconsistencies and the steps required to resolve

them. Our analysis includes a set of ontology development guidelines that, if adopted by

the ontology development community, would foster a more cohesive development environ-

ment and limit such inconsistencies in the future. This analysis and a detailed account of

the ontology integration procedure are the subject of Chapter III of this thesis. It is this

integration into a singular ontology that enables novel gene annotation discovery through

deductive entailment.
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Our approach is first to combine many of the aspects of previous uses of logical defi-

nitions with an innovative use of deductive logic to generate novel gene annotations using

only the ontologies and their available logical definitions. Our approach is not the first to

incorporate ontologies other than the GO for enrichment purposes (Hoehndorf et al., 2014),

nor is it the first to make extensive use of logical definitions (Hoehndorf et al., 2012), or the

first to use existing gene annotations to ontologies to bootstrap novel annotations (LePendu

et al., 2011), as will be discussed in detail in Chapter IV. Our approach is the first however

to explicitly target the generation of gene annotations without manual intervention, and

it is these gene annotations that drive our enhancement of knowledge based-enrichment

analysis.

Knowledge based-enrichment analysis, in general, involves the statistical comparison of

gene annotations for a gene set of interest (e.g. the set of differentially expressed genes as

determined via microarray) to gene annotations for some background population of genes

(e.g. the set of all genes represented on the microarray). By comparing the distribution

of ontology concepts associated with the gene set of interest to a background distribution,

enrichment analysis identifies concepts associated with the genes of interest that are sta-

tistically over- or under-represented (Huang et al., 2009b). Concepts determined to be

over-represented are said to be “enriched” within the gene set of interest and are implicated

as playing a role in the underlying mechanism of the phenomenon under study (Tipney

and Hunter, 2010). According to recent reviews, there are three generations of enrichment

analysis algorithms available for use today (Huang et al., 2009a; Khatri et al., 2012). The

first generation of enrichment analysis, over-representation analysis (ORA), will also serve

as the primary mode of demonstration for the methodology proposed in this thesis. Given a

user-specified gene list of interest, ORA (also known as singular enrichment analysis (SEA)

by Huang et al. (2009a)) returns to the user a list of biological concepts represented in the

gene list of interest that appear more often than expected by chance (Leong and Kipling,

2009). We focus on the ORA methodology as it is the most traditional of the methods

and there are available tools that are easily co-opted to use the novel gene annotations we

produce. Although our focus is on the ORA methodology, the enhancement to enrichment
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analysis proposed in this thesis has the potential to impact all generations of enrichment

analysis algorithms and we discuss these possibilities in greater detail in Chapter IV.

Independent of the type of enrichment analysis algorithm used, the proposed methodol-

ogy addresses many of the outstanding challenges facing contemporary enrichment analysis.

The methodology described herein addresses, to some degree, three of the six methodolog-

ical and annotation challenges in the field of enrichment analysis identified in the work

of Khatri et al. (2012), including the incompleteness and inaccuracy of available gene an-

notations, missing cell-specific contextual information, and the ability to model effects of

external stimuli. Perhaps the most significant limitation of enrichment analysis method-

ologies is the lack of robust benchmarking to allow for algorithm tuning and evaluation.

Huang et al. (2009a) made the call for a standard evaluation procedure in 2009, but to our

knowledge the community still lacks such a resource.

Evaluation of the methodology proposed in this thesis will take a hybrid approach.

While recognizing that there is no standard benchmarking data set for enrichment anal-

ysis, we will make use of targeted gene lists that have also been used previously to eval-

uate other enrichment methodologies (Wittkop et al., 2013). These standard evaluations

are augmented with more quantitative validation of our novel gene annotations to cellular

components, tissues, and anatomical regions through intrinsic evaluations against experi-

mentally verified protein expression. Novel gene annotations to chemicals will be validated

using curated gene-chemical interaction data.

The methodology presented in this thesis represents an advancement in the state-of-

the-art of knowledge based-enrichment analysis. We present several methodologies that,

when used collectively, vastly increase available gene annotations in both number and type.

Using the maturing community of biomedical ontologies, we demonstrate that with care-

ful consideration it is possible to integrate a large portion of the OBOs while maintaining

logical soundness. Our method takes advantage of available GO and phenotype ontology

annotations and uses the principle of deductive entailment to mine the integrated OBOs to

produce novel, high quality annotations to a variety of biomedical ontologies. Taking advan-

tage once again of the logical definitions integrating the ontologies, our method improves on

the typically returned lists of enriched concepts provided by many tools by enabling the re-
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turn of enriched modules of concepts. By providing modules of enriched concepts we provide

the researcher with larger pieces of biology with which to incorporate into their hypotheses.

Novel gene annotations are validated quantitatively by comparing against experimentally

verified protein expression as well as curated gene-chemical interactions. Overall perfor-

mance is gauged through retrospective analyses of previously published research as well as

the analysis of a number of targeted gene lists. Our methodology overcomes clear limita-

tions of previous approaches and is complementary to many of the recent enrichment efforts

that have begun to integrate disparate data types. Our method responds to the call by

Huang et al. (2009a) that enrichment methodologies should strive to incorporate more than

just the Gene Ontology, and in doing so we have addressed a number of challenges that

face the current field of enrichment analysis (Khatri et al., 2012). Given that integration

of ontologies by the biomedical community through the use of logical definitions is an on-

going process, the utility of our methodology will only improve over time thus enabling a

more comprehensive, intuitive, and adaptable resource to help biologists better interpret

and understand their genome-scale experimental data.

1.1 Chapter II: Evaluating the state of biomedical annotation

Annotation of genes and gene products to ontology terms is a manually intensive effort

and costly both financially and in terms of time. The value of these annotations is undeni-

able, and the methods discussed in later chapters depend heavily on continued generation

of these annotations as well as continued integration of the ontologies. Chapter II pro-

poses the use of a software engineering metric for evaluating the process of knowledge base

construction and the completeness of the resulting knowledge base. This metric focuses on

quantifying the information missing from, as opposed to quantifying the information within,

a knowledge base and we apply it to several different gene annotation types, including Gene

Ontology (GO) annotations. The metric is also applied to analyze the development of logi-

cal definitions within the GO. The metric suggests that current manual curation processes

are unable to keep pace with the rate at which knowledge of genes and gene products is

being discovered. This inability to keep pace highlights the need to develop robust methods

for augmenting manual annotation efforts, and underscores the methodology proposed in
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Chapter IV which leverages existing GO and phenotype annotations to generate novel gene

annotations to a wide variety of ontologies.

1.2 Chapter III: Assessing the synergy of the Open Biomedical Ontologies

The Open Biomedical Ontologies are a collection of 100+ ontologies in the public do-

main developed under the guiding principles of orthogonality, interoperability, and use of a

common syntax, among others. Despite recent efforts resulting in the integration of a core

set of the OBOs they are largely used in isolation, save a few exceptions involving integra-

tion of the phenotype ontologies. Chapter III is an in-depth assessment of the synergy of

the OBOs. We evaluate the interoperability of the OBOs in a succession of experiments

that works towards creating an integrated set of OBOs that is as inclusive as possible while

remaining logically sound. Using a set of 133 ontology files including all OBOs and several

resources containing logical definitions of OBO concepts we evaluate each ontology file on

an individual basis to gauge ontology inter-connectedness (many of the 133 files contain

subsets of multiple ontologies) and internal consistency using multiple OWL reasoners. In

an analysis unique to this thesis, all pairs of ontology files are evaluated for consistency using

multiple OWL reasoners. The etiology of ontology inconsistencies investigated and general

guidelines to avoid such inconsistencies in the future are proposed. We demonstrate that

by carefully selecting ontologies and making some systematic changes and an integrated

set of OBOs that is logically sound can be constructed. The result is an aggregated, inte-

grated ontology consisting of the majority of the OBOs. The work in this chapter represents

the most comprehensive analysis of OBO topology to date, and the integrated ontology is

the basis for the state of the art enhancement to knowledge based-enrichment described in

Chapter IV.

1.3 Chapter IV: Logical entailment of gene annotations for biomedical

discovery

Chapter IV introduces a significant advancement in the state of the art of knowledge

based-enrichment analysis. Building on the comprehensive analysis of Open Biomedical

Ontology (OBO) topology presented in Chapter III, the work in this chapter combines the

powerful deductive reasoning capabilities of description logics with a probabilistic reasoning
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method that is used ubiquitously throughout biomedicine. At the core of this advancement

in knowledge based-enrichment analysis is a novel methodology that enables the generation

of high quality, novel gene annotations to a wide variety of ontologies to which genes have

not previously been connected. Using available gene annotations to the GO and phenotype

ontologies as seeds, the methodology proposed in this chapter leverages interconnections

among ontology concepts and the principle of deductive entailment to create novel associa-

tions between genes and ontology concepts. Not only are novel gene annotations generated

to previously unannotated ontologies, but novel annotations to previously annotated on-

tologies, e.g. the GO and phenotype ontologies, are also derived. Taking advantage once

again of the logical definitions integrating the ontologies, our method improves on the typ-

ically returned lists of enriched concepts provided by many tools by enabling the return of

enriched modules of biology. By providing modules of enriched concepts we provide the

researcher with larger pieces of biology with which to incorporate into their hypotheses.

Novel gene annotations are validated quantitatively by comparing against experimentally

verified protein expression as well as curated gene-chemical interactions. Overall perfor-

mance is gauged through retrospective analyses of previously published research as well as

the analysis of a number of targeted gene lists. Our methodology overcomes clear limita-

tions of previous approaches and is complementary to many of the recent enrichment efforts

that have begun to integrate disparate data types. Our method responds to the call by

Huang et al. (2009a) that enrichment methodologies should strive to incorporate more than

just the Gene Ontology, and in doing so we have addressed a number of challenges that

face the current field of enrichment analysis (Khatri et al., 2012). Given that integration

of ontologies by the biomedical community through the use of logical definitions is an on-

going process, the utility of our methodology will only improve over time thus enabling a

more comprehensive, intuitive, and adaptable resource to help biologists better interpret

and understand their genome-scale experimental data.

1.4 Chapter V: Contributions and future directions

Each component of this thesis delivers novel and innovative solutions to various prob-

lems, and in this chapter we describe individual contributions made by each component and
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the contribution of this work in its entirety to the field of computational biology. We also

discuss the merits and weaknesses of the use of description logics in the field of biomedi-

cal ontology, and explore potential alternatives for representing knowledge that cannot be

represented using description logics.
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CHAPTER II

EVALUATING THE STATE OF BIOMEDICAL ANNOTATION3

The confluence of a stable, growing accumulation of gene annotations to ontology con-

cepts and a maturing collection of biomedical ontologies that is becoming increasingly in-

tegrated has set the stage for the significant enhancement to knowledge based-enrichment

analysis proposed in this thesis. Development of these inter-related sources of biomedical

knowledge has been the focus of countless hours of thought and they remain the driv-

ing force behind many contemporary bioinformatics applications. Although continually

growing, these knowledge resources remain incomplete. Blake et al. (2013) notes the ex-

pected increase in the number and rate of manually curated annotations over the next few

years and discusses techniques being employed to help increase annotation throughput, e.g.

the recent use of evolutionary information to enable manual review of inferred functional

annotation of protein families (Gaudet et al., 2011). Blake et al. (2013) also notes the

completion of logical definitions of Gene Ontology (GO) concepts with respect to concepts

from the Chemical Entities of Biological Interest (CHEBI) ontology for a number of GO

sub-hierarchies, including metabolism, transport, response to stimulus, and homeostasis,

while simultaneously noting the ongoing efforts to compose validated logical definitions us-

ing other ontologies, e.g. the Cell Ontology (Meehan et al., 2011), Plant Anatomy Ontology

(Walls et al., 2012), and UBERON anatomy ontology (Mungall et al., 2012b). These con-

tinuing efforts to increase the coverage and depth of gene annotation, as well as extend and

integrate biomedical ontologies through logical definitions will have a direct benefit to the

knowledge based-enrichment methodology proposed in this thesis. Tracking the develop-

ment of these resources could provide feedback and guidance for their construction as well

as insight into their use, e.g. by highlighting areas of the genome that are insufficiently

annotated or regions of ontologies that are completely integrated. This chapter proposes

the use of a software engineering metric for tracking the development and completeness of

3Portions of this chapter have been reproduced under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) from Baumgartner, Cohen
et al. Manual curation is not sufficient for annotation of genomic databases. Bioinformatics. 2007 Jul 1;
23(13): i41-i48.
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these resources and others. Analysis of several sources of gene annotations concludes that

current manual annotation efforts are insufficient to keep pace with biological discovery,

thus highlighting the need for new, robust methodologies capable of generating novel gene

annotations, such as the methodology proposed in this thesis.

Knowledge base construction has been an area of intense activity and great importance

in the growth of computational biology. However, there is little or no history of work

on the subject of evaluation of knowledge bases, either with respect to their contents or

with respect to the processes by which they are constructed. This chapter proposes the

application of a metric from software engineering known as the found/fixed graph to the

problem of evaluating the processes by which genomic knowledge bases are built, as well as

the completeness of their contents.

Well-understood patterns of change in the found/fixed graph are found to occur in two

large publicly available knowledge bases. These patterns suggest that the current manual

curation processes will take far too long to complete the annotations of even just the most

important model organisms, and that at their current rate of production, they will never

be sufficient for completing the annotation of all currently available proteomes.

2.1 Introduction

This chapter proposes a metric for evaluating the process of knowledge base construc-

tion and the completeness of the resulting knowledge base. In particular, this metric focuses

on quantifying information missing from a knowledge base. It does not address the issue

of quality of the knowledge base contents. We apply the metric to four different data

types—Gene Ontology (GO) annotations, function comments, GeneRIFs, and GO logi-

cal definitions—in three large, publicly available, manually curated biomedical knowledge

bases—Swiss-Prot (Boeckmann et al., 2003), Entrez Gene (Maglott et al., 2005), the Gene

Ontology (Ashburner et al., 2000). The metric suggests that the current manual curation

processes will take far too long to complete the annotations of even just the most important

model organisms, and that at their current rate of production, they will never be sufficient

for completing the annotation of all currently available proteomes.

Although knowledge-based systems have figured heavily in the history of artificial in-

telligence and in modern large-scale industrial software systems, and there is an extensive
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body of work on evaluating knowledge-based systems, there is little or no history of work

on the subject of evaluating knowledge bases themselves. (Note that the problem of eval-

uating a knowledge base is very different from the problem of evaluating a terminological

resource, such as the UMLS—this problem has been studied extensively (e.g. Cimino et al.

(2003), Ceusters et al. (2004), and Köhler et al. (2006), among others). Whether we look

at work from the academic artificial intelligence community (e.g. Cohen (1995)) or from the

industrial software engineering community (e.g. Myers (1979), Beizer (1990), Beizer (1995),

Kaner et al. (1999), Kaner et al. (2001)), we find no discussion of the topic of evaluating

the contents of knowledge bases. This is despite the fact that they form significant parts

of the architecture of industrially important systems in application areas like mapping (e.g.

MapQuest.com) and retail search (e.g. LocalMatters.com). As Groot et al. (2003) recently

put it, quoting one of their anonymous reviewers: “. . . for a long time, the knowledge ac-

quisition community has decried the lack of good evaluation metrics to measure the quality

of the knowledge acquisition process and of the resulting knowledge bases.”

This paper addresses both of these issues. We evaluate the hypothesis that a software

testing metric known as the “found/fixed graph” or the “open/closed graph” is an effective

and revealing metric for evaluating both the process of knowledge base construction, and the

completeness of the knowledge base that results from that construction effort. (The quality

of the contents, as opposed to the quality of the process of knowledge base construction, is

a separate issue, and we do not address it experimentally in this paper; see Section 2.5.2 for

a discussion of potential future work on this problem.) Knowledge base construction has

been a significant focus of the field since the earliest days of computational biology (see e.g.

Schmeltzer et al. (1993) from the first ISMB meeting). It continues to be an important area

of research, with many active projects, e.g. PharmGKB (Hewett et al., 2002), MuteXt (Horn

et al., 2004), RiboWeb (Chen et al., 1997), Biognosticopoeia (Acquaah-Mensah and Hunter,

2002), and LSAT (Shah et al., 2005), as well as a number of multi-year, multi-national

projects of unquestionable scientific significance. In the current era of scarce resources for

bioscience research and pressing demands for larger and larger knowledge bases, this work

has the potential to provide much-needed feedback, guidance, and monitoring capabilities

to a previously difficult-to-evaluate enterprise.
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2.2 Approach

The found/fixed or open/closed graph (Black, 1999) is used to evaluate an organization’s

software development process, and/or to evaluate the readiness of a project for release. The

metric is based on tracking both cumulative counts of unique bugs that have been discovered

(“found” bugs or “open” bug reports) and resolved (“fixed” bugs or “closed” bug reports)

over time. The shape of the resulting curves can be used to assess the engineering process,

since good and bad processes, or software products that are and are not ready for release,

have different characteristic curves (see Figure 2.1). In the scenario where the process is not

leading to a releasable software product (right side of Figure 2.1), growth in the cumulative

counts of found and fixed bugs do not asymptote, and there is always a gap between them.

In contrast, in the scenario where the process will eventually terminate—i.e., produce a

releasable product (left side of Figure 2.1)—the two lines asymptote and converge, so that

the gap between them narrows over time. Other aspects of the development process can

be reflected in the graph, as well. For example, poor management of the process shows up

as lack of correlation between project milestones and inflection points—the expectation is

that inflection points will correlate with project milestones.

Although it was originally conceived for evaluating software development processes, we

propose that the metric can be applied to the evaluation of knowledge base construction

processes and knowledge base completeness, as well. We do this by changing what is

reflected on the y axis. In the examples that follow, we use the y axis to chart Swiss-Prot

entries that lack function comment annotations and GO concept assignments, Entrez Gene

entries that lack GeneRIFs, and Gene Ontology concepts that lack logical definitions with

respect to other ontology concepts. The model is equally applicable to other biological

entities annotated with arbitrary types of data. The metric can be made more general or

more specific by changing the granularity of the unit on the y axis—for example, it can

reflect genes that lack any Gene Ontology annotation, or it can be made more specific by

counting genes that lack any Gene Ontology annotation more specific than biological process

[GO:0008150]. An important point to note is that unlike other attempts to characterize

the coverage of a knowledge base, this metric is based not on counting the things that are

in the knowledge base, but on counting the things that are missing from it.
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2.3 Methods

To evaluate the applicability of the metric to knowledge base construction, we modeled

gaps in the contents of three genomic resources as they changed over time. Specifically, we

examined the Swiss-Prot and Entrez Gene databases, as well as the Gene Ontology.

In the case of Swiss-Prot, we looked for missing data points in two types of annota-

tions: Gene Ontology concept assignments, and populated function comment fields. Gene

Ontology annotation is well-described elsewhere (Camon, 2004); the Swiss-Prot function

comment field contains unstructured, free-text information about the function of a gene

product. For example, the function field for Swiss-Prot entry Q99728 (human BARD1)

contains the text Implicated in BRCA1-mediated tumor suppression. May, as part of the

RNA polymerase-2 holoenzyme, function in the cellular response to DNA damage. In vitro,

inhibits pre-mRNA 3’ cleavage. In the case of Entrez Gene, we examined annotation with

GeneRIFs. GeneRIFs are short, unstructured, free-text information about the function of

a gene. GeneRIFs are interesting in and of themselves; they have been found to be useful

inputs to a microarray data analysis tool that incorporates text mining results (the MI-

LANO system, described in Rubinstein and Simon (2005)) and have been the subject of

considerable attention in the biomedical text mining community in recent years (Mitchell

et al., 2003; Hersh and Bhupatiraju, 2003; Lu et al., 2006, 2007). Logical definitions refer to

ontology terms that are constructed compositionally from other ontology terms (Mungall

et al., 2011). These terms are in contrast to ontology terms whose semantics reside only in

free text definition fields. Logical definitions increase the expressiveness of an ontology by

enabling complex interactions between ontologies to be explicitly modeled, and thus com-

putable. Logical definitions exist primarily in the GO and in some phenotype ontologies,

though the absence of historical data for the phenotype ontologies will preclude their use in

the analyses reported here. Between them, these varying annotation types and databases

allow us to sample a range of data types originating from at least four different projects.

They may not generalize to all data types, but do at least cover a number of the possibilities.

Crucial to the construction of any found/fixed graph is the collection of temporal data

for the data types of interest. To obtain time-stamped data, we did the following. For the

case of GeneRIF annotation logging, the creation date for each GeneRIF is cataloged in files
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distributed by Entrez Gene. ASN.1 compressed files cataloging human (Homo sapiens.gz)

and mouse (Mus musculus.gz) genes were downloaded4 and converted into XML using

NCBI’s gene2xml program5. A parser was constructed for extracting the creation dates

for gene records and for any associated GeneRIFs. Obtaining time stamps for the annota-

tion of GO terms and function comments to Swiss-Prot records was slightly more involved.

Individual Swiss-Prot records log the date that they were integrated into the database.

However, their annotations are not directly associated with a creation date, so creation

dates were inferred by comparing archived versions of the database. Archived versions 9-

51 of the Swiss-Prot database were downloaded6,7. A parser was developed for extracting

the protein records from each release, along with any accompanying GO annotations and

function comments. The archived releases were processed chronologically, and time stamps

for the annotations were assigned based on the version release date in which they first ap-

peared. Species-specific data were generated using the NCBI taxonomy codes linked with

each Swiss-Prot entry. A Subversion repository8 archiving versions of the Gene Ontology

with logical definitions (go-plus.owl) file makes possible a found/fixed analysis of the GO

with respect to the assignment of logical definitions to its terms. Versions for the go-plus.owl

file are available as far back as March of 2013. Archived versions of go-plus.owl were ex-

tracted from the GO SVN repository for each month between March 2013 and May 2015.

Each version was loaded into an independent AllegroGraph v4.149 repository, and SPARQL

queries were used to process the archives chronologically.

In Figures 2.2 through 2.7, we graph time on the x axis and the count of proteins (for

Swiss-Prot) or genes (for Entrez Gene) on the y axis. The light line in each graph shows the

cumulative count of proteins or genes that were found to be lacking annotations of the data

type in question at that time, while the dark line shows the cumulative count of proteins

or genes that have had annotations of that data type added to them.

4ftp://ftp.ncbi.nih.gov/gene/ [Accessed January 2007]
5ftp://ftp.ncbi.nih.gov/asn1-converters/ [Accessed January 2007]
6ftp://ftp.expasy.org/databases/swiss-prot/sw old releases/ [Accessed January 2007]
7ftp://ftp.expasy.org/databases/uniprot/previous major releases/ [Accessed January 2007]
8http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/ontology/extensions [Accessed July 2015]
9AllegroGraph – http://franz.com/agraph/allegrograph/ [Accessed July 2015]
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Figure 2.1: Hypothetical found/fixed graphs depicting good (left) and non-terminating
(right) development processes.

Figure 2.2: Found/fixed graph applied to the annotation of Drosophila proteins in Swiss-
Prot with Gene Ontology concepts over time.

We then fit a linear, an exponential, and a logarithmic function to each of the lines

charting added annotations, and calculated the correlation between the functions and the

actual data as of January 2007. We did not test the differences between the correlations

for statistical significance. For each function, we determined the date at which the added-

annotations line would cross the missing-annotations line—that is, the date at which full

coverage of the data type would be achieved—making the very lenient assumption that no

new proteins or genes would be added to the database after January 2007.

It should be noted that the definition of “full coverage” carries its own ambiguities. The

fact that a biological entity (e.g. a gene or protein) has a single annotation should not imply

that the overall annotation for this entity is complete. The existence of a single annotation

for a given entity, however, can usefully serve as a lower bound. For the purposes of this

study, we define full coverage of an entity type (e.g. genes in Entrez Gene) by a data type

(e.g. GeneRIFs) simply as having at least one annotation per entity, unless otherwise noted.

These data are only a proxy for the kind of facts that the found/fixed graph is intended

to track. A weakness of these data for evaluating the model comes from the fact that
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Figure 2.3: Found/fixed graph applied to the annotation of mouse proteins in Swiss-Prot
with Gene Ontology concepts over time.

Figure 2.4: Found/fixed graph applied to the annotation of all proteins in Swiss-Prot
with Function comment fields over time.

unlike in the case of a reported bug in a software development project, the knowledge

base builders cannot be assumed to be aiming to address these specific missing pieces of

information. (For example, at any given time, the builders of a knowledge base may be

more concerned with adding additional genes to their knowledge base than with increasing

the annotations associated with the genes that are already present in the knowledge base.)

A further difference between our use of the found/fixed graph and the original use is that

fixing bugs in a software project can result in the unintended generation of new bugs, but

the addition of annotations to a genomic database monotonically decreases the number of

unannotated genes (assuming no new genes are added)10; this is a strength of the approach.

A further difference is that annotations of biological entities can become outdated, whether

through deprecation of concepts or due to an actual change in our understanding of the

facts—Giuse et al. (1995) found that 16% of entities in a knowledge base of disease profiles

required some sort of modification after a 10-year period from the original creation of the

knowledge base. Despite these differences, it will be seen that the knowledge bases under

10We thank one of our anonymous reviewers for this insight.
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Figure 2.5: GO annotations for all proteins in Swiss-Prot while varying the threshold
for the number of GO annotations. Three different threshold values are used (>0, >1, and
>9), representing proteins with at least one, at least two, and at least ten GO annotations,
respectively.

Figure 2.6: GeneRIF assignment to human genes in Entrez Gene over time. For simplic-
ity, each Entrez Gene record is counted when first created, and discontinued records were
ignored.

Figure 2.7: GeneRIF assignment to mouse genes in Entrez Gene over time. For simplic-
ity, each Entrez Gene record is counted when first created, and discontinued records were
ignored.

examination demonstrate all of the characteristics of typical software construction projects.

We return to the weaknesses of the model in Section 2.5.

Note that an alternative approach to evaluating a knowledge base would be extrinsically—

that is, by using it in a knowledge-based system, and observing how it affects system per-

formance. However, as Groot et al. (2003) suggest, this methodology is inherently flawed:
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Figure 2.8: Found/fixed graph applied to the representation of GO biological process
terms using logical definitions over time.

Figure 2.9: Found/fixed graph applied to the representation of GO cellular component
terms using logical definitions over time.

Figure 2.10: Found/fixed graph applied to the representation of GO molecular function
terms using logical definitions over time.

there is a confound between the variable of knowledge base completeness and the variable of

the knowledge-based system’s robustness in the face of incomplete (or low-quality) knowl-
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Figure 2.11: GO annotation of Drosophila proteins in Swiss-Prot over time with linear,
exponential, and logarithmic functions fitted to the gained-annotations line.

Figure 2.12: GO annotation of mouse proteins in Swiss-Prot over time with functions
fitted to the gained-annotations line.

edge (2005). An advantage of the found/fixed graph is that it allows for evaluation of the

completeness of the knowledge base in isolation from any system by which it might be used.

2.4 Discussion

Particular development process patterns show characteristic shapes on a found/fixed

graph. All of the characteristic shapes were attested amongst the various data types that

we examined.

2.4.1 Interpreting converging, asymptoting lines

The left side of Figure 2.1 shows the best-case scenario: as missing information is

identified (or, in the graph, as bugs are found), it is addressed, and as the knowledge base

evolves, the rate at which new missing information is found approaches zero, while the gap

between the cumulative “found” missing information and the cumulative “fixed” problems

narrows. (If this were a software product, we would probably judge it to be ready for

release at this point.) We can observe this pattern in Figure 2.2, which graphs Swiss-Prot
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Figure 2.13: Function comments for all proteins in Swiss-Prot over time with functions
fitted to the gained-annotations line.

Figure 2.14: GO annotation of all proteins in Swiss-Prot, with functions fitted to the
gained-annotations line.

annotation of Drosophila proteins with Gene Ontology concepts. Few new unannotated

genes are being added, and the majority of the previously unannotated ones have been

addressed.

2.4.2 Non-terminating processes

The right side of Figure 2.1 shows the pattern that a software engineer would term “the

nightmare of endless bug discovery” (Black (1999):139): bugs (i.e., missing information)

are addressed as they are found, but as fast as problems are fixed, new ones appear. We

can observe a more extreme version of this pattern in Figure 2.3, which graphs Swiss-

Prot annotation of mouse proteins with Gene Ontology concepts. Missing data points are

continually being addressed, as can be observed by the constant climb in the “fixed” line.

However, unannotated proteins are continually being added, as can be observed by the

climb in the “found” line. There is no reason to expect that this project will be “bug”-free

any time soon.
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Figure 2.15: GeneRIF assignment to human genes in Entrez Gene over time, with func-
tions fitted to the gained-annotations line.

Figure 2.16: GeneRIF assignment to mouse genes in Entrez Gene over time, with functions
fitted to the gained-annotations line.

Figure 2.4, which graphs Swiss-Prot annotation of all proteins with function fields, por-

trays another pattern. A software engineer would term it “the nightmare of ignored bugs”

(Black (1999):139-140): not only has the total number of unannotated genes essentially

doubled, but there has been no significant progress in addressing the problems that are

already known to exist. A large gap has persisted between the “found” and “fixed” lines

for almost five years, and if the current knowledge base construction process is continued,

there is no reason to think that this gap will be closed any time soon.

Although Figures 2.6 and 2.7 appear to depict non-terminating processes similar to

Figures 2.3 and 2.4, these graphs can actually be interpreted differently given a greater

context. Figures 2.6 and 2.7 plot GeneRIF annotations of Entrez Gene entries. In both

Figure 2.6 and Figure 2.7, we are probably seeing situations where the total number of genes

in the database is as high as it is likely to get, based on our best estimates of the number

of genes in each species. If we project no further rise in the number of genes (or “found”
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Data type linear R2 exponential R2 logarithmic R2

Swiss-Prot Drosophila GO annotations 1.16 0.9570 0.55 0.9506 1.38 0.9572
Swiss-Prot Mouse GO annotations 3.06 0.8778 0.90 0.8436 3.75 0.8845
Swiss-Prot all species GO annotations 10.5 0.5746 3.05 0.7852 16.68 0.5530
Swiss-Prot all species function annotations 99.0 0.9807 9.12 0.8870 1.07 x 109 0.8207
Entrez Gene Human GeneRIFs 13.0 0.9788 0.003 0.7132 24.83 0.9784
Entrez Gene Mouse GeneRIFs 38.3 0.9777 0.40 0.7227 629,396 0.9221

Table 2.1: The number of years required to complete the annotation of each data type pre-
dicted by a linear, exponential, and logarithmic function fitted to each actual “annotations
gained” line to date, with R2 of the fit of the function to the actual growth curve. The
largest R2 value for a given data type is bolded. Differences in R2 values were not tested
for statistical significance.

bugs), then we can extrapolate how long it will take to complete annotation of these species

with GeneRIFs from the slopes of the two “fixed” lines. (We discuss the implications of

this point in the Conclusion.)

Similarly, Figures 2.8, 2.9, and 2.10 seem to paint a similarly bleak picture of non-

terminating processes when viewed outside of a greater context. One important point

involves the time range we are investigating. The archives for the go-plus.owl file are only

available as far back as early 2013. Much of the logical definition content in the GO was

a result of work by Mungall et al. (2011), and hence is not expected to show up in these

figures. Also, the biological process subdomain of the GO is more amenable to being defined

using logical definitions as evidenced by the work of Mungall et al. (2011), so it is no surprise

that there is little activity in the cellular component and molecular function figures. Recent

activity in the biological process figure might actually be a sign that logical definition efforts

are increasing.

2.4.3 Interpreting other characteristics of the found/fixed graph

The graphs in Figures 2.6 and 2.7 also have characteristics that we have not investigated

in the previous data. One principle of the found/fixed graph is that inflection points should

correspond to known events—for example, in the case of a software development project,

a sudden change in the number of fixed (or found) bugs might correspond to the release

of a new version of the product to the testing department. Inflection points that do not

correlate with known events are suggestive (although by no means diagnostic) of poorly

managed processes (Black 1998:138). In the cases illustrated here, inflection points in

the growth of the number of Entrez Gene entries do correlate with known events. The
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spike for mouse between 3/1/2006 and 4/1/2006 (Figure 2.7) corresponds to a reannotation

of one of the first mouse genomic assemblies. The inflection points for human between

11/1/2005 and 1/1/2006, and again later between 7/1/2006 and 9/1/2006 (Figure 2.6),

correlate with NCBI’s release of annotations on Builds 36.1 and 36.2 (Donna Maglott,

personal communication).

2.4.4 Granularity of annotations

In our previous attempts to evaluate a complex knowledge base (Acquaah-Mensah and

Hunter, 2002), a major stumbling block has been the issue of dealing with variability in

the granularity of the data present. For instance, we have attempted in other work to

assign different values to Gene Ontology annotations, depending on their depth in the

hierarchy. The results have been unsatisfying; weightings were complicated, and produced

a single number that was difficult to evaluate (or even to explain). Figure 2.5 shows how

the found/fixed graph allows us to combine annotations of different “values” in a single

graph—in this case, we differentiate proteins depending on the number of Gene Ontology

annotations with which they are associated, rather than counting simple presence versus

absence—while still keeping the graph easily interpretable.

2.4.5 Predicting how long it will take to complete annotation with a data type

Figures 2.11 through 2.16 display the linear, exponential, and logarithmic functions

fitted to the gained-annotations line for each graph. From the point at which each line

crosses the missing-annotations line, we predict the number of years that would be required

to achieve complete coverage for that annotation type in the given database if that function

accurately describes the progress of the database curators in manually addressing missing

information. The number of years predicted by each function, along with the correlation

between the function and the data, are given in Table 2.1.

Table 2.1 allows us to characterize the actual progress of these public databases in

addressing missing annotations. For three of the data types that we examined, the linear

function gives the best fit to the data. For two of the data types, the logarithmic function

gives the best fit. This suggests that it is not the case that manual annotation is becoming

25



more efficient as time passes; manual annotation is addressing missing information either

linearly or slower. As one anonymous reviewer pointed out, “the rate of new annotations

does not only reflect the rate of curation, but also that of discovery (and publishing).” This

suggests an alternative to the hypothesis that the curation methodology is the bottleneck in

the process—namely, that the pace of scientific publication is the limiting factor. However,

data on the growth of MEDLINE itself, which is double-exponential (Hunter and Cohen

(2006):589-590), suggests otherwise, as do anecdotal reports on the difficulty that model

organism databases have in keeping up with even a limited number of journals (Giles, 2007).

Swiss-Prot’s addressing of missing Drosophila GO annotations represents the best-case

scenario: the model suggests that all unannotated Drosophila proteins could have GO terms

assigned in the next 1.4 years. The worst-case scenario is function comment annotations

for all Swiss-Prot species, which cannot be expected to be achieved manually during the

lifetime of this species. The median for the six data types that we examined is 8.4 years.

2.4.6 Collaborative curation

The contribution of the manual annotation community is highly regarded and essen-

tial to the understanding of the ever more complicated biological landscape—it is widely

accepted that it produces the most accurate annotations currently available. However, the

cost of obtaining annotations is expensive in regards to both financial expense and time

(Seringhaus and Gerstein, 2007). Several solutions to this issue have been raised in the

literature. One such solution is collaborative curation. There have been multiple calls to

provide an incentive, such as a “citable acknowledgement,” for researchers to voluntarily

contribute to public databases in general, and annotation of database contents in partic-

ular (Seringhaus and Gerstein, 2007; Nature, 2007). There have been efforts to produce

open-source software for multi-user annotation of database contents (Glasner et al., 2003;

Schlueter et al., 2006; Wilkerson et al., 2006) and free text (Baral et al., 2005), as well

as examples of successful community annotation projects. Both the Pseudomonas aerugi-

nosa Community Annotation Project (PseudoCAP) (Stover et al., 2000; Brinkman et al.,

2000) and a prototype (AtGDB) being used for the annotation of the Arabidopsis thaliana

by the Plant Genome Database (Schlueter et al., 2005) enable participants to collectively

26



contribute gene structure annotations. Users are permitted to add annotations and make

corrections using a web-based interface, and both systems employ some sort of manual cu-

ration process before changes are committed to the database. As the Internet takes on a

greater and greater role in the sharing of information, the wiki architecture has recently been

hailed by some as a potential solution, in particular for the problem of updating/correcting

out-dated annotations (Wang, 2006; Salzberg, 2007). One anonymous reviewer pointed out

a prototype wiki for proteins (WikiProteins11, (Giles, 2007)). We do not have data on the

development processes of the collaborative annotation efforts. However, we note that the

GeneRIF collection at NCBI allows community contribution of GeneRIFs in addition to the

normal manual production process, and yet as Table 2.1 shows, this important data type

may continue to be unavailable for all (human and mouse) genes for decades, despite the

fact that its rate of growth is quite impressive (Lu et al. (2007):272). So, at least for this

example, it seems to be the case that collaborative curation does not solve the problem.

2.5 Conclusion

As we have demonstrated, the found/fixed graph and the characteristic patterns that it

displays are not just tools for describing software product readiness for release and software

development processes—they are useful tools for characterizing the construction processes

and the completeness of the contents of some of the most important public resources in

contemporary biology.

We have illustrated the use of the found/fixed graph with relatively straightforward ex-

amples, attempting in this chapter to handle no more than two heterogeneous data types in

a single knowledge base. Our eventual goal is to use this metric to evaluate the construction

of a large, highly inter-connected knowledge base of molecular biology, integrating many

semantic classes of entities with a rich set of relationships.

2.5.1 Improving the model

As we point out above, this work makes two simplifying assumptions in modeling unan-

notated entries in Swiss-Prot and Entrez Gene as “found bugs.” One assumption is that

simple absence of an annotation is equivalent to a fault. The other assumption is that

11http://www.wikiprofessional.info [Accessed January 2007]
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we can model added annotations as “bug fixes” despite the fact that we have no a priori

reason to assume that the knowledge base builders actually intended to address the missing

annotations. In future work, we will address both of these issues. In the first case, we

will incorporate into our work a better model of a “test” (and thereby, a better model of

a “bug”). We will do this by using lists of genes found to be differentially expressed in

microarray experiments as our “test suite.” In this model, any gene that is on the list but

is not annotated in (or is absent from) the knowledge base will be counted as a “found

bug.” By focussing on experiments in particular domains, such as cancer or development,

we can simulate another element that is missing from our current work: the assumption

that tests are repeated at each testing cycle. In the second case, we will address the issue

of intentional “bug fixes” by modeling specific fix rates to characterize the change in the

“found” line.

2.5.2 Quantifying quality versus quantifying quantity

The work reported here explicitly claims to address issues of the quantity of knowl-

edge base contents, essentially independently of quantifying the quality of knowledge base

contents. This versatility can be characterized as a virtue of the approach, but it is also

worth considering carefully both the utility of a system that only monitors quantity, and

the potential for abuse (or, more mildly, misinterpretation) of a metric that ignores quality.

Our own experience (Acquaah-Mensah and Hunter, 2002) suggests that the best ap-

proach to doing this is not to attempt to produce a single metric that integrates quantity

and quality into an aggregate statistic. However, the found/fixed graph can be extended

straightforwardly to incorporate quality-like information at the appropriate level of gran-

ularity. The software engineering metaphor for classifying annotations by quality is the

distinguishing of bugs by severity. We can relate this metaphor to various characteristics

of the data types. In Figure 2.5, we approximate quality as the number of GO annota-

tions for a protein in Swiss-Prot, on the assumption that a protein with a larger number

of GO annotations is better-annotated than a protein with fewer annotations. Arguably,

this approach simply replaces one quantity-reflecting measure with another—more is not

necessarily better, and we might like an additional indication of quality. In this case, the
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GO Consortium provides a quality assessment of annotations: all GO annotations include

a value for the type of evidence supporting the assignment of that concept. The GO Con-

sortium explicitly describes these evidence codes as indicating the reliability of annotations

and the amount of confidence that one should have in them (Gene Ontology Consortium

(2001):1432). Although they are not fully ordered (in the set-theoretic use of that term

(Partee et al., 1993)), they are nonetheless useful for characterizing the quality of anno-

tations. Specifically, they can be differentiated by the found/fixed graph in the same way

as in Figure 2.5, just as non-ordered software characteristics (e.g. root cause analysis, or

characterization of bugs by etiology, as opposed to characterizing them by symptom or by

severity (Black (1999):129–133)) can be.

These approaches are clearly GO-centric, but more general approaches can be applied to

non-GO data types, as well. One family of approaches would focus on the specificity of the

annotation; two forms of this could involve varying specificities of the annotation data type

itself, and varying specificities of the annotated entity in the knowledge base. As an example

of the former: any ontologically-structured data point can be characterized with respect to

information content (see e.g. Lord et al. (2003b,a) and Alterovitz et al. (2007)). Lord et al.

(2003a) found that this measure, in connection with sequence similarity, uncovered a number

of genes in LocusLink that were manually mis-annotated. As an example of the latter, one

might differentiate between annotations assigned at the level of the protein family, versus

annotations at the level of the individual protein. For databases that combine manual with

automatic annotations, graphing this distinction is relevant to the issue of tracking quality.

2.5.3 Implications of the data reported here

Even with the simplifying assumptions and the relatively weak proxies in the current

work, the found/fixed metric still reveals important facts about the knowledge bases that

we have examined. For example, even if we make the assumption that Entrez Gene already

contains entries for every human and mouse gene, we can predict from the rate of rise of the

“found” lines in Figures 2.6 and 2.7 that if we continue the current rate of funding for NCBI

annotation work (and do not either increase the number of NCBI annotators drastically or

fund the development of automated methods to assist in the curation process), we will not
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have GeneRIFs for every human gene until 2020 (13 years from now). The graph suggests

that we will not have a GeneRIF for every mouse gene until 2045 (38 years from now)—

most likely beyond the working life of the reader of this paper. We cannot expect Gene

Ontology annotations for all proteins of all species in Swiss-Prot until 2010 (3 years from

now), but recall that this assumes exponential growth of annotation production and that

no new proteins will be added to Swiss-Prot during that time, both of which are poor

assumptions. For the three fairly disparate data types that we examined—Gene Ontology

terms, GeneRIFs, and function comment fields—the median time to address all missing

annotations by the current manual process is 8.4 years. Even if these estimates are off by

a factor of two, this is far too long to be acceptable. One solution that suggests itself is to

come to accept the necessity of—and develop methodologies that are robust in the face of—

dealing with large amounts of automatically generated, non-curated data. The alternatives

are to find massive additional funds for manual curation, rely on the collaborative efforts

of the biological community, or to develop technologies for text mining and other forms

of automated curator assistance. Burkhardt et al. (2006) and others have suggested that

manual curation will always be necessary; the current approaches to doing it are clearly

not keeping up with the growth rate of new biological entities that require annotation. The

found/fixed graph helps us understand the consequences of the decisions that we make about

the allocation of scarce resources in this era of reduced or uncertain funding for bioscience

research, and underscores the importance of the development of automated methods for

assisting the curators of the public databases.

2.5.4 Revisiting predictions after eight years

It is not often you have the opportunity to revisit predictions from years past. In the

eight years since the original publication of this work, gene annotation efforts have con-

tinued. Have they been able to keep up with the pace of advancing technology? Have

our simple predictions on possible annotation completion held up over time? The original

analysis analyzing gene annotations as supplied by UniProt/SwissProt has been repeated

using data ranging to present day. Twenty-one archives of UniProt/SwissProt were down-
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loaded from the UniProt FTP site12 with the first from December 2003 and the last from

May 2015. The archives were processed as described in the original methods. Both protein

annotation to GO terms and function comments were once again computed.

Our best prediction for achieving “complete” annotation of mouse proteins (assuming

the level was held constant at the time) was just under four years. Figure 2.17 interestingly

shows that the bug-fix line does cross the threshold of approximately 10,000 within the

predicted time frame. Further investigation reveals that the use of computationally derived

(IEA) annotations is largely responsible for the threshold being surpassed. Comparing Fig-

ure 2.17 which includes IEA annotations to Figure 2.18 clearly shows the contribution of

IEA annotations. Evidence codes were not examined in the original work, and even if they

had been we may not have concluded that the IEA annotation made much of a difference

as they only begin to appear in October of 2006, near the end of the original time range.

Our original prediction for annotation completion of all SwissProt proteins was an opti-

mistic three years as the exponential function had the best fit to the data. Looking back

and examining Figures 2.19 and 2.20 it becomes clear that we were seeing the beginnings

of the use of IEA annotations. That three year prediction actually held if we include the

IEA annotations as the threshold of approximately 250,000 was surpassed. Finally, our

best prediction for complete annotation of all proteins with function comments in UniPro-

t/SwissProt was 99 years. Without a computation crutch similar to IEA annotations, this

prediction appears destined to hold true as shown in Figure 2.21.

Figure 2.17: Found/fixed graph applied to the annotation of mouse proteins in Swiss-Prot
with Gene Ontology concepts over time (2003-2015).

12ftp://ftp.uniprot.org/pub/databases/uniprot/previous releases/ [Accessed July 2015]
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Figure 2.18: Found/fixed graph applied to the annotation of mouse proteins in Swiss-
Prot with Gene Ontology concepts over time (2003-2015) when restricting to non-IEA Gene
Ontology concepts.

Figure 2.19: Found/fixed graph applied to annotation of all proteins in Swiss-Prot with
Gene Ontology concepts over time (2003-2015).

Figure 2.20: Found/fixed graph applied to annotation of all proteins in Swiss-Prot with
Gene Ontology concepts over time (2003-2015) when restricting to non-IEA Gene Ontology
concepts.
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Figure 2.21: Found/fixed graph applied to the annotation of all proteins in Swiss-Prot
with function comments over time (2003-2015).
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CHAPTER III

ASSESSING THE SYNERGY OF THE OPEN BIOMEDICAL

ONTOLOGIES

The work described in this chapter constitutes the most comprehensive analysis of Open

Biomedical Ontology (OBOs) topology and interoperability to date, and results in the most

inclusive, logically sound integration of OBOs that has been successfully processed by an

OWL reasoner, as far as the authors are aware. As will be discussed in detail in Chapter IV,

the methodology proposed by this thesis to advance the state of the art in knowledge based-

enrichment analysis leverages interconnections among ontology concepts and the principle

of deductive entailment to generate novel gene annotations. In order to maximize potential

for generating novel gene annotations, we demonstrate the logically sound integration of

84 ontology files through careful analysis using a suite of OWL reasoners. Our analyses

comprise consistency checking and classification of all individual ontologies, and, unique

to this thesis, an evaluation of the interoperability of all pairs of OBOs. We reveal errors

in specific ontologies, including the etiologies of observed inconsistencies, and some com-

mon, seemingly preventable issues observed across ontologies, especially with respect to the

treatment of imported ontologies. These issues have been summarized into a set of ontol-

ogy development guidelines that are applicable to the ontology development community in

general with the goal of improving coordination among ontology developers and preventing

future inter-ontology conflicts. The ultimate result of the work presented in this chapter is

an aggregate ontology, complete with all available logical definitions, and augmented with

a significant number of inferences generated through successful classification by an OWL

reasoner.

3.1 Introduction

Simultaneous use of multiple heterogeneous ontologies is becoming increasingly preva-

lent. When integrated, ontologies from different biological domains enable researchers to

ask complex questions about biology that would otherwise be difficult or impossible to for-

mulate (Hoehndorf et al., 2011a, 2012; Gkoutos and Hoehndorf, 2012; Köhler et al., 2013).

Most ontologies, however, are built largely in isolation with a single purpose in mind, and
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often without consulting previous efforts in the same domain (Rosse et al., 2005; Smith

et al., 2007). While there are a few mature biomedical ontologies that are frequently used

(e.g. the Gene Ontology (Ashburner et al., 2000) and the Foundational Model of Anatomy

(Rosse and Mejino, 2003)), there are many, less prominent ontologies also available—as

of October 2015, the NCBO BioPortal (Noy et al., 2009) catalogs 468 unique biomedical

ontologies. Together, the collection of available ontologies represents a major investment in

time and thought, and encompasses computable representations of biomedical knowledge

that may be relevant to uses other than those initially intended. Thus, reuse of some or all

of these ontologies holds great potential.

There are two fundamental processes involved in ontology reuse: ontology merging

and integration (Pinto and Martins, 2001). Merging ontologies is the process of taking

two or more ontologies from the same domain and combining them into a single, unified

representation of that domain. Ontology merging has been an active area of research, and

there are well-established tools available to assist in the ontology merge process (Noy and

Musen, 2000). Merging ontologies has been successfully used to combat the proliferation

of redundant domain-specific ontologies, e.g. the coalescing of three independent cell type

ontologies to form the current Cell Ontology (Smith et al., 2007). Integration of ontologies,

on the other hand, refers to combining two or more ontologies each representing different

domains to be used in concert with one another. Less focus has been on the process of

ontology integration (Pinto and Martins, 2001), although recent efforts suggest that the

power of reusing ontologies through their integration is finally being realized (Hoehndorf

et al., 2007, 2011a; Mungall et al., 2010).

The primary focus of this chapter is ontology integration. We hypothesize that the

Open Biomedical Ontologies (OBOs) (why we selected the OBOs is discussed below) are

an integratable, interoperable collection of ontologies. Work presented in this chapter aims

to test this hypothesis. Our conclusions, that ontology reuse in general and integration

specifically is a complex endeavor, echo those of past work (Uschold et al., 1998; Pinto and

Martins, 2001).

There is a vast array of biomedical ontologies available for use today cataloged and

stored in and a number of ontology repositories. D’Aquin and Noy (2012) provide an
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overview of available ontology repositories (they call libraries). Of the eleven they investi-

gate, they note that three are specifically focussed on biomedical ontologies: the European

Bioinformatics Institute’s Ontology Lookup Service (OLS) (Côté et al., 2006, 2008, 2010),

the National Center for Biomedical Ontology’s BioPortal (Noy et al., 2009; Whetzel et al.,

2011), and the Open Biomedical Ontologies Foundry (Smith et al., 2007). This chapter, and

the remainder of this thesis, makes explicit use of the Open Biomedical Ontologies (OBOs).

The Open Biomedical Ontologies (OBO) project established on SourceForge13 in March

of 2003 is perhaps the first public repository for biomedical ontologies. The OBO Source-

Forge project gave rise to the founding of the OBO Foundry (Smith et al., 2007) in 2007 as

a central organizing consortium guiding the development of a collection of biomedical on-

tologies. Consisting of a group of founding members but open to anyone who wishes to join,

the OBO Foundry has authored a collection of guiding principles for ontology development.

Along with upholding the core principles of the OBOs—orthogonality, openness, and the

use of a common syntax and space of identifiers—the OBO Foundry requires ontologies be

developed in a collaborative environment, use a set of shared relations for connecting con-

cepts, provide a means for user feedback, and maintain distinct boundaries in their content.

According to the OBO Foundry wiki, there are thirteen accepted principles14 and six can-

didate principles15. Also according to the OBO Foundry online documentation, it is their

stated goal that “a core of these ontologies will be fully interoperable, by virtue of a com-

mon design philosophy and implementation.”16 As of this writing, the OBO Foundry lists

129 ontologies in total. In 2010, the OBO Foundry promoted six ontologies to the status

of “OBO Foundry ontologies” (CHEBI, GO, PATO, PR, XAO, ZFA)17 and subsequently

promoted two others in 2013 (OBI, PO). The remaining 121 ontologies are relegated to

“candidate” status.

The analyses in this chapter will focus on the OBO Foundry and OBO Foundry can-

didate ontologies. We focus on this collection of biomedical ontologies for a number of

reasons. First, as noted above, a stated goal of the OBO Foundry is to develop a core set of

13OBO on SourceForge – http://sourceforge.net/projects/obo [Accessed July 2015]
14OBO principles: http://wiki.obofoundry.org/wiki/index.php/Category:Accepted [Accessed July 2015]
15OBO principles: http://wiki.obofoundry.org/wiki/index.php/Category:Discussion [Accessed July 2015]
16OBO Foundry – http://obofoundry.org/about.shtml [Accessed July 2015]
17Note: throughout this manuscript, abbreviations listed in Table A.3 will be used to reference ontologies
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ontologies that are fully interoperable. Even though only eight of the 129 OBO ontologies

are included in this core set, it is our hope that this claim of interoperability will provide a

stable platform for integrating a large percentage of the OBOs. Second, by using the OBOs

we also benefit from their mandated orthogonality. Integrating many ontologies presents

various issues of scale, and by using a set of ontologies designed to be orthogonal, we will

minimize the number of redundant concepts which should benefit downstream analysis, e.g.

reasoning over the ontologies. Issues with reasoning over owl:sameAs links which are often

used to equate two concepts, are well documented, e.g. unintentional collapse of multiple

concepts into one due to misunderstanding of the semantics (Halpin et al., 2010). Third, the

OBO Foundry catalog is the median of the three ontology repositories identified by D’Aquin

and Noy (2012) in terms of ontology count. It is close to a superset of the OLS catalog with

two-thirds of the OLS catalog consisting of OBOs, and yet its size is more manageable than

the 400+ ontologies in the NCBO BioPortal in regards to tracking down errors manually.

Fourth, the OBO Foundry is unique in that it has formal principles for which to guide

ontology construction (Smith et al., 2007). Although it is not known how compliant its

member ontologies are with these principles, we hope that due to their existence the quality

of the ontologies will be at least as good, if not better than those in other repositories.

And finally, as far as we are aware, the OBOs are the only set of biomedical ontologies

that have been intentionally integrated using logical definitions (or any other means aside

from cross-referencing) (Bada and Hunter, 2007; Mungall et al., 2011). Although the use

of cross-referencing to relate classes from one ontology to another is prevalent among many

biomedical ontologies, these cross-reference relations are too ambiguous to be of use for the

improvements to knowledge based-enrichment analysis proposed in this thesis. For these

reasons, only the ontologies in the OBO Foundry plus a few related ontology files containing

logical definitions will be used in the analyses described herein.

Our analyses are dependent on the Web Ontology Language (OWL) and the tools that

have been built around it to support working with ontologies. OWL is an official language

of the W3C and the Semantic Web (Group, 2015), and is based on description logics. De-

scription logics (DLs) are a family of formal knowledge representation languages whose

goal is to enable the description of categories through the assignment of definitions and
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properties (Russell and Norvig, 2003), and thus are ideally suited to representing ontolo-

gies. Not only do DLs provide a means to represent knowledge, but they also provide a

platform for reasoning about the represented knowledge to generate inferred knowledge, i.e.

knowledge that is not explicitly defined in the knowledge representation. In general, DLs

have three principle inference tasks: 1) determining if one category is a subset of another

(subsumption), 2) determining whether an object belongs to a category (classification), and

3) determining if a category is logically valid (or satisfiable) (consistency checking) (Russell

and Norvig, 2003).

An ontology can be declared incoherent if it contains a knowledge representation error

that creates an unsatisfiable class. An unsatisfiable class is one that cannot possibly have

an instance. If, for example, there is a class defined as simultaneously part of the foot and

part of the head, and if there is other knowledge represented stating that it is impossible

to be simultaneously part of the foot and part of the head, then that class would be de-

clared unsatisfiable. If there was a declared instance of the unsatisfiable class within the

ontology, then a reasoner would declare the ontology inconsistent. It is important to point

out that an ontology can be consistent even if it contains unsatisfiable classes. (Sattler

et al., 2013). Unsatisfiable classes frequently result from the use of owl:disjointWith

axioms (Hoehndorf et al., 2011c). The semantics behind owl:disjointWith mandate that

the two classes connected by the relation cannot have any common instances Stevens and

Sattler (2012). For example, as will be discussed later in this chapter, the OGSF concept

susceptibility SNP (OGSF:0000034) was observed to be unsatisfiable because it is modeled

as both an independent continuant (BFO:0000004) and a specifically dependent continuant

(BFO:0000020), which are declared disjoint via owl:disjointWith (See Figure 3.2). Sim-

ilarly, an unsatisfiable class can also result from the use of the special owl:Nothing class

which is used to the empty set. If a class, e.g. Y, is a subclass of owl:Nothing, then Y can

never have an instance (Sattler, 2010). Often, owl:Nothing is used to model things that

should never happen as will be discussed later in this chapter. For example, if the anatomy

concept male mammary gland duct (UBERON:0022360) is both part of (BFO:0000050)

male organism (UBERON:0003101) and a subclass of mammary duct (UBERON:0001765)

which in turn is eventually part of (BFO:0000050) female organism (UBERON:0003100),
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and if there is knowledge representation stating that any class that is both part of

(BFO:0000050) male organism (UBERON:0003101) and part of (BFO:0000050) female

organism (UBERON:0003100) is equivalent to owl:Nothing, then male mammary gland

duct (UBERON:0022360) is declared unsatisfiable (See Figure 3.10). Other reasons for

ontology inconsistency include, but are not limited to, instantiating unsatisfiable classes,

conflicting assertions, merging of instances and classes, and defining classes that cannot have

instances (Bail, 2013). Both the owl:disjointWith and owl:Nothing constructs are very

useful for quality assurance purposes when developing an ontology, but as we will demon-

strate (and has been demonstrated previously (Hoehndorf et al., 2011c)), such knowledge

representations can also be problematic when integrating large sets of ontologies as will be

demonstrated.

Reasoning over OWL DL ontologies is 2NExpTime-complete, meaning that the amount

of computing resources required to reason increases exponentially with the size of the ontol-

ogy in the worst case (Thomas et al., 2010; Hogan, 2014). This intractability of reasoning

has presented challenges to working with large, complex ontologies and as Hoehndorf et al.

(2011b) argue, has led to the underutilization of the “semantic power” of ontologies in

biomedicine. Further, (Mungall et al., 2014) discusses the fact that most GO axioms go

unused once deployed. Multiple approaches to combatting this issue have been attempted.

Algorithms for reasoning over OWL DL have been continually developed and optimized.

Many contemporary OWL reasoners are based on variants of tableau calculi augmented

with different optimizations, e.g. Pellet (Sirin et al., 2007), Fact++ (Tsarkov and Horrocks,

2006), Racer (Haarslev and Müller, 2001). Motik et al. (2009) introduce an extension of

tableau calculus that forms the basis for the HermiT reasoner (Shearer et al., 2008; Glimm

et al., 2014). Other solutions involve restricting OWL expressiveness. With the advent of

OWL 2 in 2009, several subsets of OWL with reduced expressiveness were formed. These

profiles18 offer tractable reasoning for certain tasks through the restriction of the represen-

tation language (Baader et al., 2006; Hogan, 2014).

The restricted representation of the OWL EL profile is optimized for the classification

tasks discussed above, and has gained traction in the biomedical community (Baader et al.,

18http://www.w3.org/TR/owl2-profiles/ [Accessed July 2015]
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2006; Hoehndorf et al., 2011b). OWL EL is PTime-complete for all inference tasks ex-

cept for question answering (Hogan, 2014), meaning in the worst case resources needed for

reasoning increase polynomially with the size of the ontology. The EL profile limits the

expressiveness of OWL by excluding union, negation, and universal quantification axioms.

It also prohibits symmetric object properties. This reduced expressiveness limits the num-

ber of inferences that can be computed (Hoehndorf et al., 2011b), however it has enabled

classification of some ontologies that had not been previously classified by an OWL rea-

soner due to tractability issues (Kazakov et al., 2014). Given that the OBOs can almost

completely be expressed using OWL EL (Kazakov et al., 2014) and because of its uptake by

the biomedical community we will incorporate EL versions of the OBOs (generated using

the EL Vira tool (Hoehndorf et al., 2011b)) into our analyses.

The work presented in this chapter makes use of four reasoners spanning the spectrum

of those available—two that make use of OWL DL: HermiT (Shearer et al., 2008; Glimm

et al., 2014) and Fact++ (Tsarkov and Horrocks, 2006), and two that make explicit use

of the OWL EL profile: ELK (Kazakov et al., 2014) and JCEL (Mendez, 2012). Our

use of multiple reasoners and multiple levels of OWL expressiveness is designed to provide

varying perspectives of reasoning over each ontology, thereby highlighting confounding issues

between specific reasoners and individual ontologies. The robustness and performance of

these reasoners over a large collection of ontologies is a secondary result of this chapter.

Our choice to use OWL for the basis of our work is based on the publicly availability

of resources for working with OWL. There are OWL editors (Noy et al., 2003), software

libraries Horridge and Bechhofer (2011), OWL Reasoners (Glimm et al., 2014; Kazakov

et al., 2014; Mendez, 2012; Tsarkov and Horrocks, 2006), and language standards (Group,

2015). As will be discussed, one of the conclusions of this chapter is that perhaps logics

other than OWL, e.g. modal logics, should be considered when working with biomedical

ontologies. A in-depth discussion of the potential use of other logics can be found in

ChapterV.

Our use of OWL to integrate the OBOs closely aligns with previous OBO integration ef-

forts (Patel and Cimino, 2010; Hoehndorf et al., 2011a,c). Patel and Cimino (2010) presents

an algorithm for identifying candidate terms to be used in logical definitions. They com-
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bined 50 ontologies and accompanying cross-product files into an integrated ontology, then

ablated the GO-CHEBI cross products and demonstrate that their method can reproduce

them with a performance near 0.3 F-measure. The integration approach used by (Patel

and Cimino, 2010) is similar to that used in this chapter, however they do not take into

account the logical soundness of their integrated ontology which is clearly important as will

be demonstrated in our analyses and has previously been demonstrated by others (Hoehn-

dorf et al., 2011a). In their work on PhenomeNET, (Hoehndorf et al., 2011c) integrate a

collection of OBOs that includes many of the core ontologies targeted in the analysis pre-

sented in this chapter, including their logical definitions. Their work is closely related to

ours in that they are also careful about maintaining logical soundness. As will be demon-

strated, the approach presented in this chapter is more inclusive in regards to the numbers

of ontologies they integrate, but borrows their technique of excluding owl:disjointWith

axioms as one step in reaching ontological consistency. Köhler et al. (2013) integrate GO

with several phenotype ontologies, including logical definitions, and classify the aggregate

ontology using the ELK reasoner. No mention is made regarding reasoning failure, or steps

required to achieve ontology consistency. This could be a result of their decision to not im-

port entire ontologies that are referenced by logical definitions, and instead to only use the

subset of terms that are explicitly mentioned in logical definitions. The work of Hoehndorf

et al. (2011a) is perhaps the most robust integration attempt to date of a core set of OBOs

and their accompanying logical definitions. They demonstrate OBO integration though the

use of a custom-built upper ontology and by augmenting relations by explicitly specifying

the types of concepts expected to be connected by specific relations. In doing so, they show

that a significant number of ontology inconsistencies can be detected. While powerful, their

approach has a few non-trivial pre-requisites. First, their approach requires a novel upper-

level ontology to integrate the OBOs they use in their experiment. An extension of their

approach would likely require modification to such an ontology to include other domains.

Second, and perhaps of more importance, their work required manual augmentation of the

relations used in the OBOs to shift from commonly used natural language definitions to

more explicitly defined relations. Given the number of relations we observe in the OBOs,
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we leave such an approach for future work and instead focus out analysis on the OBOs as

they are distributed.

The OBOs are developed under the guiding principles of interoperability and orthogo-

nality. In this chapter, we test the hypothesis that the OBOs are indeed interoperable and

integratable by quantifying the state of synergy amongst of the OBOs. We evaluate the

interoperability of the set of OBO Foundry and candidate ontologies by examining relations

used to connect ontologies and employing OWL reasoners to gauge ontology consistency.

We show that a number of the candidate OBO Foundry ontologies are not interoperable due

to internal knowledge representation (KR) issues. In an analysis unique to this thesis, we

evaluate all pairs of ontologies for consistency using OWL reasoners. This analysis uncovers

further issues of consistency, some due to KR issues, but many due to ineffective ontology

version controls and differing representation philosophies. We provide an in-depth analy-

sis of the issues observed as well as of the relations used by the OBOs and the inter- and

intra-ontology connections they assert. Our error analysis is summarized by the proposition

of a set of ontology development guidelines aimed at improving community collaboration

of ontology development and avoiding commonly occurring errors. Finally, we show that

by carefully selecting ontologies and making some systematic changes and we can build an

integrated set consisting of a majority of the OBOs that can then be successfully processed

by an OWL reasoner. The integrated ontology resulting from this work is the basis for

our significant contribution to the state of the art in knowledge based-enrichment analysis

presented in Chapter IV.

3.2 Results

Our analyses confirm the inherent complexity involved with the integration of ontologies

as reported by other ontology integration efforts (Pinto and Martins, 2001). Despite this,

our findings do support our hypothesis that the OBOs are integratable and interoperable,

albeit with a few caveats. In order to reach this conclusion, we have explored the relations

used by the OBOs to understand their interconnectedness. We have further explored both

the intraoperability and interoperability of the OBOs by using OWL reasoners to evaluate

ontology consistency in isolation, and when paired (integrated) with all other ontologies.
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Our analyses provide insight into some isolated knowledge representation issues as well as

unintentional representational conflicts between ontologies. We report on the causes of

logical inconsistencies within and between ontologies and use the collective results of our

experiments to compose a set of ontology development guidelines aimed at improving inter-

developer communication and awareness and preventing common causes of inter-ontology

conflicts. A significant product of this chapter is the integration of a majority of the OBOs

into a single, unified ontology and its augmentation with inferences generated by an OWL

reasoner.

3.2.1 Errors discovered during ontology file procurement

Table A.3 displays the name, download location, and an abbreviation for each of the

133 ontology files used in this analysis. The majority of links to ontology files were gathered

from the OBO Foundry website19 and the Lawrence Berkeley National Labs Bioinformatics

Open Source Projects (BerkeleyBOP) website20 to which many of the links on the OBO

Foundry web site are directed. The remaining files were obtained from project-specific

locations as noted in Table A.3. Of the 129 ontology files listed on the OBO Foundry

website, all but six were used in further analyses. Table A.1 details the ontologies excluded

and the reason for their exclusion.

Ontologies are frequently made available in multiple file formats. The Web Ontology

Language (OWL) has become a standard language in the biomedical ontology community

because of its formal semantics and support for computational reasoning (Aranguren et al.,

2007), and development of the GO itself has become dependent upon OWL (Mungall et al.,

2014). For these reasons, and because some logical definition files are only available in

OWL, the OWL versions of ontologies were selected for use. The single exception was the

UNIT ontology where an OWL file was not available.

Although it is unclear as to what it signifies exactly, each OBO has an associated

current activity field displayed on its ontology-specific OBO Foundry web page. The 123

OBO Foundry files used in this analysis were categorized as Active (11), Discussion and

review (66), Production and review (41), Quiescent (2), and Inactive (3). Many of the OBO

19OBO Foundry: http://obofoundry.org/ [Accessed May 2015]
20BerkleyBOP: http://www.berkeleybop.org/ontologies/ [Accessed May 2015]
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ontologies are also categorized by one or more of twenty-three domains. The domains of

anatomy and health are by far the most prevalent with 33 and 19 assignments, respectively.

Table A.2 shows the breakdown of ontology files and their assigned domains. Thirty-five

ontologies have no domain assignment.

During the ontology procurement process, a number of ontology-specific issues were

discovered. The most prevalent issue regarded the use of permanent URLs (PURLs)

which are routinely used in the biomedical ontology community as a stable means to ref-

erence ontologies. PURLs advertised on the OBO Foundry web site for OWL files for

four ontologies (CMF, PD ST, MFO, RNAO) were found to be invalid. A fifth PURL,

for the MP OWL file, was found to be valid but point to an antiquated version of MP.

Errors in nine other ontology files (CLO, FLU, IDO, MS, NMR, OAE, OGG, OVAE,

RNAO) involving invalid import statements and minor typos were also found. Each

of these errors was tracked down and fixed manually to allow the ontologies to be in-

cluded in subsequent analyses. Other errors encountered include the use of retired OBO

namespaces in five ontologies (AERO, FLU, MIRNAO, OMRSE, OPL) – e.g. the refer-

encing of CL 0000000 in FLU using http://purl.org/obo/owl/CL#CL 0000000” instead of

http://purl.obolibrary.org/obo/CL 0000000”, typos in URIs – e.g. the use of

http://purl.obolibrary.org/BFO 0000035 in FBCV that is missing obo/, the use of illegal

URIs – e.g. http:://en.wikipedia.org/wiki/Mimicry in HOM (note the two colons) and the

use of erroneous URIs – e.g. http://purl.obolibrary.org/obo/CHEBI in FYPO. Errors such

as these reflect a lack of quality control in the ontology development process. We address

potential solutions to preventing such errors in the discussion section of this chapter.

For each OBO, two additional versions of the ontology were created and used in the

analyses reported on in the chapter. Because of the recent uptake of the OWL EL profile in

the biomedical ontology community (Hoehndorf et al., 2011b) and the known intractability

of OWL DL, an OWL EL version of each ontology file was created using EL Vira (Hoehn-

dorf et al., 2011b). During processing, EL Vira failed on three ontology files: CDAO, EXO,

and MIAPA. Reasons for the failures were tracked down manually and fixed. Detailed ex-

planation of each fix is documented in Table A.4. Motivated by the demonstrated exclusion
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Siloed ontologies Subject-only ontologies
APO EXO HOM MI SPD TTO CTENO MP TAO
DDANAT FBBI KISAO PW TADS VARIO EHDAA2 NMR WBPHENO
DDPHENO FBSP MAMO REX TAXRANK VHOG EMAPA OVAE ZP
ECO FIX MFO SBO TGMA VTO FYPO PORO
EMAP HAO MGED GEO RS

Table 3.1: Despite the distributed nature of ontology development, many ontologies are
interconnected with at least one other. Of the 133 ontologies investigated, twenty-seven
(20.3%) were observed to be siloed ontologies, i.e. ontologies that refer only to themselves
and are not referenced by any other ontologies. Thirteen ontologies (9.7%) were observed
to be unreferenced, i.e. they reference other ontologies but are not referenced themselves
by another ontology. The remaining ninety-three ontologies (69.9%) were observed to both
reference and be referenced by at least one other ontology at the class level.

of owl:disjointWith axioms in Hoehndorf et al. (2011c), a version of each ontology was

also generated with all owl:disjointWith axioms removed.

3.2.2 OBOs are innately inter-connected using a vast array of relations

Although often considered independent since that is the way they are developed and

distributed, the OBOs have become increasingly integrated over time. Formal efforts to

integrate external ontologies with the Gene Ontology by defining GO terms using terms

from other ontologies were initially proposed by (Mungall et al., 2011) and has continued

with other efforts (Huntley et al., 2014). Analysis of the inter-connectedness of the 133

ontology files used in this study demonstrates varying degrees of interconnectedness among

the files. Ontology files can be categorized into three distinct groupings: 1) ontologies

that are isolated silos, i.e. completely unconnected from other ontologies; 2) unreferenced

ontologies, ontologies that reference other ontologies but are not referenced themselves;

and 3) connected ontologies, i.e. ontologies that both reference and are referenced by

other ontologies. Of the 133 ontologies investigated, twenty-seven (20.3%) were observed

to be siloed ontologies and thirteen (9.8%) were observed to unreferenced ontologies. The

remaining ninety-three ontologies (69.9%) were observed to both reference and be referenced

by at least one other ontology at the class level. Table 3.1 lists the siloed ontologies and

those ontologies that reference others but are not referenced themselves.

These ontology concept interconnections are facilitated by a vast array of 1,046 unique

relations, e.g. part of, adjacent to, etc. Some of these 1,046 relations are used in com-

bination to form an additional 419 unique composite relations linking named classes to

one another within the ontology files, e.g. the joining of derives from with part of to
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Relation label Relation URI Observations
subClassOf rdfs:subClassOf 3,579,608
has proper part ro.owl#has proper part 366,598
only in taxon obo:pr#only in taxon 297,484
part of obo:BFO 0000050 181,811
has gene template obo:pr#has gene template 113,791
has proper part of something that
has granular part

ro.owl#has proper part,
obo:BFO 0000071

79,590

has role obo:RO 0000087 59,693
has part obo:BFO 0000051 51,905
has propert part of something that is
bearer of

ro.owl#has proper part,
obo:BFO 0000053

48,561

has part something that inheres in obo:BFO 0000051, obo:RO 0000052 37,563
derives from something that is part of obo:RO 0001000, obo:BFO 0000050 34,428
derives from obo:RO 0001000 33,710
derives from something that is part of
something that is part of

obo:RO 0001000, obo:BFO 0000050,
obo:BFO 0000050

32,438

has quality at some time obo:BFO 0000086 26,633
develops from obo:RO 0002202 24,523
has participant obo:DINTO 000136 23,111
related with obo:DINTO 000408 22,144
has part something that has modifier obo:BFO 0000051, obo:RO 0002573 22,014
has functional parent obo:chebi#has functional parent 21,522
part of obo:emap#part of 21,196
may interact with obo:DINTO 000499 20,883
regional part of obo:fma#regional part of 19,665
regulates obo:RO 0002211 16,714
has part something that has component obo:BFO 0000051, obo:RO 0002180 16,033
negatively regulates obo:RO 0002212 SOME 14,405

Table 3.2: A vast array of relations are used to connect concepts in the 133 ontology files
under study. This table lists the twenty-five (of 1,456) most frequently observed relations
used. Note that redundant assertions exist among the ontology files, so the observation
counts depicted here are an upper-bound of what is actually present.

form derives from something that is part of. Table 3.2 lists the top twenty-five most

frequently observed relations in the ontology files. Note that the ontology files contain

redundant assertions, i.e. some class definitions appear in multiple files, so the numbers

presented in Table 3.2 should be treated as an upper bound.

In direct contrast to the OBO principle mandating the use of a set of shared rela-

tions for connecting concepts, we identified some significant redundancy in the relations

used. Table 3.3 lists obvious redundancies for the part of, derives from, and has participant

relations used throughout the OBOs; a clear violation of one of the core OBO Foundry

requirements. There are 32 different part of relations, seven derives from relations, and six

different has participant relations used throughout the OBOs. Typically the use of each of

these relations is confined to a specific ontology file. The specific semantics of a collection

of redundantly defined relations is ambiguous unfortunately. It is unclear whether the on-

tology authors mean for their relations to have identical semantics to other relations that

share an identical label.
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part of derives from

obo:aeo#part of obo:OBO REL# part of obo:derives from
obo:BFO 00000050 obo:pr#part of obo:fypo#derives from
obo:BFO 0000050 obo:pw#part of obo:mod#derives from
obo:bto#part of obo:rex#part of obo:pr#derives from
obo:caro/src/caro.obo#part of obo:rs#part of obo:RO 0001000
obo:ddanat#part of obo:rxno.obo#part of obo:so-xp.obo#derives from
obo:emap#part of obo:so-xp.obo#part of ro.owl#derives from
obo:emapa#part of obo:spd#part of
obo:fao#part of obo:systemic part of
obo:idomal#part of obo:tads#part of has participant

obo:imr#part of obo:tgma#part of OBO REL:has participant
obo:ma#part of obo:TODO part of obo:mop#has participant
obo:mfo#part of obo:vario#part of obo:nbo#has participant
obo:mi#part of obo:vhog#part of obo:po#has participant
obo:mpath#part of oboInOwl#part of obo:RO 0000057
obo:ms/src/ms.obo#part of ro.owl#part of ro.owl#has participant

Table 3.3: There are clear examples of redundant relations being used among the on-
tologies, although without explicit semantics one cannot be certain if the ontology authors
intend relations with identical labels to have identical meanings. This table shows exam-
ples of three redundant relations observed in the ontologies. Redundant instances of part of
(33), derives from (7), and has participant (6) relations observed in the 133 ontology files;
each is a clear violation of the OBO Foundry requirement to use a common set of relations
to connect ontology concepts.

3.2.3 Individual OBOs are logically consistent, save a few exceptions

For ontologies to be interoperable, they must themselves be internally logically consis-

tent. In order to validate individual ontologies as being logically consistent, we employed

four different OWL reasoners (ELK (Kazakov et al., 2014), Fact++ (Tsarkov and Horrocks,

2006), HermiT (Shearer et al., 2008; Glimm et al., 2014), and JCEL (Mendez, 2012)) and

attempted classification of three different versions of each ontology. The three versions in-

clude an unaltered version of the ontology, a version transformed into the EL profile using

EL Vira (Hoehndorf et al., 2011b), and a version that excludes owl:disjointWith axioms

as in the work of Hoehndorf et al. (2011c). A separate analysis of the OBOs using the

OWLAPI (Horridge and Bechhofer, 2011) shows that compliance to the EL profile is lim-

ited to a minority of the ontologies. Table 3.4 lists the 44 ontologies (33.1% of those tested)

that are native to the EL profile.

The four reasoners being employed in this study were used to reason over the three

versions of each of the 133 ontology files. Results from all runs are summarized in Figure

3.1. ELK and HermiT are the most robust of the four reasoners as they were able to

successfully classify 96.7% and 89.2% of their runs, respectively. The Fact++ and JCEL

reasoners each had higher failure rates, successfully classifying 73.7% and 53.1% of their
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Ontologies natively in the OWL EL profile
AEO FBSP MS TRANS
APO FIX NCBITAXON TTO
BTO FMA PW UO
CHEBI IMR REX VARIO
DDANAT MA RS VHOG
DDPHENO MAMO SBO VTO
DOID MFO SPD WBLS
EHDAA2 MI SYMP WBP-EQUIV
EMAP MIRO TADS WBPHENO
EMAPA MOD TAXRANK XAO
EO MPATH TGMA ZFS

Table 3.4: The 44 of 133 ontology files observed to be in the EL profile natively.

runs. Many of the observed errors involved unhandled OWL syntax but there were also a

number of timeouts and segmentation faults. The reasoning time limit for this experiment

was set to 24 hours based on previously reported reasoning times for the HermiT and

Fact++ reasoners over the OBOs (Golbreich et al., 2007). A similar pattern results when

looking at the rate at which the reasoners were able to successfully classify at least one of

the three versions of each ontology. ELK leads all other reasoners as it was able to classify

at least one of the three versions in 132 of 133 cases (99.2%), whereas HermiT succeeded

in 125 cases (94.0%) and Fact++ and JCEL succeeded in 107 (80.5%) and 91 (68.4%) of

cases, respectively.

There are confounding factors in this particular analysis as a reasoning failure can be

attributed to either a failure of the reasoner or an error in knowledge representation in the

ontology. By looking at the data in aggregate where a majority of the reasoners struggled

to successfully classify an ontology, it is clear that there are likely representational issues in

a few of the ontology files. Eight ontologies were deemed to be either inconsistent (FLU)

or incoherent (GO-PLUS, GO-PLUS-DEV, MF, MFOEM, MFOMD, OGSF, and OMRSE)

by at least one reasoner. Table 3.5 details the number of unsatisfiable classes reported

by each reasoner for the seven incoherent ontologies. Note that for FLU, neither HermiT

nor FaCT++ hinted at the reason for its inconsistency, so it is not included in the table.

The jcel reasoner did not result in the detection of any unsatisfiable classes, mainly due

to the reasoner failing due to incompatible OWL syntax. Differences in observed counts

of unsatisfiable classes are likely due to inherent assumptions of each reasoner. Since ELK
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Figure 3.1: Summary of running reasoners over ontology files. This figure has been divided
into two major columns where each row presents reasoning results for two ontologies (one on
the left, and one on the right). Each minor column indicates a reasoner/ontology-version
pairing. “/EL” indicates the ontology version generated by EL Vira, “/NDJ” indicates
the ontology version that excludes owl:disjointWith axioms, and the columns with just the
reasoner name use the unaltered ontology files. A cell with colored on the green spectrum
indicates a successful reasoner completion. All other colors indicate an error.
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ignores all axioms not in the EL profile, it has fewer axioms to use to detect inconsistencies

and thus has the potential to miss some unsatisfiable classes. For example, this appears to

be the case for MFOMD where Hermit and Fact++ each recognize 358 unsatisfiable classes

in the original version of the ontology while ELK identifies only five. When the ontology

is restricted to the OWL EL profile, ELK still identifies five unsatisfiable classes, however

HermiT and Fact++ now also only identify five as being unsatisfiable. The restricted

knowledge representation has effectively hidden the other unsatisfiabilities.

Ontology ELK HermiT FaCT++
GO-PLUS 0/0/0 79/0/0 */*/*
GO-PLUS-DEV 13,178/15,390/0 */*/* */*/*
MF 4/4/0 4/4/4 4/4/4
MFOEM 4/4/0 4/4/4 4/4/4
MFOMD 5/5/0 358/5/358 358/5/358
OGSF 1/1/1/ */*/* 1/1/1
OMRSE 1/1/0 7/1/0 7/1/0

Table 3.5: Ontology files with unsatisfiable classes detected by at least one of ELK,
HermiT, or FaCT++. Reasoning with jcel did not result in the detection of any unsatisfiable
classes, mainly due to the reasoner failing due to incompatible OWL syntax. Counts are
shown for the unaltered/EL/no disjoint axiom versions of each ontology. Asterisks indicate
reasoner failure.

Using hints provided by the reasoners as to why a particular class was deemed un-

satisfiable, a manual investigation reveals a number of different causes for the unsatisfi-

able classes. For the single unsatisfiable class in OGSF, our analysis determine that an

owl:complementOf relation is the reason for the inconsistency, however the real issue is

with an error in the underlying knowledge representation. As shown in Figure 3.2, the un-

satisfiable class (in blue) susceptibility SNP (OGSF:0000034) has two ancestor chains, one

which leads to specifically dependent continuant (BFO:0000020) and the other of which leads

to independent continuant (BFO:0000004). The concepts specifically dependent continuant

and independent continuant are owl:complementOf one another, and since the concept sus-

ceptibility SNP is a child of both, it is declared unsatisfiable. The owl:complementOf

relation is analogous to logical negation (Bechhofer et al., 2004) and is used to indicate that

members of one class cannot be members of its complement class.21 This is a clear repre-

21Note that Table 3.5 lists a single unsatisfiable class for all three versions of the ontology that
were processed, including the version that excludes owl:disjointWith axioms. The presence of these
owl:complementOf relations is indicative of a minor flaw in our methodology. These owl:complementOf

have been inferred from owl:disjointWith axioms. They are not present in the original ontology file. The
strategy of removing owl:disjointWith axioms as done in Hoehndorf et al. (2011c) should occur prior to
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sentation error in OGSF, however one that might be hard to catch without a reasoner, and

possibly one that only came about when this owl:complementOf axiom was added to the

BFO which may have been after the OGSF ontology was constructed. Use of an ontology

versioning mechanism by the ontology development community would give insight as to the

true etiology of this representation error.

Figure 3.2: A portion of the OGSF ontology depicting the unsatisfiable class susceptibility
SNP (OGSF:0000034) (in blue) is shown. The reason for the unsatisfiability stems from
the ancestor chains connected to independent continuant (BFO:0000004) and specifically
dependent continuant (BFO:0000020) which are defined as being owl:complementOf (red
line) one another. The use of owl:complementOf is analogous to logical negation. Members
of one class by definition cannot also be members of the complement class.

Analysis of the unsatisfiable classes in MF yields a similar conclusion (Figure 3.3).

In this case, the four unsatisfiable classes (in blue) stem from the concepts alertness

(MF:0000003) and arousal (MF:0000012) both being children of the high-level concepts

continuant (BFO:0000002) and occurrent (BFO:0000003) which are defined using an

owl:disjointWith axiom. Because of the use of owl:disjointWith, a concept cannot

use of a reasoner. In this case, owl:disjointWith axioms were removed after the reasoner was run, leading
to the inclusion of owl:complementOf relations.

51



be both a continuant (BFO:0000002) and an occurrent (BFO:0000003), and the MF con-

cepts are consequently declared unsatisfiable. A clear representation error appears to be at

least partially responsible for the incoherent ontology. In the opinion of this author, the

assignment of mental functioning related anatomical structure (MF:0000000) as a subclass

of the concept arousal (MF:0000012) is incorrect as these two concepts should not be con-

nected using a child/parent relation. The assignment of arousal (MF:0000012) as a subclass

of material entity (BFO:0000040) also seems suspect as material entity (BFO:0000040) is

defined as being a “real world physical object” while arousal (MF:0000012) is defined as

the “physiological and psychological state of being awake or reactive to stimuli.” Revision

of the MF ontology will be required to address these unsatisfiable classes.

Manual inspection of the seventy-nine GO-PLUS classes declared unsatisfiable by the

HermiT reasoner suggests there is something wrong with the knowledge representation

related to cell cycles and other cyclic processes (e.g. menstrual cycle). Taking one un-

satisfiable concept as an example, we can see what is likely the issue for many of them.

Figure 3.4 shows an incomplete view of the super-hierarchy for the concept mitotic M phase

(GO:0000087) (in blue) which was determined to be unsatisfiable by the HermiT reasoner.

From this figure, the cause of the unsatisfiability can clearly be seen as the disjointness

between the concepts biological phase (GO:0044848) and cellular process (GO:0009987)

and single-organism process (GO:0044699) (red lines). Something that is a biological phase

(GO:00044848) cannot also be part of something that is a cellular process (GO:0009987).

This conclusion is confirmed by the removal of all owl:disjointWith axioms and the subse-

quent disappearance of all unsatisfiabilities. Interestingly, the ELK reasoner does not detect

these unsatisfiable classes. The reason for this is unclear, although it may be related to the

fact that the part of relations shown in 3.4 are both inferred and not explicitly defined

by GO-PLUS. Our analysis indicates that the cellular process (GO:0009987) and biological

phase (GO:00044848) sub-hierarchies in GO-PLUS require revision.

3.2.4 OBO pairs are largely interoperable as determined by OWL reasoners

In order to obtain a complete picture of OBO interoperability it is important to eval-

uate ontologies on an individual basis as we have shown above. It is also important to
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Figure 3.3: A portion of the MF ontology depicting the unsatisfiable classes detected by
OWL reasoners. The unsatisfiability appears to be caused by connections to both continu-
ant (BFO:0000002) and occurrent (BFO:0000003) which are declared owl:disjointWith one
another. Further, some of the knowledge representation appears suspect in the opinion of
this author, e.g. The assignment of arousal (MF:0000012) as a subclass of material entity
(BFO:0000040) seems incorrect as material entity (BFO:0000040) is defined as being a
“real world physical object” while arousal (MF:0000012) is defined as the “physiological
and psychological state of being awake or reactive to stimuli.”
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Figure 3.4: A portion of the GO-PLUS ontology depicting one of seventy-nine detected
unsatisfiable classes. Manual inspection of all unsatisfiable classes suggests an issue in
the knowledge representation for cell cycles and other cyclic processes. In this case, the
cause of mitotic M phase (GO:0000087) (in blue) being declared as unsatisfiable is a result
of the concepts biological phase (GO:0044848), cellular process (GO:0009987), and single-
organism process (GO:0044699) being defined using owl:disjointWith. This is confirmed
by the removal of all owl:disjointWith axioms and the subsequent disappearance of the
unsatisfiabilities.
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evaluate them in the context of other ontologies. Due to the distributed nature of biomed-

ical ontology development, there is potential for inadvertent conflicts among ontologies. In

order to gauge this potential, we have evaluated each of the 133 ontologies in the context of

every other ontology on a pairwise basis. The ELK and HermiT reasoners are used for this

inter-ontology analysis as they proved to be the most robust in their respective category

(OWL DL vs. OWL EL) in the previously presented analysis of ontologies in isolation.

Similar to the individual ontology analysis presented previously, the inter-ontology analysis

involves use of the three different versions of each ontology. For each version—1) unaltered

versions of the ontology files, 2) versions transformed into the OWL EL profile using EL

Vira, and 3) versions with owl:disjointWith axioms removed—pairs of ontologies were com-

bined and then classified using both ELK and Hermit. For each reasoner, each classification

run involves the processing of

(

133

2

)

= 8, 778 pairs of ontologies. In total, 52,668 pairs of

ontologies were classified during the course of this analysis. Results for each classification

attempt fall into five categories: 1) classification success; 2) the merged pair of ontology

files is observed to be inconsistent or incoherent; 3) an OWL syntax violation is detected

preempting classification; 4) the classification process lasts longer than the allowed five

hour time limit; or 5) some other error occurs or the reasoner exceeds the memory allo-

cated (60GB in this case). The five hour time limit was selected based on results from

the individual ontology analysis runs previously reported. Reasoning time for all isolated

ontologies where the ontology was successfully classified were relatively short, (< 1 minute)

in all cases. Given that the combination of two ontologies will result in a larger and pos-

sibly more complex ontology, a five hour threshold was judged to be adequate. Because of

the large number of classification runs required, the time threshold had a large impact on

available compute resources and thus had to be restricted.

Results of these classification runs indicate that most ontology pairings are interop-

erable, i.e. logically consistent, however a significant number of conflicts, i.e. inconsis-

tencies, are observed. The selection of ontology version is also observed to play a role

consistent with that observed in the individual ontology analyses, whereby removal of the

owl:disjointWith axioms appears to have a significant effect on the number of ontology

pairings observed to be logically consistent. Figures 3.5, 3.6, 3.7 display the results of
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the pairwise reasoning runs for the unaltered, EL Vira-processed, and owl:disjointWith-

excluded merged ontologies, respectively. Both the ELK and HermiT reasoners were able

to successfully classify a great majority of the inferred ontology file pairings, though there

are differences based on the ontology processing used. ELK had its greatest success clas-

sifying 8,498 (96.8%) of the ontology pairings that exclude owl:disjointWith axioms. In

comparison, it had rather similar performance on the other two ontology sets, classifying

7,724 (88.0%) and 7,731 (88.1%) of the ontology pairings successfully for the unaltered

and EL Vira-generated ontologies, respectively. HermiT successfully classified fewer ontol-

ogy pairings regardless of the ontology processing. In contrast to ELK, HermiT was able

to classify the greatest number of ontology pairs (7249; 82.6%) on the EL Vira-processed

ontologies. For the unaltered and owl:disjointWith-excluded sets, HermiT successfully clas-

sified 6,148 (70.0%) and 6,424 (73.2%) of the ontology pairings, respectively. ELK did

not exceed the five hour time limit in any of its runs, however HermiT exceeded the time

limit in >5% of its runs for all three ontology versions. As with the individual result, a

timeout is likely not due to the complexity of the ontology but rather a sign that there

is a knowledge representation issue (inconsistency/incoherency) present. In all cases, the

number of combined inconsistent/incoherent and timed-out runs with HermiT was greater

than the number of inconsistent/incoherent runs declared by ELK, with HermiT detect-

ing as inconsistent/incoherent or timing out on 201, 300, and 742 more ontologies for the

unaltered, EL Vira-processed, and owl:disjointWith-excluded sets, respectively. For both

ELK and HermiT, the fewest inconsistent/incoherent ontology pairings were detected for

the owl:disjointWith-excluded case. Note that many of the inconsistencies/incoherencies

are expected given that a few of the ontologies were observed to be inconsistent/incoherent

on their own. For example, all pairs with OGSF are observed to be incoherent by the ELK

reasoner.

3.2.5 Logically consistent integration of a majority of the OBOs

Eight-three of the original 133 ontology files were combined to form a single, unified,

logically consistent ontology. Selection of the ontology files to include was based on the

individual and pair-based analyses of each ontology. Because they are not linked to any other
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Figure 3.5: This figure summarizes the attempted classification of 8,778 pairs of ontologies
by both the ELK and HermiT reasoners using the unaltered versions of the ontologies.
ELK results are shown in the upper-triangle, while results from HermiT are depicted in
the lower-triangle of the matrix. Cell color indicates the classification outcome: white-to-
green spectrum—successful classification of the ontology pair; red—inconsistency detected;
orange—classification process exceeded five hour time limit; gray—the reasoner was unable
to handle an OWL construct within the ontology pairing; purple—the reasoner reported
an out-of-memory error; yellow—unspecified ELK failure; black—no outcome, black marks
the border between the ELK and HermiT results.
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Figure 3.6: This figure summarizes the attempted classification of 8,778 pairs of ontologies
by both the ELK and HermiT reasoners using the OWL EL versions of the ontologies.
ELK results are shown in the upper-triangle, while results from HermiT are depicted in
the lower-triangle of the matrix. Cell color indicates the classification outcome: white-to-
green spectrum—successful classification of the ontology pair; red—inconsistency detected;
orange—classification process exceeded five hour time limit; gray—the reasoner was unable
to handle an OWL construct within the ontology pairing; purple—the reasoner reported
an out-of-memory error; yellow—unspecified ELK failure; black—no outcome, black marks
the border between the ELK and HermiT results.
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Figure 3.7: This figure summarizes the attempted classification of 8,778 pairs of ontolo-
gies by both the ELK and HermiT reasoners using the versions of the ontologies where
owl:disjointWith axioms have been excluded. ELK results are shown in the upper-
triangle, while results from HermiT are depicted in the lower-triangle of the matrix. Cell
color indicates the classification outcome: white-to-green spectrum—successful classification
of the ontology pair; red—inconsistency detected; orange—classification process exceeded
five hour time limit; gray—the reasoner was unable to handle an OWL construct within
the ontology pairing; purple—the reasoner reported an out-of-memory error; yellow—
unspecified ELK failure; black—no outcome, black marks the border between the ELK
and HermiT results.
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concepts and thus will not provide any additional inferences, the twenty-seven ontologies

that were determined to be isolated silos were excluded. Also excluded were a selection

of ontologies that when combined with another ontology were frequently associated with

inconsistencies. Figure 3.8 depicts the network of inconsistent/incoherent pairings detected

by ELK and/or HermiT when classifying ontology files that exclude all owl:disjointWith

axioms. The nodes in the center are more highly connected, and therefore involved in

more inconsistent pairings than the nodes at the edges. A manual selection of ontologies to

exclude was conducted, preferring to keep some ontology files containing logical definitions

(e.g. HP, ZP-EQUIV, GO-PLUS) and some of the more prominent ontologies (e.g. CHEBI,

CL) over others.

The initial manual selection of ontologies to exclude to include in the aggregate ontology

resulted in UBERON-EXT being excluded due to its number of associated inconsistencies

when paired with other ontologies. UBERON-EXT, however, is a rich resource for logical

definitions of UBERON anatomy concepts as it contains direct links from UBERON con-

cepts to CL, CHEBI, GO, and NBO. In the interest of constructing as integrated an aggre-

gate ontology as possible, special considerations were made in order to integrate UBERON-

EXT into the aggregate ontology. Figure 3.9 shows the thirty-three unsatisfiable classes

(rows) detected when UBERON-EXT is paired with each of ten other ontologies (columns).

Manual efforts were undertaken to investigate and resolve each of these inconsistencies.

Figure 3.10 depicts a portion of UBERON-EXT containing one of the unsatisfiable

classes that is detected when UBERON-EXT and BIO-ATT are combined. In this case

male mammary gland duct (UBERON:0022360) is identified as unsatisfiable because it

is part of (BFO 0000050) both male organism (UBERON:0003101) and female organ-

ism (UBERON:0003100), and because there is an owl:equivalentClass relation that states

something that is part of male organism (UBERON:0003101) and part of female organism

(UBERON:0003100) is unsatisfiable (recall, anything owl:equivalentClass owl:Nothing

is by definition unsatisfiable). Further analysis reveals that the rdfs:subClassOf relation

(red arrow) linking mammary gland (UBERON:0001911) to its parent female reproductive

gland (UBERON:0005398) is not present in UBERON-EXT, but is present in BIO-ATT

which itself contains an antiquated version of UBERON. BIO-ATT does not contain the
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Figure 3.8: This network depicts the inconsistent/incoherent ontology pairings as
determined by ELK and/or HermiT when classifying ontology files that exclude all
owl:disjointWith axioms. Each node represents an ontology file. Edges between a pair
of nodes indicate that the two files were observed to be inconsistent/incoherent according
to ELK (red), Hermit (blue), or both (green). Node size is relative to the number of edges
and therefore the number of inconsistencies/incoherencies involving the ontology. Connec-
tivity depicted in this network was a prime determinant when manually filtering ontology
files for use in the aggregate ontology. Ontologies that have fewer associations with in-
consistent pairings were preferred. [Acknowledgement: This figure was prepared by Mark
Baumgartner.]
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Figure 3.9: This figure lists the unsatisfiable classes (rows) detected by the ELK reasoner
in ontology pairings (columns) involving UBERON-EXT using versions of the ontology files
that exclude all owl:disjointWith axioms. Each of these inconsistencies was resolved via
manual interventions such that rich logical definitions of UBERON-EXT could be included
in the aggregate ontology.
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owl:Nothing equivalency, so it is internally consistent when classified in isolation. The unsat-

isfiability only appears when the two are combined, thus highlighting one of the dangers of

importing ontology files (see discussion below). Removal of the offending rdfs:subClassOf

relation resolves this unsatisfiable class. Similar remedies were found for many of the other

unsatisfiable classes, allowing UBERON-EXT to be included as part of the aggregate on-

tology.

Ultimately eighty-four ontology files were incorporated into the aggregate ontology. The

aggregate ontology contains 2,372,254 named classes and consists of 33,725,098 assertions,

occupying 3.4G of disk space as an OWL/XML file. The named classes in the aggregate

ontology are connected using 871 unique relations to form 1,039 unique ontology-relation-

ontology triples, e.g. PR—pr:only in taxon—NCBITAXON. Classification of the aggre-

gate ontology using the ELK reasoner completed in just under 1 hour and generated 734,020

inferences. Table 3.6 lists the eight-four ontologies included in the aggregate ontology.

AEO EHDAA2 GO-PLUS MP PATO TRANS
BCGO EMAPA GO-PLUS-DEV MP-EQUIV PCO UBERON
BFO-1.1 ENVO HP MPATH PO UBERON-EXT
BIO-ATT EO HP-EQUIV MS PORO UO
BSPO EPO ICO NBO PR VSAO
BTO ERO IDOMAL NCBITAXON RNAO WBBT
CARO FBBT IMR NCI-THESAURUS RO WBLS
CDAO FBCV MA NIF-CELL RS WBLS
CHEBI FBDV MGED NIF-DYSFUNCTION RXNO WBPHENO
CHMO FLU MIAPA NMR SO WBPHENO-EQUIV
CL FMA MIRNAO OAE SWO XAO
CLO FYPO MIRO OBA SYMP ZFA
DINTO GEO MOD OMIT TAO ZFS
DOID GO MOP OPL TO ZP-EQUIV

Table 3.6: The eight-four ontology files listed here were successfully integrated into a
unified, logically consistent representation of biology.

3.3 Discussion

The stated mission of the OBO Foundry is to guide the development of a set of or-

thogonal, interoperable ontologies. The question of whether they are in fact orthogonal has

been addressed previously by (Ghazvinian et al., 2011) who concluded that they are not

completely orthogonal, and complete orthogonality may be an unattainable goal. The ques-

tion of whether or not the OBOs are interoperable, however, has not been fully explored.

While there have been numerous studies that have integrated portions of the OBOs, the

phenotype community being a primary example (Hoehndorf et al., 2011a,c; Köhler et al.,
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Figure 3.10: This figure shows a sample unsatisfiable classes detected by ELK in
UBERON-EXT/BIO-ATT ontology pairing using versions of the ontology files that exclude
all owl:disjointWith axioms. Manual investigation reveals that this particular unsatisfi-
able class is caused by an older version of UBERON being imported by BIOATT, leading
to the re-introduction of a rdfs:subClassOf relation (red arrow) that is not present in the
current UBERON ontology. Removal of the offending rdfs:subClassOf relation resolves
this unsatisfiable class. This and similar remedies to the other unsatisfiable classes detailed
in Figure 3.9 allowed UBERON-EXT to be included in the aggregate ontology.
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2013), to the best of our knowledge there has not been a comprehensive effort to evaluate

the entire community of OBOs. The work presented in this chapter gauges the interoper-

ability of the OBOs through an analysis of inter-ontology linkages and the systematic use of

semantic reasoners. Ghazvinian et al. (2011) also examined the interlinking of the OBOs.

Their definition of reuse of ontology concepts is analogous to the direct linkage analysis

conducted here with the exception that they did not take into account the type of relations

used. Their work concluded that 30% (16 of 53) of the OBOs link to at least one other

ontology while 36% (19 of 53) of the OBOs they analyzed have at least one of their terms

linked to by a different ontology. More than twice the number of ontologies are available

now, and our analysis found increases in the links between ontologies. We observed 106

(79.7%) of ontologies to link to other ontologies and 93 (69.9%) to have at least one term

linked to by a different ontology.

Using an exhaustive approach, all OBOs have been interrogated on an individual basis,

and in an analysis unique to this thesis, the classification of all OBO pairings has been

attempted. Analysis of each OBO in isolation reveals specific representation issues with

particular ontologies, but also suggests some general quality assurance issues that seem to

span the ontology development community. While most of the OBOs were observed to be

internally consistent/coherent, the fact that some were not and others had major issues, e.g.

the use of invalid PURLs to reference ontologies to import, raises questions regarding the

standard operating procedures for releasing ontologies for public consumption. Based on

the attempted classification of all pairs of OBOs, we conclude that in general the OBOs are

interoperable, however the degree of interoperability varies depending on some underlying

assumptions regarding the disjointness of classes. Overall, our results echo the conclusions

of Pinto and Martins (2001) who state that ontology integration is a complex endeavor.

The Open Biomedical Ontologies have become increasingly integrated in recent years

(Bada and Hunter, 2007; Mungall et al., 2011), and continuing efforts to formally represent

knowledge in a machine-readable format will only drive them to become further integrated.

Both ontology developers and ontology users should be cognizant of this increased integra-

tion and should no longer think of biomedical ontologies as independent knowledge bases.

Although there are still some OBOs that remain isolated silos, our results indicate that the
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vast majority of OBOs are connected to other ontologies using a wide array of relations.

Analysis of these relations has revealed issues of redundancy and ambiguity and suggests

the need for a concerted effort to synergize the OBO relations into a coherent whole. A

decade has elapsed since the introduction of the Relation Ontology (RO) (Smith et al.,

2005a) whose stated goal was to “promote interoperability of ontologies.” Although it has

been well recognized (the original manuscript has been cited 922 times according to Google

Scholar), its uptake and use by the community seems sporadic. Our analysis of the relations

used in the OBOs indicates that although the RO has been used, it is not being used as

the “set of shared relations for connecting concepts” stipulated by the guiding principles of

OBO development. Apparent discord in the biomedical ontology development community

regarding the temporalization of RO relations may be one reason why RO relations have

not been globally adopted by the OBOs (Mungall, 2013).

The work of Hoehndorf et al. (2011b) demonstrates a step in the direction of formalizing

the collection of relations used by the OBOs. They integrate a core set of OBOs, including

PATO, FMA, MA, CL, PR, MPATH, CHEBI, UBERON, and GO, by defining a custom

upper-level ontology from fragments of existing upper-level ontologies, including the Basic

Formal Ontology (BFO) (Smith et al., 2005b), the Descriptive Ontology for Cognitive and

Linguistic Engineering (DOLCE) (Gangemi et al., 2002), and the General Formal Ontology

(GFO) (Herre et al., 2006). Their upper level ontology consists of only four classes: Ma-

terial object, Process, Quality, and Function which are declared as mutually disjoint. Each

domain-level ontology is rooted in one of these four classes, e.g. all classes in CL as assumed

to be subclasses of Material object, all classes in the GO biological process sub-hierarchy are

assumed to be subclasses of Process. Their upper-level ontology includes a formally defined

set of eleven relations and accompanying inverse relations. Their relations are defined as an

OWL object property hierarchy which includes for each relation axioms specifying reflex-

ivity, transitivity, and symmetry. Also specified for each relation are specific domain and

range restrictions, which specify the kinds of concepts that can be used with a given relation.

Manual efforts are required to enumerate the different semantics of each relation based on

the different concepts it is used with to avoid ambiguity issues. For example, they point out

that has central participant can be used between Processes and Material objects, but
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can also be used between Qualities and Material objects. Manual efforts are also required

to map relations used in the OBOs to these formally defined upper-level relations, e.g. part

of, part-of, and part of would all be considered equivalent. Though manually intensive,

their approach results in a more formal integration of the OBOs and enables reasoners to

detect representational errors that would otherwise go undetected when using relations that

are not formally defined. Extension of this work using the entire set of OBOs and entire

set of OBO relations as compiled in this work would be tremendously beneficial for the

community. We leave such an effort as future work as integrating the >1000 relations used

by the OBOs is a non-trivial task.

The work in this chapter has focused on the use of logical definitions to interlink ontology

concepts. There are, however, other sources of inter-ontology links. The NCBO BioPortal

houses a large number of mappings between classes that could potentially have value in

linking ontology terms. The mappings generated in BioPortal are considered “similarity

mappings.” They have been generated using lexical matching methods primarily and are

used to link terms between ontologies that are likely to have similar meaning (Ghazvinian

et al., 2009). Their meanings can range from exact match (skos:exactMatch) to more nebu-

lous categories such as related (rdfs:seeAlso)22. While (Ghazvinian et al., 2009) demonstrate

the usefulness of these mappings to analyze domain coverage by ontologies and guide users

to the most relevant ontology for a particular task, many of the mappings are likely not

precise enough to be considered equivalent, and thus should not be formally integrated

with the ontologies. (Faria et al., 2014) looked at a subset of the mappings, those defined as

skos:closeMatch, and concluded that often the mappings result in logical conflicts with the

underlying ontologies. The automatic correction of these logical conflicts is an area of active

research. Due to the potential ambiguity of the BioPortal mappings and the documented

issues when reasoning using owl:sameAs relations (Halpin et al., 2010) these inter-ontology

mappings have been excluded from the analyses presented in this chapter.

Throughout the analyses reported in this chapter, errors in ontologies were discovered

through various means. Some errors were detected purely by chance, e.g. the error in the

22Bioportal mappings: http://www.bioontology.org/wiki/index.php/BioPortal Mappings [Accessed Oc-
tober 2015]
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following URI http://purl.obolibrary.org/obo/CHEBI which is itself a perfectly valid URI,

but has clearly been truncated accidentally as it is missing the requisite digits following the

underscore needed to specify a CHEBI concept. Many of the errors identified, however, were

detected by automatic means. OWL reasoners are designed to check for errors in knowledge

representation resulting in inconsistencies and incoherencies, and when applied to multiple,

integrated ontologies can be used to check for inter-ontology conflicts. A variety to software

tools and APIs can be used to detect errors in ontology imports while attempting to load

an ontology. The fact that many of these errors exist in public releases of ontologies reflects

an inconsistency (no pun intended) in the way the OBOs are developed. Some ontologies,

e.g. the GO, have robust development environments that automatically run a reasoner to

ensure the ontology remains consistent during development(Mungall et al., 2014). Based on

our analyses it is probable, however, that some (and possibly many) ontologies have been

released without ever being processed by a reasoner, or ever being loaded by software other

than what was used to create it.

The open source nature of the ontology development community is much like burgeoning

open source software community. As also noted by Mungall et al. (2014) and Malone and

Stevens (2013), public release of an ontology is analogous to public release of open source

software, and there are various aspects of open source software that would benefit the

ontology community. Based on experiences gained while conducting the analyses reported

on in this chapter, a set of ontology development guidelines have been compiled with the aim

of increasing the robustness of the distributed ecosystem of biomedical ontology development

and increase communication among developers. As Mungall et al. (2014) note, the key to

interoperable ontologies is “early, prospective integration, rather than after-the- fact.”

• Before public release of an ontology, load it using a tool that will attempt to retrieve

all imports to ensure the imports are still available, especially if using PURLs.

• If importing classes from another ontology, avoid making a custom subset of that

ontology for use as an import (and storing that custom subset in a non-standard

repository). Instead, import the entire ontology from an official location.

68



• Avoid redundant class and property definitions. If importing classes from another

ontology, avoid explicit duplication of classes in your ontology just as you would avoid

duplicating third party code in your codebase.

• Before public release of an ontology, ensure internal consistency by running a reasoner

over it after merging all imported ontologies. Releasing an ontology without validating

it with a reasoner is synonymous to releasing source code without running it through

a compiler to check for errors.

• Use a continuous integration system to do all of the above on a periodic (nightly)

basis. Doing so will prevent errors in ontologies, even those caused by imports of

external ontologies, from being propagated.

• If your ontology is dependent upon external ontologies whose development is outside

of your control, configure your continuous integration system to check for changes in

those external ontologies and run the above mentioned checks whenever an ontology

dependency is detected.

• Publish the results of your continuous integration builds publicly to foster commu-

nication with other ontology developers and to demonstrate the robustness of your

ontology to the community.

In keeping with its exemplary status, the GO already complies with many of these

recommendations (Mungall et al., 2012a, 2014).

Based on our analyses, a clear omission in the ontology-development tool chain is a

proper ontology versioning procedure. Lack of support for ontology versioning was docu-

mented as early as 2001 (Ding and Fensel, 2001) and has been more recently noted as well

(D’Aquin and Noy, 2012). Many, but not all, ontologies provide a version as metadata inside

their respective release file, however very few (if any) provide an outwardly visible indica-

tion of their version. Further, most ontologies that are set up to be referenced via a PURL

make only the most current version available. (Klein and Fensel, 2001) has a comprehensive

discussion of the issues involved with ontology versioning and offers some suggestions for

constructing an ontology versioning system. Many of their suggestions, such as delineating
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between major and minor changes, mirror systems currently in place for software library

dissemination, e.g. Apache MavenApache Maven – https://maven.apache.org/. The On-

toMaven tool (Paschke, 2013) is one such tool that for handling imports that, if widely

adopted, has the potential to greatly benefit the biomedical ontology community. The

SVoNt tool (Luczak-Rösch et al., 2010) that provides ontology versioning based on the

Apache SVN version control system is another example of a software engineering utility

that could greatly impact distributed ontology development. While not the only solutions,

these two examples are based on long-standing, robust, open source software engineering

software, and should be considered for adoption by the biomedical ontology development

community. As the number of biomedical ontologies grows and the collective set of ontolo-

gies become further integrated, the greater the chance for versioning issues, and the greater

the need for a versioning system. This should be a top priority for the community.

The danger of poor ontology import handling and a lack of versioning is highlighted by

the following example. Both UBERON and UBERON-EXT explicitly define some object

properties using the RO namespace. In this case, the import machinery is avoided altogether

by essentially re-stating part of the RO in the UBERON file. This example focuses specifi-

cally on the property with URI obo:RO 0002507. In UBERON, this property is listed with

the label “has material contribution from”. In RO, however, term obo:RO 0002507 is known

by the label “determined by”. When these two ontologies are merged, obo:RO 0002507 ends

up with two labels that clearly have differing semantics. Not only does the resultant prop-

erty have multiple labels, but its entire property definition is merged as well so it also

has potentially conflicting positions in the object property hierarchy. Searching for object

properties in the aggregate ontology with multiple labels reveals other object properties

that may have been inappropriately merged similar to obo:RO 0002507 (Table 3.7). It

should be noted that the formally defined object properties of Hoehndorf et al. (2011a)

could potentially detect such improper relation fusions.

Scalability, or the lack thereof, is a major consideration when working with ontologies

(Hoehndorf et al., 2011b). Reasoners especially have be known to not scale well when

processing larger and/or more complex ontologies, and this fact may be driving some of

the troublesome development choices listed above. For instance, the choice to create a
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Relation URI Label1 Label2
obo:RO 0002507 has material contribution from determined by
obo:BFO 0000054 realized in realized by
obo:RO 0002180 qualifier has component
obo:BFO 0000060 precedes obsolete preceded by
obo:RO 0002000 capable of part of boundary of
obo:IAO 0000122 example of usage ready for release

Table 3.7: Examples of suspect multiple labels for object properties in the aggregate
ontology suggesting improper relation fusion. These object properties may have been formed
by inappropriately merging two object properties that while sharing a URI, have differing
semantics and were defined in separate ontologies.

customized subset of an external ontology to use as an import instead of importing the

entire external ontology is likely made in an effort to minimize the size and complexity of

the joint ontology. The ontology integration effort described in Köhler et al. (2013) takes

such an approach. The analyses presented in this chapter suggest that the justification for

such an approach still applies, but is perhaps waning. For example, while we were able

to successfully reason over our aggregate ontology consisting of 84 different ontology files,

we were only able to do so using ELK. If an application requires the more comprehensive

reasoning capabilities of HermiT, for example, then it seems reasonable that all attempts

at minimizing the ontology would and should be made. Hoehndorf et al. (2011b) discusses

the use of different versions of the same ontology, one more expressive than the other, and

concludes that uniform conversion to the OWL EL profile, for example, is not the solution.

There are use cases, such as verifying the consistency of data, where a more expressive

language is appropriate and “should not be sacrificed.”

3.4 Conclusion

Use of Semantic Web technologies and efforts to further formal representation of biology

have resulted in the Open Biomedical Ontologies becoming increasingly integrated (Bada

and Hunter, 2007; Mungall et al., 2011). These continuing efforts will only drive further

ontology integration in the future. As ontologies have become more integrated, their com-

bined use has become more prevalent, e.g. Hoehndorf et al. (2011a, 2012); Gkoutos and

Hoehndorf (2012); Köhler et al. (2013), demonstrating a unique ability to provide insight

over multiple domains of biology. The ability to gauge how well these ontologies can work

in combination with each other, i.e. their interoperability, has become increasingly impor-

tant. While there are eight official OBO Foundry ontologies that have been sanctioned as
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interoperable, the majority of the OBOs, including some very prominent ontologies, remain

in “candidate” status. Based on the rate at which ontologies are being promoted to of-

ficial “Foundry” status, it is unreasonable to assume that the entire set will ever reach a

state of official interoperability. The work described in this chapter represents the most

comprehensive and inclusive examination of OBO interoperability to date, as far as the au-

thors are aware. For completeness, our analysis includes all available OBOs spanning both

“Foundry” and “candidate” ontologies. Through evaluation of inter-ontology connectedness

and the use of OWL reasoners to determine individual and inter-ontology consistency, we

have quantified the interoperability of the OBOs. Our assessment of OBO topology suggests

that interoperability is achievable, however with some caveats. These caveats, such as re-

moval of owl:disjointWith axioms, point to errors in representation and illuminate differing

philosophies in knowledge representation in many cases.

We have investigated the etiologies of many of the unsatisfiable classes that were de-

tected in our analyses. Unique to this thesis, an exhaustive examination of all pairs of OBOs

details the sporadic inconsistencies that arise when integrating many of these disparate do-

main ontologies. Using results of intra- and inter-ontology classifications, eighty-four OBO

files have been integrated into a logically consistent, unified, aggregate representation of

biology, augmented with inferences computed by an OWL reasoner. Many of the observed

ontology errors, whether representational or otherwise, e.g. the use of invalid URIs ref-

erencing imported ontologies, can be detected using automatic means. Our conclusions

suggest that adoption of long-standing software engineering best practices would benefit

the biomedical ontology development community by preventing many of these ontology er-

rors from reaching the public domain. Others have made similar suggestions (Malone and

Stevens, 2013) and current practices used by the developers of the GO suggest others would

also agree (Mungall et al., 2014). Towards this goal, we have contributed in this work a set

of guidelines for the public release of ontologies that make use of available tools from the

Semantic Web and software engineering communities with the goal of helping developers

release robust, stable versions of their ontologies. Further, our work highlights the need for

a stable, community-wide ontology versioning system. This single improvement has been
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echoed by others (Luczak-Rösch et al., 2010; Paschke, 2013) and would serve ontology users

and developers greatly in the opinion of this author.

The work presented in this chapter could be extended past the set of OBOs and applied

to other biomedical ontologies in the future. The NCBO BioPortal (Noy et al., 2009; Whet-

zel et al., 2011), for instance, catalogs 400+ biomedical ontologies at the time of this writing.

Though this set includes the OBOs, there are potentially many more ontologies that could

be added to the compiled aggregate representation of biology constructed in our work. Our

dependence on logical definitions would require any additional ontology to also make use of

formally defined concepts. The use of logical definitions by the non-OBO Foundry ontolo-

gies cataloged by the NCBO BioPortal is unknown however, and an exploratory analysis

would be required to determine if such an integration effort were worthwhile. Additional ex-

tensions to the work presented in this chapter could involve an analysis using more formally

defined relations, e.g. Hoehndorf et al. (2011a). Such an approach would likely reveal fur-

ther issues in knowledge representation and would have the secondary benefit of providing

to the community an integrated ontology of relations and a fully integrated representation

of biology that others could build upon. Another future goal of this work is the automation

of the assessments conducted in this chapter. Running these assessments on a periodic

basis with the results displayed as a community resource would inform ontology developers

of localized issues with their ontologies or with unintended global interactions with other

ontologies. Given the already distributed nature of the ontology development community,

a single online resource that achieves many of the quality assurance checks put forth in our

suggested guidelines might facilitate wider and quicker uptake by the community at large.

There is incredible semantic power within biomedical ontologies that is being underuti-

lized (Mungall et al., 2014), and this power continues to grow as the ontology landscape

becomes increasingly integrated. The confluence of maturing OWL reasoners and the pro-

liferation of logical definitions has set the stage for the powers of computational inference to

help understand the complexities of biology. Chapter IV builds on the unified representation

of biology constructed in this chapter and demonstrates one such use of this underutilized

semantic power in the form of a significant advancement in the state of the art of knowledge

base-enrichment analysis.
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3.5 Methods

The OWLTools project23 is a Java-based wrapper for the OWL API project24. Among

other features, it provides a command-line interface to many common ontology manipulation

and reasoning tasks as well as an API for performing graph operations over an ontology.

The OWLTools project is also integrated with the four OWL reasoners used in this chapter:

ELK (Kazakov et al., 2014), HermiT (Shearer et al., 2008; Glimm et al., 2014), Fact++

(Tsarkov and Horrocks, 2006), and JCEL (Mendez, 2012). For all experiments, version

0.2.2-SNAPSHOT of OWLTools was used (downloaded March 9, 2015).

3.5.1 Compute environment

All experiments were conducted using the Pando supercomputer hosted by the Univer-

sity of Colorado BioFrontiers Institute making extensive use of its 60 – 64 core systems,

each with 512 GB RAM and mirrored 1T disks. For jobs that could be run in parallel, e.g.

the 52,668 OWL reasoner classification attempts of all OBO pairings, Pando’s Torque job

scheduling system was used to distribute the jobs across all available cores.

3.5.2 Ontology file procurement

The ontology files used in this analysis were downloaded on May 25, 2015. A list of

ontology files was compiled from those cataloged by the OBOFoundry website25, and a

set of ontology logical definition files available from a variety of other online sources. Each

ontology was downloaded using the GNU wget utility26. In order to create a stable snapshot

of each ontology file, the OWLTools command-line interface was used to merge statements

from all ontology imports with statements from the ontology file. The resultant merge of

all statements was saved to a file which was used for all subsequent analyses.

In cases where the ontology file PURL listed on the OBOFoundry website, or a PURL

used in an ontology import statement was found to be stale, manual efforts were made to

track down a working URL by referencing publications and by using Google. Minor typos in

ontology files were also fixed manually when discovered through the ontology procurement

23OWLTools: https://github.com/owlcollab/owltools [Accessed October 2015]
24OWL API: https://github.com/owlcs/owlapi [Accessed October 2015]
25OBOFoundry: http://obofoundry.org [Accessed October 2015]
26GNU wget: https://www.gnu.org/software/wget [Accessed October 2015]
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process. To automate the process of ontology procurement and more importantly, to make

it reproducible, a Unix shell script that downloads each ontology, makes any necessary

modifications using the GNU sed utility27, and merges each ontology with its imports was

composed.

3.5.3 Creation of modified OWL files

For each ontology studies, two supplemental versions of the ontology file were generated:

one using only the OWL EL profile, and one where all owl:disjointWith axioms were

excluded. The OWL EL version of each ontology was generated using the EL Vira tool

(Hoehndorf et al., 2011b). A simple Unix shell script was composed to create ontology file

versions that exclude the owl:disjointWith axioms.

3.5.3.1 Ontology interconnectedness assessment

Inter- and intra-ontology relations represented in each ontology file were determined us-

ing the OWLTools graph API. The OWLTools graph API allows graph-theoretic operations

over an ontology. Analysis of the relations used to connect ontology terms in and between

ontologies was completed by traversing over the graph structure of the underlying OWL.

3.5.3.2 Consistency check and classification

Four different OWL reasoners were employed for ontology consistency checking and

classification via the OWLTools command line interface: ELK (Kazakov et al., 2014), Her-

miT (Shearer et al., 2008; Glimm et al., 2014), Fact++ (Tsarkov and Horrocks, 2006), and

JCEL (Mendez, 2012). For all cases that could be run in parallel, e.g. the 52,668 OWL

reasoner classification attempts of all OBO pairings, UNIX shell scripts were dynamically

generated for each run using Java. When ontology classification failed, hints as to cause of

the unsatisfiable classes were provided by the reasoners via the OWLTools command line

API. For those ontology files that were successfully classified, the ontology file statements

plus all inferred statements were saved to a new file to be used in subsequent analyses.

When exhaustively classifying each OBO pairing, the OWLTools command line API

was also used to merge each pair of ontologies prior to application of the reasoner.

27GNU sed: https://www.gnu.org/software/sed [Accessed October 2015]
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In order to ascertain the innate compliance of the OBOs with the OWL EL profile, the

OWLAPI was used to test each ontology file for compliance with the OWL EL profile.

3.5.4 Integrating the OBOs into a unified representation of biology

Selection of a subset of OBOs to include in the aggregate, unified ontology was largely

a manual process based on evidence gathered from the individual and integrated ontology

analyses. Ontologies were selected for inclusion based on their demonstrated internal con-

sistency and their propensity for being a member of inconsistent pairings. Ontologies that

are isolated silos were excluded from the aggregate. By convention, the individual ontology

files were pre-classified, and the original ontology plus any inferences were both included

in the aggregate ontology. In cases where inferences were computed, output from HermiT

was preferred over output of ELK since ELK reasons over a OWL EL restricted subset of

the knowledge representation. The OWLTools command line API was used to merge the

included ontologies into an aggregate and the ELK reasoner was used to classify the aggre-

gate. The aggregate ontology, plus all inferences, were saved into a file for use in subsequent

analyses. The 84 ontology files included in the aggregate are listed in Table 3.6.
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CHAPTER IV

LOGICAL ENTAILMENT OF GENE ANNOTATIONS FOR BIOLOGICAL

DISCOVERY

This chapter introduces a significant advancement in the state of the art of knowledge

based-enrichment analysis. Building on the comprehensive analysis of Open Biomedical

Ontology (OBO) topology presented in Chapter III, the work in this chapter combines the

powerful deductive reasoning capabilities of description logics with a probabilistic reasoning

method that is used ubiquitously throughout biomedicine. At the core of this advancement

in knowledge based-enrichment analysis is a novel methodology that enables the generation

of high quality, novel gene annotations to a wide variety of ontologies to which genes have

not previously been connected. Using available gene annotations to the GO and phenotype

ontologies as seeds, the methodology proposed in this chapter leverages interconnections

among ontology concepts and the principle of deductive entailment to create novel associa-

tions between genes and ontology concepts. Not only are novel gene annotations generated

to previously unannotated ontologies, but novel annotations to previously annotated on-

tologies, e.g. the GO and phenotype ontologies, are also derived. Taking advantage once

again of the logical definitions integrating the ontologies, our method improves on the typ-

ically returned lists of enriched concepts provided by many tools by enabling the return of

enriched modules of biology. By providing modules of enriched concepts we provide the

researcher with larger pieces of biology with which to incorporate into their hypotheses.

Novel gene annotations are validated quantitatively by comparing against experimentally

verified protein expression as well as curated gene-chemical interactions. Overall perfor-

mance is gauged through retrospective analyses of previously published research as well as

the analysis of a number of targeted gene lists. Our methodology overcomes clear limita-

tions of previous approaches and is complementary to many of the recent enrichment efforts

that have begun to integrate disparate data types. Our method responds to the call by

Huang et al. (2009a) that enrichment methodologies should strive to incorporate more than

just the Gene Ontology, and in doing so we have addressed a number of challenges that

face the current field of enrichment analysis (Khatri et al., 2012). Given that integration

77



of ontologies by the biomedical community through the use of logical definitions is an on-

going process, the utility of our methodology will only improve over time thus enabling a

more comprehensive, intuitive, and adaptable resource to help biologists better interpret

and understand their genome-scale experimental data.

4.1 Introduction

Application of structured knowledge, in particular, the use of annotations of genes and

gene products to the Gene Ontology (GO) and other sources has been widely adopted as

a standard first step in the analysis of genomic-scale data emanating from contemporary

high-throughput experiments (Tipney and Hunter, 2010; Khatri et al., 2012). Through

the application of context and structure to unstructured lists of genes, knowledge based-

enrichment methodologies have emerged as critical tools for biologists as they decipher the

complex intertwinements of a gene28 list with the ultimate goal of generating mechanistic

explanations of the phenomenon under study. This common practice takes on various forms,

but they all in general involve the comparison of sets of gene annotations to a background

distribution. A gene annotation in this context refers to any association of a gene with a

biological concept, e.g the tumor suppressor gene TP53 is annotated to the Gene Ontology

(GO) molecular function damaged DNA binding [GO:0003684], among others29. In practice,

gene annotations take a variety of forms ranging from associations to pathways (Zhang

et al., 2005; Huang et al., 2009b; Glaab et al., 2012; Chen et al., 2013), diseases (Zhang

et al., 2005; Chen et al., 2013), drugs (Zhang et al., 2005; Chen et al., 2013), microRNAs

(Zhang et al., 2005; Chen et al., 2013), etc. By far, the most prevalent and widely used

gene annotation type is association of genes to GO concepts (Huang et al., 2009a). At

the time of this writing, the UniProt database catalogs 2,893,535 manually generated GO

annotations to 436,975 distinct gene products, and 238,034,717 total GO annotations to

36,480,773 genes products spanning 549,460 taxa30. Also available are gene annotations to

phenotype ontologies, e.g. mouse and rat genes to the Mammalian Phenotype Ontology

(MP) (Smith et al., 2005c; Smith and Eppig, 2009), human genes to the Human Phenotype

28In the remainder of this chapter we will use the word “gene” to represent all things for which there are
annotations to ontology terms, e.g. genes, proteins, etc.

29TP53 – http://www.uniprot.org/uniprot/P04637 [Accessed October 2015]
30http://www.ebi.ac.uk/GOA/uniprot release [Accessed October 2015]
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Ontology (Robinson et al., 2008). While there are a plethora of biomedical ontologies, there

are gene annotations to concepts from only a few of them. Aside from the GO and a handful

of phenotype ontologies, the only other examples of gene annotation to ontology concepts

exists as one-off experiments, e.g. Hoehndorf et al. (2014).

Ontology-based gene annotations are required to include an evidence code to indicate

the supporting evidence for the annotation (Consortium, 2015). By convention, evidence

codes are classified into two major groups, those that are manually curated (non-IEA) by

humans and those that are computational derived (Inferred from Electronic Annotation;

IEA). Although evidence codes do not signify the quality of gene annotations (Consortium,

2015), IEA annotations are generally considered to be of lower confidence (du Plessis et al.,

2011) because they have not been manually reviewed, although there is evidence to suggest

that despite the possibility of lower confidence they should be used regardless (Pavlidis and

Gillis, 2012). Gene annotations optionally include a qualifier, e.g. NOT to indicate the

negation of an annotation. Annotations using the NOT qualifier have been excluded from

all experiments conducted in this thesis. Although the majority of existing gene annotations

to ontology concepts reference the GO, a few other, predominantly phenotype ontologies

have also been used for gene annotation (Robinson et al., 2008; Smith and Eppig, 2009;

Osumi-Sutherland et al., 2013). Ontology-based gene annotations have become invaluable

resources to the bioinformatics community (Blake et al., 2013).

The critical innovative aspect of this thesis is the generation of high quality, novel gene

annotations for a variety of conceptual types not previously directly annotated to genes.

Not only does the proposed methodology support the generation of gene annotations to

new conceptual types, but it also produces novel annotations to previously used concepts,

e.g. GO concepts. It is this increase in both the number and available types of gene an-

notations that significantly advances the state-of-the-art in knowledge based-enrichment

analysis. Recent efforts to integrate biomedical ontologies using logical definitions are the

basis of the proposed methodology (Mungall et al., 2011). These efforts have led to the

continued integration of a core set of biomedical ontologies. Starting from available GO

and phenotype gene annotations, the proposed methodology computes novel gene anno-

tations by leveraging the principle of deductive entailment which asks the question: if a
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gene is annotated to concept A, and concept A is logically defined through some rela-

tion R to concept B, then would an annotation from the gene to concept B via R al-

ways be true? By asking this question and deductively traversing the logical definitions

emanating from GO and phenotype concepts that are already referenced by gene anno-

tations, novel, entailed gene annotations are discovered. For example, since the protein

HTRA2 [UniProt:O43464] is annotated to the GO biological process forebrain development

[GO:0030900], and forebrain development [GO:0030900] is logically defined with respect

to forebrain [UBERON:0001890] via the results in development of [RO:0002296] re-

lation, the proposed methodology defines a novel, entailed gene annotation from HTRA2

[UniProt:O43464] to forebrain [UBERON:0001890] via the principle of deductive entail-

ment.

Computing a large enough number of ontological entailments to enable enrichment

requires the integration of a substantial set of disparate ontologies. The effort to integrate

the Open Biomedical Ontologies (OBOs) presented in Chapter III provides the foundation

for generating high quality, novel gene annotations to a variety of ontologies. Our large-

scale integration of the majority of the OBOs encompasses eighty-four separate ontology

files and includes all available logical definitions. Having been successfully classified by an

OWL reasoner, the aggregate ontology also includes a substantial number of inferences, i.e.

knowledge that was not explicitly represented in the ontologies. By using a unified, logically

consistent representation of biology, the methodology presented in this chapter is able to

reformulate ontology concepts entailed from existing gene annotations as novel, entailed

annotations to genes.

Our approach is first to combine many of the aspects of previous uses of logical defi-

nitions with an innovative use of deductive logic to generate novel gene annotations using

only the ontologies and their available logical definitions. Our approach is not the first to

incorporate ontologies other than the GO for enrichment purposes. Hoehndorf et al. (2014)

analyzed mouse gene expression data and demonstrated enrichment over the Neurobehav-

ior Ontology to link behavior interpretations to gene expression. Behavioral phenotype

data was obtained by analyzing mouse knockout experiments and linking phenotypes to

the genes that were knocked out. Their work involved the manual annotation of more than
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1,000 mouse genes previously known to play a role in behavior to NBO concepts, and thus

required costly upfront manual annotation in order to enrich over behavior concepts. The

methodology described in this thesis is specifically designed to avoid the high cost of manual

annotation by making use of information that is already present in the ontologies. There

are also examples of enrichment using existing phenotype annotations (Chen et al., 2013,

2009; Deng et al., 2015), and there are several methods that use text mining approaches to

link genes to ontology terms to enable enrichment over diseases (LePendu et al., 2011) and

multiple ontologies (Wittkop et al., 2013). Our approach is set apart from these related

works by not only enabling enrichment over multiple ontologies, but by our focus on using

an integrated set of ontologies which both reduces redundancy in the enriched results and

naturally provides intuitive modules of enriched concepts to the researcher.

Ours is also not the first method to make explicit use of logical definitions. Hoehndorf

et al. (2012) is similar to the work presented in this thesis. They integrate PharmGKB

(Hewett et al., 2002), Drugbank (Law et al., 2014), and the Comparative Toxicogenomics

Database (CTD) (Davis et al., 2015) and use multiple ontologies to link domains. Through

the use of logical definitions they are able to create new gene annotations to structured re-

sources, e.g. if a drug D is a component of a pathway P, and that pathway has another drug,

gene, or disease X as a component, then they say D is associated with X. They perform en-

richment analysis of Disease Ontology concepts and CHEBI concepts (mapped from drugs)

over pathways. While similar, our proposed methodology makes extensive use of the ontolo-

gies themselves, using existing data as it is presented to formulate novel gene annotations.

It is in many ways complementary to the work of Hoehndorf et al. (2012). Köhler et al.

(2013) infer novel phenotype annotations across species through the integration of several

phenotype ontologies including HP, MP, and ZP. They make extensive use of a subset of

available logical definitions to form inter-species phenotype connections and augment hu-

man gene annotations to HP concepts based on other species. This represents an alternative

means for generating novel gene annotations that is different from the methodology pro-

posed in this thesis, but may be a good extension for future work. Gkoutos and Hoehndorf

(2012) use an integrated ontology including logical definitions to predict function of yeast

genes. Their methodology is able to recover between 11 and 18% of GO annotations for
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yeast genes by extracting GO terms used in the logical definitions of phenotypes annotated

to the same genes. Similar to our work they generate novel GO annotations from phenotype

annotations via cross products. They restrict their work to the GO however and do not use

the gene annotations for enrichment analysis, whereas the methodology proposed in this

these leverages all integrated ontologies to generate a large number of gene annotations to

a multitude of ontologies. Also similar to our proposed method are examples of previous

work that have used existing gene annotations to ontologies to bootstrap novel annotations

(LePendu et al., 2011). Our methodology, however, is the first however to explicitly tar-

get the generation of gene annotations without manual intervention, and it is these gene

annotations that drive our enhancement of knowledge based-enrichment analysis.

Knowledge based-enrichment analysis, in general, involves the statistical comparison of

gene annotations for a gene set of interest (e.g. the set of differentially expressed genes as

determined via microarray) to gene annotations for some background population of genes

(e.g. the set of all genes represented on the microarray). By comparing the distribution

of ontology concepts associated with the gene set of interest to a background distribution,

enrichment analysis identifies concepts associated with the genes of interest that are sta-

tistically over- or under-represented (Huang et al., 2009b). Concepts determined to be

over-represented are said to be “enriched” within the gene set of interest and are implicated

as playing a role in the underlying mechanism of the phenomenon under study (Tipney

and Hunter, 2010). To borrow an example used by Huang et al. (2009a), if 10% of the

differentially expressed genes from some microarray study are kinases (indicated by their

annotation with the GO molecular function kinase activity [GO:0016301]), compared to

only 1% of the genes on the microarray, it is possible to conclude that kinases are enriched

in the list of differentially expressed genes and play an important role in the phenomenon

under study using common statistical methods (e.g. χ2, Fisher’s Exact, and Hypergeo-

metric tests). Enrichment analysis has evolved over three generations of methodologies in

its initial decade of existence according to Khatri et al. (2012). These three generations

correlate well with the three types of enrichment analysis tools classified by Huang et al.

(2009a) in an earlier review.
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The first generation of enrichment analysis, over-representation analysis (ORA), will

also serve as the primary mode of demonstration for the methodology proposed in this thesis.

Given a user-specified gene list of interest, ORA (also known as singular enrichment analysis

(SEA) by Huang et al. (2009a)) returns to the user a list of biological concepts represented

in the gene list of interest that appear more often than expected by chance (Leong and

Kipling, 2009). This approach is commonly implemented using the hypergeometric test or

a close variant and had been implemented in at least 44 different tools as of 2009 (Huang

et al., 2009a). ORA is still widely present in tools today including DAVID (Huang et al.,

2009b), PantherDb (Mi et al., 2013), Ontologizer (Bauer et al., 2008), gProfiler (Reimand

et al., 2007, 2011), BINGO (Maere et al., 2005), GeneTrail (Keller et al., 2008), FatiGO

(Al-Shahrour et al., 2007b), STOP (Wittkop et al., 2013), WebGestalt (Zhang et al., 2005;

Wang et al., 2013), and GOEast (Zheng and Wang, 2008), to name a few. Compared to

subsequent generations of enrichment analysis, ORA does not require a gene set of interest to

be submitted with accompanying molecular measurements (e.g. expression levels), however

the user is required to create the gene set of interest (often by choosing the differentially

expressed genes from a microarray experiment, for example) and this pre-selection process

has potential to negatively affect the analysis due to data loss. Further, as Khatri et al.

(2012) point out, the exclusion of experimental data results in ORA treating each gene

equally, whereas inclusion of experimental data would allow weighting based on such features

as fold change, significance of change, etc. Further, the marginally significant genes that are

excluded, i.e. those with p-values just above 0.05, may be important to understanding the

big picture of the underlying mechanism. Another weakness of ORA is that the output is a

linear list of enriched concepts that is often quite long and can be difficult for the researcher

to digest (Huang et al., 2009a). The methodology proposed in this thesis combats this

limitation by inherently enabling the output of enriched modules of biological concepts.

ORA also assumes independence between genes as well as independence between biological

concepts (Khatri et al., 2012), both of which are poor assumptions given the inherently

integrated nature of biology.

Of the ORA methods previously listed, the STOP (Statistical Tracking of Ontological

Phrases) approach described by Wittkop et al. (2013) is the most similar to the method-
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ology proposed in this thesis. The STOP approach is also an enrichment methodology

based on expanding available conceptual types through the use of ontologies. STOP uses

a text mining approach to detect mentions of ontology concepts in free text fields of gene

and protein database records. These mentions of concepts are then mapped to the gene or

protein referenced by the database record being mined to create novel gene annotations.

By using the NCBO annotator (Jonquet et al., 2009), the STOP approach is capable of

generating novel gene annotations using the hundreds of different ontologies that are cat-

aloged by the NCBO BioPortal (Noy et al., 2009), including the subset of ontologies, the

OBOs, that serve as a basis for the method proposed in this thesis. A similar text mining

approach has also been used to enable enrichment analysis using concepts from the Disease

Ontology (LePendu et al., 2011). LePendu et al. (2011) links genes to PubMed records by

mining available GO annotations. Disease Ontology concept mentions are then mined from

the PubMed titles and abstracts using the NCBO Annotator to generate novel gene-disease

annotations. These text-mining based methods should be considered complementary to

the approach proposed in this thesis as they suffer from a few innate issues. Automatic

recognition of ontology concepts in text is a yet unsolved problem. LePendu et al. (2011)

acknowledge large differences in the ability to automatically detect concepts in different

ontologies. Though some conceptual types, e.g. cellular components, are recognized rel-

atively easily by automatic tools, many conceptual types, e.g. molecular functions and

biological processes, are much more difficult to extract reliably(Funk et al., 2014), resulting

in a potential bias to concepts that are more concrete and have shorter labels (Hirschman

et al., 2005). It has also been shown that the convenience of the many ontologies available

to the NCBO annotator is offset to some degree by its poor performance relative to other

automatic concept recognition systems (Funk et al., 2014). As will be demonstrated, the

method proposed in this thesis generates novel gene annotations in a manner not susceptible

to errors of a text mining system. The method proposed in this thesis differs from these

text mining-based methods in a number of important ways. First, our approach relies on

the sound basis of logical reasoning, and not on the ability to mine mentions of ontology

concepts from text which has varying performance levels. And second, our commitment to

logical consistency and an integrated set of orthogonal ontologies will minimize redundancy
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in the concepts we identify as enriched and will enable our methodology to deliver inter-

linked modules of enriched concepts as output, thus giving the user a head start in regards

to hypothesis generation. ORA methods are still prevalent in enrichment tools today, but

since their inception there have been attempts to overcome some of their deficiencies in

regards to treating genes and concepts independently and with equal weight.

The second generation of enrichment analysis algorithms addresses some of the limi-

tations of ORA by using all available experimental data and accounting for dependence

among genes by taking into account coordinated gene expression. Referred to as functional

class scoring by Khatri et al. (2012) and the more commonly used gene set enrichment

analysis (GSEA) by Huang et al. (2009a), this generation of enrichment analysis considers

not only the statistically significant expression changes typically used as input for ORA,

but recognizes that smaller, coordinated changes in gene expression can also be indicative

of underlying molecular mechanisms. Unlike ORA, GSEA uses pre-composed sets of genes

that have been grouped together based on shared gene annotation (e.g. shared annota-

tion to GO BP concepts), chromosomal location, regulation, or other attributes. GSEA

methods use molecular measurement data to generate a ranked list of genes which is com-

pared to the precomposed gene sets to generate a maximum enrichment score (MES). P-

values are generated by comparing the MES to random MES distributions using a weighted

Kolmogorov-Smirnov-like statistic. A gene set is considered correlated with an annotation

category if the precomposed gene set tends to occur near the top or bottom of the longer

ranked list of genes. GSEA is seminally described in Subramanian et al. (2005), but has

since been implemented in many tools (Kim and Volsky, 2005; Al-Shahrour et al., 2007a; Yi

et al., 2013; Chen et al., 2013). GSEA results have been shown to vary significantly based

on the collection of pre-composed gene sets in an analysis (Bateman et al., 2014). Huang

et al. (2009a) note that while the use of all molecular measurement data is a strength of

GSEA, it is also a limitation is some respects as the method requires a value in order to

rank the genes. GSEA shares the limitation of ORA regarding treating the annotation cate-

gories as independent. Considering dependencies among annotation categories is important

because a gene can function in more than one pathway, so pathways by their very nature

are interconnected and therefore interdependent. The arbitrary delineations that biologists
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use to compartmentalize pathways don’t necessarily hold in vivo. The third generation of

enrichment analysis algorithms attempts to address this limitation.

Huang et al. (2009a) and Khatri et al. (2012) differ slightly in their descriptions of the

third generation of enrichment analysis methodologies, however both involve a network ap-

proach to account for interactions among biological entities. Huang et al. (2009a) described

modular enrichment analysis (MEA) as an extension of ORA that takes into account re-

lationships between ontology concepts. They note that joint annotation of concepts may

imply hidden biological meaning, and may be a step towards “biological module-centric anal-

ysis”. That is, instead of piecing together lists of enriched terms, researchers are provided

larger modules of biology on which to focus their analyses. Available MEA implementa-

tions include DAVID (Huang et al., 2009b), Ontologizer (Bauer et al., 2008), GENECODIS

(Carmona-Saez et al., 2007), and ADGO (Nam et al., 2006). A limitation of MEA algo-

rithms is that they have the potential to exclude “orphan” concepts or genes that are not

members of a biological module. Care must be taken when running MEA to identify and

examine such orphan concepts and/or genes that have been excluded (Huang et al., 2007).

The third generation of enrichment analysis algorithms as defined by Khatri et al. (2012) is

based on known relations between genes and gene products as opposed to between annota-

tion categories. Their Pathway Topology (PT)-based category relies heavily on relationships

(e.g. activation, inhibition) between genes and proteins available in pathway databases, e.g.

KEGG (Kanehisa and Goto, 2000), Reactome (Croft et al., 2014), etc. PT-based algorithms

are an extension of GSEA algorithms that take into account additional information pro-

vided by interactions between genes and gene products to adjust the ranking of the overall

gene list. Mitrea et al. (2013) provides a nice review of available PT-based methods. There

are also tools available that bridge the gap between MEA and PT-based methods, e.g. En-

richNet (Glaab et al., 2012) which incorporates pathway topology to compute enrichment

of concepts without the use of molecular measurements. Since pathway topology is largely

dictated by context, e.g. cell-specific gene expression, PT-based methods are limited by the

current unavailability of such contextual information. Recent efforts to provide context to

gene annotations, e.g. Huntley et al. (2014), will likely be beneficial to PT-based algorithms.
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The enhancement to enrichment analysis proposed in this thesis has the potential to

impact all generations of enrichment analysis algorithms, however the focus will remain on

the ORA methodology as it is the most traditional of the methods and there are avail-

able tools, e.g. Ontologizer, that are easily co-opted to use the novel gene annotations we

produce. In the case of Ontologizer, only the input files require modification to demon-

strate our enhancement to knowledge based-enrichment analysis. It is conceivable that our

methodology could be used to generate pre-composed gene sets for use with GSEA similar

to those cataloged by MSigDb (Subramanian et al., 2005), however such experiments will

be left for future work. We further note that although there have not been many direct

comparisons between ORA and GSEA, there is evidence that they produce highly consis-

tent results (Huang et al., 2007, 2009a), and that ORA methods perform at similar levels to

many of the second and third generation approaches (Tarca et al., 2013). The Ontologizer

includes algorithms that take into account concept-to-concept relations, and thus by our

use of Ontologizer we will benefit from some aspects of third-generation enrichment algo-

rithms. Experiments integrating pathway topology will be left for future research, however

the inherent integrated nature of the enriched concept produced by the proposed methodol-

ogy are analogous to the biological module approach attempted by DAVID and other MEA

algorithms.

Independent of the type of enrichment analysis algorithm used, the proposed methodol-

ogy addresses many of the outstanding challenges facing contemporary enrichment analysis.

The methodology described herein addresses, to some degree, three of the six methodological

and annotation challenges in the field of enrichment analysis identified in the work of Khatri

et al. (2012). Khatri et al. (2012) list three challenges with respect to the acquisition of gene

annotations. First, they state that enrichment analysis needs higher-resolution knowledge

bases to keep pace with high-resolution data generation. Gene annotations traditionally

reference non-redundant databases, i.e. they reference some canonical gene or protein as

opposed to the individual SNPs or isoforms found in vivo. Acquisition of high-resolution

gene annotations will require changes to curation standards and possibly other means. Re-

cent machine learning based strategies for predicting function at the isoform level (Li et al.,

2013, 2015) based on RNA-seq data have shown some ability to automatically assign GO
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functions to protein isoforms using a label propagation strategy, however this is still an

open problem area. Since our method relies on existing gene annotations as seed points, it

does not address the issue of high-resolution gene annotations. However, if reliable sources

of high-resolution gene annotations become available, our methodology will be able to use

them just as it uses current gene annotations to generate novel high-resolution annotations

of SNPs and splice isoforms.

The second annotation-related challenge listed by Khatri et al. (2012) is the incomplete-

ness and inaccuracy of available gene annotations. They equate IEA annotations as being

potentially inaccurate. As discussed previously, this equivalency is somewhat controversial,

and even if there is potential for inaccuracy there is evidence that the IEA annotations

should be used regardless (Pavlidis and Gillis, 2012). There is no arguing, however, about

the incompleteness of gene annotations. The production rate of new non-IEA annotations

has been unable to keep pace with the discovery of new genes and gene products (Baum-

gartner et al., 2007). Chapter II provides an in-depth look at the rate of gene annotation

growth from a variety of perspectives. Although the methodology demonstrated in this

thesis does not provide novel annotations for genes that were not at least previously anno-

tated with one GO or phenotype concept, our method does address the issue of annotation

completeness by assigning additional annotations to genes in both number and conceptual

type, and thus provides a richer and more complete annotation for many genes.

Missing condition- and cell-specific contextual information is the third annotation-

related challenge proposed by Khatri et al. (2012). Experiments that are the basis for

gene annotations occur in specific cell types, at specific times or developmental stages, and

sometimes in the context of specific conditions, e.g. disease states. They point out that this

contextual information is particularly important when dealing with pathway data, as the

topology of a pathway can vary greatly based on its context. The lack of context has re-

sulted in the conflation of protein-protein interactions across cell types, tissues, conditions,

etc., that has adverse effects on enrichment methods. Ongoing work by the model organism

databases provides a solution to this issue by extending gene annotations with contextual

information such as by adding a reference to the cell type used in the experiment (Hunt-

ley et al., 2014). As more of these contextual extensions come online, enrichment analysis
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algorithms will be able to make use of them. In the meantime, the methodology proposed

in this thesis provides a variation on the solution by generating novel gene annotations to

ontology concepts that can provide context to the phenomenon under study. By enabling

enrichment over cell types, tissues, and other anatomy, the proposed methodology takes

steps in the direction of understanding underlying mechanisms in greater context than is

currently available, and it does so based solely on information that is already present.

Khatri et al. (2012) also propose three methodological challenges facing the field of

enrichment analysis. The first challenge points toward the inability of current algorithms

to model and analyze dynamic response. Propagation, i.e. activation, inhibition, etc.,

between pathways is not taken into account by enrichment analysis algorithms, including

our method. Pathways are considered independent of other pathways across time points

and the entire dynamic system is not modeled as a whole. They also point to the inability

to model the effects of external stimuli on the phenomenon under study, citing that most

methods consider only genes and their products and completely ignore the participation of

other molecules. While our method does not explicitly pursue this limitation, our ability to

compute enriched chemicals via the ChEBI ontology (Degtyarenko et al., 2008) is a step in

this direction. Chemicals that are integral to an underlying mechanism, e.g. dopamine in

the case of Parkinson’s Disease (Vernier et al., 2004), can be detected as enriched thereby

informing the researcher of the potential interplay of small molecules with the phenomenon

under study.

Perhaps the most significant limitation of enrichment analysis methodologies is the

lack of robust benchmarking to allow for algorithm tuning and evaluation. Huang et al.

(2009a) made the call for a standard evaluation procedure in 2009, but to our knowledge

the community still lacks such a resource. A standard evaluation procedure would help

in a variety of ways. The marketplace for enrichment analysis tools is crowded. There

were over 68 available tools in 2009 (Huang et al., 2009a), and there are certainly more

at present day. Standard benchmarking datasets would help the community understand

the nuances of available tools and would allow users to select the tool(s) most appropriate

for use. Standard evaluations might also prevent redundant algorithms from being offered

as novel works of science. The fact that there is no gold standard evaluation may a con-
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tributing factor to why there are so many options to choose from when doing enrichment

analysis. A survey of available enrichment analysis methods reveals that their evaluations

are largely qualitative. The publication of a new enrichment tool is typically accompanied

by an enrichment analysis of one or more real or contrived biological datasets. Such evalua-

tions do not quantitatively assess the performance of the algorithm being “tested” (Törönen

et al., 2009). Rarely are these data sets used by multiple groups. Resulting enriched terms

are observed and discussed from the perspective of what is known about the underlying

phenomenon of interest. Results from novel algorithms are sometimes compared to results

from more prominent enrichment tools, again in a qualitative manner. The inherent com-

plexity of biology has no doubt played a role in the dearth of robust evaluation schemes

for enrichment algorithms. Even the most well understood high-throughput experiment is

probably not completely understood, so generating an evaluation data set is predictably

difficult (Törönen et al., 2009; Hung et al., 2012). Generating an evaluation set that is

not trivial is even more so. Aside from evaluating against a biological dataset there have

been several attempts at providing more quantitative evaluations of enrichment algorithms.

Törönen et al. (2009) proposed a method to artificially generate gene lists with variable

levels of signal for variable numbers of over-represented concepts. They test the abilities

of DAVID and Ontologizer to report the expected enriched GO concepts in their top n list

of enriched concepts and conclude that the Ontologizer topology-elimination algorithm is

superior. Hung et al. (2012) propose a voting scheme for GSEA algorithms, comparing re-

sults of a single tool to the consensus results of a collection of tools in the absence of a gold

standard. Hua et al. (2014) propose a hybrid data model that generates artificial datasets

from real data to evaluate GSEA algorithms. Liu and Ruan (2013) compare their novel

third-generation enrichment algorithm to GSEA and use a literature review to support the

relevancy of pathways they report enriched.

Evaluation of the methodology proposed in this thesis will take a hybrid approach.

While recognizing that there is no standard benchmarking data set for enrichment analysis,

we will make use targeted gene lists used to evaluate the STOP methodology (Wittkop et al.,

2013). In conjunction with literature review, we will evaluate our proposed methodology

using the Parkinson’s Disease and Huntington’s Disease gene lists that were used to validate
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the STOP approach. These standard evaluations are augmented with more quantitative

validation of our novel gene annotations to cellular components, tissues, and anatomical

regions through comparison against experimentally verified protein expression. Novel gene

annotations to chemicals will be validated using curated gene-chemical interaction data.

The methodology presented in this chapter represents an advancement in the state-of-

the-art of knowledge based-enrichment analysis. Building on the comprehensive ontology

integration effort presented in Chapter III, we have developed a methodology that vastly

increases available, high quality gene annotations in both number and type. Our method

takes advantage of available GO and phenotype ontology annotations and uses the principle

of deductive entailment to mine the aggregate ontology constructed in Chapter III to pro-

duce novel, high quality annotations to a variety of biomedical ontologies. Taking advantage

once again of the logical definitions integrating the ontologies, our method improves on the

typically returned lists of enriched concepts provided by many tools by enabling the return

of enriched modules of concepts. By providing modules of enriched concepts we provide

the researcher with larger pieces of biology with which to incorporate into their hypotheses.

Novel gene annotations are validated quantitatively by comparing against experimentally

verified protein expression as well as curated gene-chemical interactions. Overall perfor-

mance is gauged through retrospective analyses of previously published research as well as

the analysis of a number of targeted gene lists. Our methodology overcomes clear limita-

tions of previous approaches and is complementary to many of the recent enrichment efforts

that have begun to integrate disparate data types. Our method responds to the call by

Huang et al. (2009a) that enrichment methodologies should strive to incorporate more than

just the Gene Ontology, and in doing so we have addressed a number of challenges that

face the current field of enrichment analysis (Khatri et al., 2012). Given that integration

of ontologies by the biomedical community through the use of logical definitions is an on-

going process, the utility of our methodology will only improve over time thus enabling a

more comprehensive, intuitive, and adaptable resource to help biologists better interpret

and understand their genome-scale experimental data.
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4.2 Results

4.2.1 Assessing available logical definitions

Logical definitions have become an integral part of numerous ontologies (Bada and

Hunter, 2007; Mungall et al., 2011). They are the primary source of interconnections be-

tween the OBOs and are a key component to the advancement of knowledge base-driven

enrichment analysis proposed in this chapter. Table 4.1 summarizes the counts of ob-

served logical definitions in prominent OBOs. We observed two distinct OWL constructs

for representing logical definitions, and the type used seems to correlate with the distinction

between phenotype and non-phenotype ontologies. Phenotype ontologies seem to prefer

a construct that relates a class to an owl:Restriction directly using owl:equivalentClass,

whereas non-phenotype ontologies use an added level of indirection and relate a class to an

anonymous class using owl:equivalentClass that is then linked to an owl:Restriction using

owl:intersectionOf. Listing 4.1 depicts the OWL class definition for big ears [MP:0000017]

which shows an example of the representation of a logical definition, in this case a type

1 definition as described above, connecting the MP concept to the UBERON concept ear

[UBERON:0001691]. Understanding the structure of the knowledge representation will be

crucial as we traverse through these inter-ontology linkages to entail novel gene annotations

(discussed below).

ontology terms type 1 defs type 2 defs coverage
MP 10,586 7,611 1 71.9%
HP 10,590 5,428 10 51.4%
GO BP 27,873 0 18,789 67.4%
GO CC 3,853 0 898 23.3%
GO MF 10,813 0 1,529 14.1%
UBERON 11,011 0 4,530 41.1%
CL 2,137 1 1,198 56.1%
PR 60,321 0 31,132 51.6%
CHEBI 55,260 0 0 0.0%
WBPHENO-EQUIV 2,200 934 0 42.5%

Table 4.1: Counts of observed logical definitions grouped by ontology namespace for some
prominent OBOs.
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<owl :C la s s rd f : about=” ht tp : // pur l . obo l i b ra ry . org /obo/MP 0000017”>

<r d f s : l a b e l rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”>big ea r s</ r d f s : l a b e l>

<ow l : e qu i va l en tC l a s s>

<ow l :R e s t r i c t i o n>

<owl :onProperty r d f : r e s o u r c e=” ht tp : // pur l . obo l i b ra ry . org /obo/BFO 0000051”/>

<owl:someValuesFrom>

<owl :C la s s>

<ow l : i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=” ht tp : // pur l . obo l i b ra ry . org /obo/PATO 0000586”/>

<ow l :R e s t r i c t i o n>

<owl :onProperty r d f : r e s o u r c e=” ht tp : // pur l . obo l i b ra ry . org /obo/RO 0000052”/>

<owl:someValuesFrom rd f : r e s o u r c e=” ht tp : // pur l . obo l i b ra ry . org /obo/UBERON 0001691”/>

</ ow l :R e s t r i c t i o n>

</ ow l : i n t e r s e c t i o nO f>

</ owl :C la s s>

</owl:someValuesFrom>

</ ow l :R e s t r i c t i o n>

</ ow l : e qu i va l en tC l a s s>

</ owl :C la s s>

Listing 4.1: The OWL class definition for big ears [MP:0000017] which includes a logical
definition with respect to the UBERON concept ear [UBERON:0001691].

4.2.2 Auditing OBO relations to ensure compliance with the principle of

deductive entailment

In order to ensure the entailed gene annotations are sensible, we have audited the OBO

relations observed in the aggregate ontology (see details on its production in Chapter III)

to to ensure that all relations used to assert novel gene annotations follow the principle of

deductive entailment. That is, we ask the question: if a gene is annotated to concept A that

has a relation to concept B, then would an annotation from the gene to concept B always be

true? If not, then the relation is excluded from being used to compute entailed annotations.

Of the 800+ unique relations present in the aggregate ontology, 403 were observed to appear

in entailment chains emanating from human and mouse genes, and these 403 relations were

the subject of our manual audit performed by a domain expert.

In general, relations that connect from more general to more specific concepts were

excluded. The has part relation was excluded for example, as it is possible for a gene to be

annotated to some concept, but not necessarily to all of its component parts. Also excluded

were obvious “negative” connoting relations such as lacks part. If a gene is annotated

to a concept that lacks part another concept, then it does not make sense to entail an

annotation to the lacking part. There are a multitude of relations that specify relative
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location that are exclusions, e.g. ventral to, adjacent to, attaches to. Also excluded

were all temporally related relations, e.g. preceded by, existence starts during, and

the somewhat related developmental relations, e.g. develops from. It is possible that

some relations in the temporal category could be appropriate for computing entailments,

but for consistency they have all been excluded.

It is important to note that relations should not be excluded based on their label/-

name alone. For example, while the has part relation appears to be an obvious exclusion

as noted above, has part is also used in some of the more complex logical definitions re-

lating phenotypes to anatomy. For example, the HP term ectopic kidney [HP:0000086]

is logically defined as something that has part the intersection of the PATO quality

mislocalized [PATO:0000628] and something that inheres in [RO:0000052] the kidney

[UBERON:0002113]. Listing 4.1 also depicts a similar use of has part. For this reason,

has part is permitted for entailment purposes when used in a relation involving a pheno-

type.

In total, the audit resulted in the exclusion of 269 (67%) of the 403 relations. The

remaining 134 relations are comprised of 89 unique labels and were used to entail novel

gene annotations that were then used for subsequent analyses. The 89 unique labels for the

relations used are listed in Table 4.2.

4.2.3 Entailing novel gene annotations from existing GO and phenotype

annotations

The methodology proposed in this chapter leverages existing gene annotations as the

seeds for generation of novel gene annotation. Our reliance on existing gene annotations

limits the application of our methodology to genes that have at least one existing gene

annotation. There are two main sources of gene annotation to ontology concepts, and we

will make use of both of them in this work. Annotation of genes to the GO comprises by

far the largest number of annotations available covering an extensive list of species. Also

available are gene annotations to a variety of phenotype ontologies. For the purposes our

the work described in this thesis, we will focus on the mammalian phenotype (MP) and

human phenotype (HP) ontologies, which are used to annotate mouse and human genes,
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acts on population of regulated by
agent in regulates
bearer of regulates levels of
by means results in
capable of results in acquisition of features of
capable of part of results in assembly of
causally upstream of results in breakdown of
causally upstream of or within results in change to
composed primarily of results in closure of
constitutional part of results in commitment to
contains results in complete development of
contributes to morphology of results in determination of
equivalent to results in development of
exports results in developmental progression of
has agent results in directed movement of
has application results in disassembly of
has biological role results in distribution of
has central participant results in division of
has chemical role results in fission of
has disease location results in formation of
has gene template results in fusion of
has intermediate results in growth of
has output results in increase in mass of
has part* results in increased length of
has potential to develop into results in localization of
has potential to developmentally contribute to results in maturation of
has role results in morphogenesis of
imports results in movement of
increases population size of results in organization of
induces results in regionalization of
inheres in results in release of
inheres in part of results in remodeling of
integral part of results in specification of
member of results in structural organization of
negatively regulates results in tissue remodeling of
occurs at results in transport across
occurs in results in transport from
overlaps results in transport to from or mediated by
part of subclass of
participates in systemic part of
positively regulates towards
produces transports or maintains localization of
proper part of trunk part of
realizes unfolds around
regional part of

Table 4.2: A manual audit of 800+ unique relations observed in the aggregate ontology
was conducted to filter relations that do not follow the principle of deductive entailment. Of
the 403 relations observed as part of entailment paths emanating from GO and phenotype
annotations to human and mouse genes, 269 (67%) were deemed to potentially violate the
principle of deductive entailment. The remaining 134 relations use 89 unique labels which
are shown in this table.
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respectively. Tables 4.3 and 4.4 summarize the number of available GO and phenotype

annotations, respectively. This data is from annotation files downloaded in May 2015.

Species Evidence code Annotations Genes Unique concepts

H. sapiens
Non-IEA 283,487 15,965 12,749

IEA 82,091 17,045 8,942
Total 365,578 18,963 15,322

A. thaliana
Non-IEA 183,413 30,257 5,209

IEA 45,392 15,700 2,058
Total 228,805 30,469 5,865

C. elegans
Non-IEA 67,672 11,416 3,092

IEA 67,177 12,848 2,218
Total 134,849 20,318 4,294

D. melanogaster
Non-IEA 90,691 13,664 6,487

IEA 11,794 6,252 1,336
Total 102,485 14,607 6,895

D. rerio
Non-IEA 48,829 11,566 5,171

IEA 118,629 16,087 3,794
Total 167,458 19,693 7,165

M. musculus
Non-IEA 256,677 23,845 14,942

IEA 99,183 14,654 3,023
Total 355,860 24,177 16,027

R. norvegicus
Non-IEA 252,126 19,262 15,036

IEA 159,288 24,439 11,744
Total 411,414 26,204 15,528

S. cerevisiae
Non-IEA 48,643 6,379 4,599

IEA 45,490 5,451 2,249
Total 94,133 6,379 5,175

S. pombe
Non-IEA 34,242 5,374 4,087

IEA 4,776 2,880 858
Total 39,018 5,382 4,471

Table 4.3: Available GO annotations for humans and seven model organisms as of May
2015. These numbers exclude annotations that use the NOT qualifier.

Species Evidence code Annotations Genes Unique concepts
H. sapiens Total 82,051 3,099 5,768

C. elegans
Non-IEA 94,935 8,695 1,766

IEA 0 0 0
Total 94,935 8,695 1,766

M. musculus Total 262,947 46,395 8,601

R. norvegicus
Non-IEA 286 148 191

IEA 1,265 1,265 1
Total 1,551 1,413 192

S. pombe Total 44,916 4,960 3,127

Table 4.4: Available phenotype annotations for humans and four model organisms as
of May 2015. These numbers exclude annotations that use the NOT qualifier if available.
Note: there are also available phenotype annotations to fly genes, though the data format is
difficult to comprehend so they are not included here. There are also phenotype annotations
for Zebrafish and Arabidopsis genes. These are mapped directly to logical definitions,
however, making them difficult to count as the terms do not have a stable identifier.

Novel gene annotations are generated (entailed) through the traversal of the aggregate

ontology described in Chapter III and the subsequent assignment of entailed concepts as

gene annotations. Traversing the aggregate ontology and computing the deductively en-
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tailed paths between concepts was achieved through the use of Prolog31, a general purpose

logic programming language. Prolog rules were written for navigating various OWL con-

structs (See Appendix B). Understanding the OWL representation of logical definitions,

e.g. Listing 4.1, was crucial to the Prolog rule construction. Starting at GO and phenotype

concepts that are directly referenced by GO and phenotype gene annotations and using an

iterative-deepening depth first traversal built in Prolog on top of the traversal rules, the

paths emanating from each ontology concept were captured. Traversal from one concept to

another was restricted to using only the 134 relations identified in the manual audit of all

OBO relations. Entailed paths were iteratively built up until they reached a root concept

or a concept in a pre-defined set of upper-level ontology concepts. Given an entailed path,

novel gene annotations are generated to all path members and are assigned to all genes

that have existing annotations to the seed concept for the given path. The results from

our methodology encompass a large number of novel, entailed gene annotations spanning a

wide range of domain ontologies (Table 4.5).

Ontology CHEBI CL FMA NBO PR UBER. GOBP GOCC GOMF HP
GO 1,390,907 156,955 0 86 71,133 167,902 626,185 226,617 107,148 0
HP 223,325 245,051 3,300 13,397 46,745 323,444 268,568 87,098 3,881 148,038
GO+HP 1,525,966 366,728 3,300 13,471 109,591 451,451 848,128 294,514 110,699 148,038
per gene 32.7 7.9 0.1 0.3 2.4 9.7 18.2 6.3 2.4 3.2

Table 4.5: Counts of entailed human gene annotations. Traversal of the aggregate ontology
starting at concepts that are directly referenced by existing GO and phenotype annotations
to human genes results in the extraction of entailment paths from each seed concept. For
each entailment path, novel gene annotations referencing each human gene directly anno-
tated to the seed concept are generated for all members of the entailment path. This results
in the generation of novel human gene annotations to a wide variety of ontologies. Counts
of entailed annotations are shown based on the seed concept ontology. The per gene line
indicates the average number of annotations per gene for a given ontology. Existing GO
and HP annotations are included in these counts.

4.2.4 Intrinsic evaluations of entailed annotations

Manually curated GO annotations are created based on results from experimental stud-

ies that reveal the molecular function of a gene product, the biological processes in which it is

involved, and/or the subcellular location(s) where it has been observed (Blake et al., 2013).

The experimental underpinnings of GO annotations set the foundation for the widespread

use of GO and other types of gene annotations. In order to assess the validity of the entailed

31https://en.wikipedia.org/wiki/Prolog [Accessed July 2015]
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gene annotations generated by the methodology proposed in this chapter, we have conducted

an intrinsic evaluation using several repositories of experimentally validated protein expres-

sion as a gold standard. We have also taken advantage of a manually curated resource

associating chemicals with genes. The results of these intrinsic evaluations demonstrate the

precision, or specificity, of the entailed gene annotations and also highlight expected issues

with recall, or sensitivity.

The Human Protein Atlas (HPA) catalogs experimental results mapping proteins to var-

ious levels of anatomy in which they were found to be expressed(Uhlen et al., 2010, 2015).

Using quantitative transcriptomics at the tissue and organ level, and microarray-based im-

munohistochemistry to target proteins at the single-cell level, the HPA has compiled a

detailed catalog of protein expression for forty-four major tissues and organs in the hu-

man body (Uhlen et al., 2015). The HPA catalogs twenty subcellular locations of proteins

through immunohistochemical staining and subsequent confocal microscopy using eighteen

different cell lines (Atlas, 2015). The range of granularity cataloged by the HPA provides

suitable data sets to serve as gold standards for our intrinsic evaluations of entailed GO

cellular component (GO CC), cell type (CL), and anatomy concepts at both the tissue and

organ level (UBERON). Not only does the HPA provide gold standard data with which

to evaluate the entailed gene annotations produced by the methodology proposed in this

chapter, but the presence of experimentally validated subcellular locations in combination

with curated GO CC annotations enables the benchmarking of our evaluation methodology.

The Comparative Toxicogenomics Database (CTD) is a resource dedicated to the study

of genomic consequences of chemical exposure and how it may affect human health (Davis

et al., 2015). In its decade-plus existence, the CTD has amassed a large collection of

chemical–gene, chemical–disease, and gene–disease interactions that have been manually

curated from the scientific literature. Our intrinsic evaluation of entailed gene–CHEBI

annotations will make specific use of the 7,885 chemicals that have been associated to

38,398 unique genes by the CTD curators.
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4.2.4.1 Entailed GO CC annotations have comparable performance to curated

annotations when evaluated using HPA

The Human Protein Atlas (HPA) uses immunofluorescently stained cells to catalog pro-

tein localization in twenty distinct subcellular compartments. The labels used by HPA to

denote subcellular locations have been manually mapped to equivalent GO cellular com-

ponent concepts. Using this mapping to GO CC concepts, the entailed gene annotations

to GO CC concepts can be evaluated. Not only can the entailed GO CC annotations be

evaluated, but this evaluation strategy as a whole can be benchmarked by also evaluating

the set of manually curated GO CC gene annotations distributed by the GO Consortium

against the experimentally verified subcellular locations provided by HPA. Table 4.6 lists

the mappings from subcellular locations to GO CC concepts as provided by the HPA.

The HPA subcellular localization data links genes represented using 8,858 unique En-

sembl gene identifiers to one or more cellular compartments. In each HPA data record,

a gene identifier is associated with a “main location” of expression and optional “other

locations.” In the analyses described here, the values for subcellular location in both the

“main” and “other” location fields were combined and treated equally. Each record has

a corresponding reliability category of “supportive,” “non-supportive,” or “uncertain,” de-

pending on the agreement of the experimental studies for that particular gene. The 4,355

(49.2%) records categorized as having “supportive” reliability were extracted for use in this

analysis and their corresponding 4,355 Ensembl gene identifiers were mapped to 18,916

UniProt protein identifiers to allow for direct comparison with Gene Ontology annotation

data. Mapping from Ensembl gene identifiers to UniProt protein identifiers was achieved

using the identifier mapping files provided by the UniProt database32.

The presence of experimentally validated subcellular localization data in the HPA en-

ables benchmarking of our intrinsic evaluation methodology. Agreement between curated

GO CC gene annotations and the protein localization data provided by HPA provides an

upper bound in regards to performance we can expect when evaluating the entailed an-

notations. Table 4.7 summarizes available GO CC annotations, both manually curated

32UniProt ID mapping file – ftp://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/
idmapping/idmapping selected.tab.gz [Accessed July 2015]
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HPA subcellular location GO cellular component
Aggresome aggresome [GO:0016235]

Cell Junctions cell-cell junction [GO:0005911]
Centrosome centrosome [GO:0005813]
Cytoplasm cytoplasm [GO:0005737]

Cytoskeleton (Actin filaments) actin cytoskeleton [GO:0015629]
Cytoskeleton (Cytokinetic bridge) intercellular bridge [GO:0045171]

Cytoskeleton (Intermediate filaments) intermediate filament cytoskeleton [GO:0045111]
Cytoskeleton (Microtubule plus end) microtubule plus end [GO:0035371]*

Cytoskeleton (Microtubules) microtubule cytoskeleton [GO:0015630]
Endoplasmic reticulum endoplasmic reticulum [GO:0005783]

Focal Adhesions focal adhesion [GO:0005925]
Golgi apparatus Golgi apparatus [GO:0005794]

Microtubule organizing center microtubule organizing center [GO:0005815]
Mitochondria mitochondrion [GO:0005739]

Nuclear membrane nuclear membrane [GO:0031965]
Nucleoli nucleolus [GO:0005730]
Nucleus nucleus [GO:0005634]

Nucleus but not nucleoli nucleus [GO:0005634]
Plasma membrane plasma membrane [GO:0005886]

Vesicles intracellular membrane-bounded organelle [GO:0043231]

Table 4.6: Mappings of HPA subcellular location labels to Gene Ontology cellular compo-
nent concepts. Note that “Nucleus but not nucleoli” is the one location not fully compatible
with a unique GO concept so it has been mapped to nucleus [GO:0005634].

Total (proteins) Total GO CC (proteins) Total GO CCHPA (proteins)
Non-IEA 211,336 (26,578) 57,575 (21,634) 23,801 (14,688)
IEA 141,696 (39,767) 32,410 (22,588) 8,549 (7,470)
Total 342,550 (46,627) 89,769 (35,389) 32,295 (20,059)

Table 4.7: Summary of available GO CC annotations provided by the GO Consortium,
including the subset of specific GO CC terms used by the Human Protein Atlas. The number
of annotations available for all GO annotations (first column), all GO CC annotations
(second column), and all GO CC annotations to subcellular localization concepts used by
HPA (third column). In all cases, annotations using the NOT qualifier have been excluded.

(non-IEA) and automatically inferred (IEA), distributed by the GO Consortium. There

are 32,295 unique GO CC annotations (spanning both IEA and non-IEA) to 20,059 pro-

teins that use one of the nineteen GO CC concepts represented in the HPA. Roughly half

(10,320) of the human proteins with at least one GO annotation using the 19 GO CC

concepts represented in the HPA have a subcellular localization record in the HPA.

Given the hierarchical nature of ontologies, and the desire to award partial credit for

non-exact matches, we employ the conceptual overlap metric postulated by Bada et al.

(2014). Though their methodology is demonstrated as a means for evaluating mentions of

ontology concepts annotated to passages of text, it can be easily reformulated to evalu-

ate sets of ontology concepts instead. When evaluating curated and automatically inferred

GO CC annotations to human genes using the HPA subcellular location data as gold stan-

dard, we observe a precision of 0.753 and recall of 0.588 using this conceptual overlap metric
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(Table 4.8). The somewhat low recall is to be expected as Gene Ontology annotations in

general are incomplete (Baumgartner et al., 2007). The precision of 0.753 will be used as

a benchmark when evaluating the agreement of the entailed annotations with HPA data.

When including entailed annotations, we observe a 0.13 drop in precision and a 0.07 increase

in recall overall, however 3,222 genes that had no GO CC annotation gained at least one

GO CC annotation. For these previously unannotated genes, the recall is low (0.158) how-

ever their precision (0.644) is comparable to the overall precision of 0.623. When looking

at only genes that previously had at least one curated or automatically inferred GO CC

annotation, recall is observed to increase to 0.816 due to the entailments.

These results suggest that the precision of entailed GO CC annotations is comparable

to that of the manually curated annotations. Further, the precision of entailed GO CC

annotations for genes that previously had no annotation to a GO CC concepts is also

comparable to that of the manually curated GO CC annotations. Recall is low for genes

with no previous GO CC concepts as expected since gene annotation to the GO is known to

be incomplete (Baumgartner et al., 2007) and logical definitions are also likely incomplete

as they are in ongoing, active development. We do however see an increase in recall due

to the addition of entailed GO CC annotations for genes that previously had at least one

GO CC annotation suggesting that the entailed annotations are providing new information

and are filling in gaps in the existing gene annotation. To ensure that the measured values

of conceptual overlap are not due to random chance, we evaluated the random assignment of

entailed GO CC concepts to genes against HPA. The results show a lower precision (0.377)

and recall (0.416) when compared to the non-random sets (Table 4.8).

Overall this evaluation suggests that the entailed annotations have comparable pre-

cision to curated and automatically inferred gene annotations. By augmenting existing

annotations with entailed annotations, the number of genes with at least one annotation is

increased while maintaining overall precision and improving recall for genes that previously

had an annotation. Figure 4.1 shows the distribution of GO CC annotations augmented

with entailed annotations to the nineteen GO CC concepts mapped to HPA. There are

several of the 19 categories that are poorly covered by the GO annotations (or not covered

at all) pointing to the incompleteness of GO annotation in general.
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The evaluations of CL, UBERON, and CHEBI annotations below echo the findings of

the GO CC evaluation. Precision of the entailed annotations is comparable to that of the

available GO CC annotations while recall is low in all cases.

proteins tp fp fn precision recall f-score
Original 10,230 55,064 18,083 38,566 0.753 0.588 0.660
Originalnon-IEA 7,640 46,909 14,367 22,882 0.766 0.672 0.716
OriginalIEA 5,223 11,205 4,311 36,083 0.722 0.237 0.357
Original+Entailed 13,452 81,069 48,955 41,860 0.623 0.659 0.641
Entailednovel 3,222 4,642 2,567 24,657 0.644 0.158 0.254
Original+Entailednot novel 10,230 76,427 46,388 17,203 0.622 0.816 0.706
Randomn=10 10,230 38,974.1 64,476.8 54,655.9 0.377 0.416 0.396

Table 4.8: Evaluation of original and entailed gene annotations to GO CC terms using
the Human Protein Atlas as a gold standard. Subsets of the original annotations show
performance using only IEA and non-IEA annotations. Subsets of the entailed annotations
show performance when proteins which previously had no annotations to a GO CC concept
gain at least one though entailment (novel), and for proteins that already have at least one
GO CC annotation and may or may not gain entailed annotations. An evaluation using
randomly assigned GO CC annotations is also reported. For this evaluation the GO CC
concepts were limited to the 19 concepts represented in the Human Protein Atlas. In general,
precision of the entailed GO CC annotations is comparable to the precision of the existing
GO CC annotations. This suggests that the entailed GO CC annotations are of comparable
quality to existing annotations. tp = true positive; fp = false positive; fn = false negative.

4.2.4.2 Entailed CL and UBERON concepts have comparable precision to

curated GO terms when evaluated against HPA

Similar intrinsic evaluations were conducted comparing entailed CL and UBERON con-

cepts using the HPA normal tissue data set. This data set uses fourty-four different cell

type designations and forty-eight different tissues. Twenty-seven of the fourty-four cell

types were manually mapped to CL concepts while forty-six of the fourty-eight tissues were

successfully mapped to UBERON concepts. The majority of cell types that were not able to

be mapped to CL terms were due to non-specific cell categories, e.g. “cells in seminiferous

ducts”. The two tissue types that did not have an UBERON match are described as “soft

tissue”.

The distribution of gene annotations augmented with entailments to CL concepts (Fig-

ure 4.2) mirrors that for the GO CC annotations. There are a few classes with many entailed

annotations and many classes with few or no entailed annotations. Evaluation of the CL

annotations also mirrors that of GO CC in that the precision is comparable to that of the

curated GO CC annotations but recall is poor. In this case, the normal tissue data set is

larger than the subcellular location data set, and thus the number of false negatives is very
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Figure 4.1: Distribution of entailed gene annotations over the GO CC concepts repre-
sented in the Human Protein Atlas. Counts of entailed annotations that match the GO
CC concepts mapped to the Human Protein Atlas exactly (Exact Annotation) or one of
their subclasses (Subclass Annotation) are depicted. The GO CC concepts are ordering by
increasing information content (left to right).

large in comparison leading to even lower recall values (Table 4.9). The entailed UBERON

annotations show a similarly skewed distribution favoring a minority of the classes (Fig-

ure 4.3). UBERON, however, demonstrates the highest precision of all evaluations (0.812),

though like CL, has a very low recall value. Similar to the results from the GO CC evalu-

ation, the precision values reported for both CL and UBERON are also suggestive of high

quality entailed annotations.

Gold proteins tp fp fn precision recall f-score
EntailedCL HPA 11,246 62,191 32,884 614,495 0.654 0.092 0.161
EntailedUBERON HPA 13,711 59,242 13,701 1,306,889 0.812 0.043 0.082
EntailedCHEBI CTD 13,998 74,201 28,433 3,260,459 0.723 0.022 0.043

Table 4.9: Evaluation of entailed CL and UBERON gene annotations using the Human
Protein Atlas normal tissue data set as a gold standard. Similar to the GO CC analysis,
the entailed annotations demonstrate comparable precision to the precision of the existing
GO CC annotations. This is again suggestive of high quality for the entailed annotations.
The low recall is indicative of the expected low coverage of the entailed annotations given
the incompleteness of gene annotations to begin with and the ongoing development of logical
definitions. tp = true positive; fp = false positive; fn = false negative.
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Figure 4.2: Distribution of entailed gene annotations over the CL concepts represented
in the Human Protein Atlas. Counts of entailed annotations that match the CL concepts
mapped to the Human Protein Atlas exactly (Exact Annotation) or one of their subclasses
(Subclass Annotation) are depicted.

Figure 4.3: Distribution of entailed gene annotations over the UBERON concepts rep-
resented in the Human Protein Atlas. Counts of entailed annotations that match the
UBERON concepts mapped to the Human Protein Atlas exactly (Exact Annotation) or
one of their subclasses (Subclass Annotation) are depicted.
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4.2.4.3 Entailed CHEBI concepts have comparable precision to other concept

types

The Comparative Toxicogenomics Database (CTD) catalogs gene-chemical interactions

manually extracted from the scientific literature. CTD draws its chemical library from

MeSH33, and grounds genes in NCBI Gene34 identifiers. By using the Chemical Abstract

Service Registry Numbers35 available in both MeSH and CHEBI, 4,003 of the 7,885 chemi-

cals linked to human genes by CTD were mapped to CHEBI concepts. NCBI Gene references

were mapped to UniProt using the UniProt ID mapping files36.

Similar to the evaluations presented above, the entailed CHEBI annotations were com-

pared to gene-chemical associations defined curated by CTD. The entailed annotations were

judged to have a precision of 0.723 and a recall of 0.022. Again, the low recall is due to the

large number of gene-chemical interactions annotated by CTD and relatively small number

of entailed CHEBI annotations, and thus a large number of resulting false negatives. The

precision however, again suggests that the entailed gene annotations are of high quality, or

at least comparable quality to the existing GO CC annotations that were tested to provide

a benchmark for this evaluation.

4.2.5 Use of homologous entailed annotations improves recall

The low recall reported in all evaluations of entailed annotations against a gold stan-

dard may be improved by finding alternative sources of annotations. Here we evaluate the

potential benefit gained from the addition of annotations via links to homologous genes

from other species. Homology has been used to predict the function of unknown proteins

(Gaudet et al., 2009; Loewenstein et al., 2009), and thus may have potential to provide

accurate cross-species entailed annotations as well. We evaluate the potential to augment

gene annotations using homology and entailment by combining annotations (both curated

and entailed) from homologous mouse proteins with the human proteins used in the above

evaluations. In all cases, addition of annotations to homologous genes increases the recall

and lowers precision in the evaluations against HPA and CTD (Table 4.10). In all but

33https://www.nlm.nih.gov/mesh/ [Accessed July 2015]
34http://www.ncbi.nlm.nih.gov/gene [Accessed July 2015]
35https://www.cas.org/content/chemical-substances/faqs [Accessed July 2015]
36ftp://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/idmapping/idmapping selected.tab.gz
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one case, the F-measure value also increases when annotations to homologous genes are

included. Overall, the results of this experiment suggest that entailed gene annotations can

be used to augment annotations for a given species but should not be used if precision is a

priority.

Gold proteins tp fp fn precision recall f-score
OriginalGO CC HPA 10,230 58,991 21,174 34,639 0.736 (-0.017) 0.630 (+0.042) 0.679 (+0.019)
Orig+EntailedGO CC HPA 13,452 82,843 60,693 40,086 0.577 (-0.046) 0.674 (+0.015) 0.622 (-0.019)
EntailedCL HPA 11,246 90,231 71,121 586,455 0.559 (-0.095) 0.133 (+0.021) 0.215 (+0.054)
EntailedUBERON HPA 13,711 97,377 26,237 1,268,754 0.788 (-0.024) 0.071 (+0.028) 0.131 (+0.049)
EntailedCHEBI CTD 13,998 135,576 53,316 3,199,084 0.718 (-0.005) 0.041 (+0.019) 0.077 (+0.034)

Table 4.10: Evaluation of entailed human annotations augmented with entailed mouse
annotations via homology. Numbers in parentheses are the change from the evaluations
performed without inclusion of annotations to homologous genes. When combining an-
notations from homologous mouse genes, recall is improved for all concept types while
precision decreases suggesting that the homologous gene annotations fill some gaps of miss-
ing information but also introduce some noise. tp = true positive; fp = false positive;
fn = false negative.

4.2.6 Extrinsic evaluations of entailed annotations using pre-composed gene

lists

In Wittkop et al. (2013), the authors develop an enrichment analysis based on generating

novel gene annotations to ontology concepts by using NLP techniques to extract ontology

concepts from free text sections of gene database records. They evaluate their methodology

by comparing output from their tool with output from DAVID (Huang et al., 2007) for two

pre-composed gene lists, one related to Parkinson’s Disease (PD) and the other related to

Huntington’s Disease (HTT). Here, we repeat their validation by computing enrichment on

the same gene lists using the methodology proposed in this chapter. Our evaluation uses

the same lists of gene symbols used in the STOP evaluation3738. The 59 HTT gene symbols

and 14 PD gene symbols referenced in the STOP paper were converted to 440 and 105

UniProt IDs, respectively, using DAVID’s Gene Accession Conversion Tool (Huang et al.,

2007). The increase is due to secondary UniProt IDs also being added. Both the DAVID

and STOP analyses were reproduced, and the converted UniProt IDs were used as input

to our system which will be referred to as Logically Entailed Enrichment Analysis (LEEA)

in the remainder of this chapter. As was done with the STOP analysis, all human proteins

37PD gene list – http://www.biomedcentral.com/content/supplementary/1471-2105-14-53-s3.txt
38HTT gene list – http://www.biomedcentral.com/content/supplementary/1471-2105-14-53-s1.txt
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with at least one ontology term annotation were used as background for the enrichment

analysis.

4.2.6.1 Using LEEA to gain insight into Parkinson’s Diseases

Parkinson’s disease is a progressive neurodegenerative disease that has no known cure39.

It typically occurs in adults later in life (age >50). Symptoms range from tremor, to muscle

stiffness, to slowed movements. Although the mechanism behind the disease is unknown, it

is known that nerve cells that produce dopamine are damaged thus impacting the body’s

ability to transmit signals from the brain to the muscles (Vernier et al., 2004).

Figure 4.4: Results from enrichment analyses using the STOP Parkinson’s disease gene
list. This figure summarizes the enrichment analyses of three tools, STOP, LEEA, and
DAVID, on a list of genes associated with Parkinson’s disease. The top-30 enriched concepts
returned by each tool are displayed. Color bars indicate -log(p-value).

Figure 4.4 displays the top thirty enriched terms for the Parkinson’s disease gene list

when using LEEA, STOP, and DAVID. Although approximately two years has passed since

the Wittkop et al paper was published, the DAVID and STOP results appear largely similar

to what was previously reported. Analysis of the top 30 enriched terms from each method

39 http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0076679/ [Accessed July 2015]
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show that each returns a profile that captures many of the expected aspects of Parkinson’s

Disease. The STOP method clearly associates the gene list with Parkinson’s having mul-

tiple entries from various ontologies explicitly indicating “Parkinson’s” in the term label.

STOP also captures some symptoms of Parkinson’s, namely movement disorder and tremor.

DAVID, although not explicitly mentioning “Parkinson’s” in the top 30 terms, does identify

terms that appear to be related to Parkinson’s disease. Since DAVID is using only the GO,

its result set is limited to GO terms. Even so, it is able to capture information regarding

symptoms, e.g. “adult locomotory behavior” and hints at underlying mechanisms of action

with “dopamine metabolic process”, “regulation of neurotransmitter secretion” and oth-

ers. The results from LEEA are in agreement with the other two methods validating the

overall approach. The LEEA results capture Parkinson’s disease symptoms over a range of

ontologies spanning the GO, e.g. “adult locomotory behavior”, HP, e.g. “Bradykinesia”,

“Rigidity”, “Tremor”, and from the NBO, e.g. “involuntary movement behavior pheno-

type”. LEEA also captures some of what is known about the underlying mechanisms of

Parkinson’s disease with “dopamine metabolic process” from the GO, “Abnormality of ex-

trapyramidal motor function” from HP. Similar to the STOP approach, LEEA also explicitly

identifies “Parkinsonism” from HP. LEEA is also shows enriched chemicals involved, e.g.

“catecholamine” (the chemical family that contains dopamine), and also potential thera-

peutics, e.g. “adrenergic agonists” which have been shown to be beneficial for patients with

PD(Alexander et al., 1994).

The top ten most highly significantly enriched terms for a variety of ontologies as

determined by LEEA are shown in Tables 4.11 and 4.12. As with the top 30 enriched

terms, the top 10 from each of the ontologies shown seem to reflect what is known about

Parkinson’s Disease. The phenotype ontologies are enriched for relevant symptoms. The

NBO is enriched for expected behaviors and behavioral phenotypes. Nine of the ten enriched

cell types shown are neuro-specific. The anatomy ontologies are enriched for brain and

neural tissue terms. The one ontology that does not seem to necessarily reflect Parkinson’s

Disease specifically is the PR.

A unique feature of LEEA is its ability to return enriched terms not in unstructured

lists, but in integrated modules of biology that take the form of enriched paths through the
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GOBP HP
locomotory behavior bradykinesia
adult behavior rigidity
dopamine metabolic process abnormality of extrapyramidal motor function
adult locomotory behavior tremor
behavior parkinsonism
neg. reg. of oxidative stress-induced cell death clinical modifier
neg. reg. of neuron death abnormality of central motor function
neg. reg. of cellular resp. to oxidative stress paranoia
neg. reg. of resp. to oxidative stress frontal release signs
regulation of neurotransmitter levels abnormality of movement

GOCC MP
cell body abnormal voluntary movement
synapse abnormal urinary bladder physiology
inclusion body abnormal motor capabilities/coordination/movement
cytoplasmic membrane-bounded vesicle gliosis
cytoplasmic vesicle increased growth rate
cytoplasmic vesicle part abnormal behavior
axon behavior/neurological phenotype
extracellular matrix part abnormal CNS glial cell morphology
synapse part abnormal glial cell morphology
axon microtubule bundle abnormal neuron number

GOMF NBO
enzyme binding involuntary movement behavior phenotype
ubiquitin-specific protease binding kinesthetic behavior phenotype
ubiquitin protein ligase binding behavioral phenotype
ubiquitin-like protein ligase binding tremor
oxidoreductase activity, acting on peroxide as acceptor social behavior phenotype
copper ion binding voluntary movement behavior
peroxiredoxin activity kinesthetic behavior
NADH dehydrogenase activity behavior process
NADH dehydrogenase (quinone) activity depression behavior
oxidoreductase activity mood disorder

Table 4.11: Top 10 enriched terms for the Parkinson’s Disease gene list from the Gene
Ontology, Mouse and Human Phenotype Ontologies, and the Neurobehavior Ontology as
computed by LEEA.
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CHEBI CL
adrenergic agonist neuron associated cell
adrenergic agent glioblast
beta-adrenergic agonist glial cell
beta-adrenergic drug migratory cranial neural crest cell
catecholamine neuron neural crest derived
cardiovascular drug neuroblast (sensu Vertebrata)
catechols epiblast cell
benzenediols CNS neuron (sensu Vertebrata)
sympathomimetic agent neurectodermal cell
dopamine neuroblast

UBERON FMA
obsolete regional part of forebrain segment of forebrain
prosomere cardinal segment of brain
brain segment of neuraxis
pre-chordal neural plate segment of brain
regional part of brain organ component of neuraxis
neuromere anatomical junction
neural tube derived brain head of organ
future brain anatomical line
obsolete head of organ portion of neural tissue
anterior neural tube zone of organ

PR
5-oxoprolinase
5-oxoprolinase (human)
beta-arrestin-2
beta-arrestin-2 isoform 1 (rat)
beta-arrestin-2 isoform 1
hemoglobin subunit beta (chicken)
vascular endothelial growth factor receptor
Gallus gallus protein
uncharacterized protein, gpd1b translation product (zebrafish)
glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic

Table 4.12: Top 10 enriched chemical, cell type, anatomy, and protein concepts for the
Parkinson’s Disease gene list as computed by LEEA.
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aggregate ontology. The work of Huang et al. (2007) also attempts to return enriched terms

as modules instead of flat lists. While their methodology returns lists of closely associated

enriched terms, our methodology takes things one step further and returns integrated sets of

ontology concepts from different domains. The work described in the Chapter III resulted in

an logically consistent, unified representation of biology without which this analysis would

not be possible. By paths through the ontology that contain enriched concepts, we are

able to provide to the user modules of enriched biology from which they can build their

hypotheses. As an example, Figure 4.8 depicts a biological module constructed using top

scoring enriched paths resulting from the Parkinson’s gene list analysis by LEEA. In this

case, the top scoring paths containing the top scoring concept from each ontology have

been combined to tell part of the PD story. If one knew nothing about the underlying

mechanism of PD, these paths might lead to insight regarding the interplay between tremors

and dopamine.

4.2.6.2 Using LEEA to gain insight into Huntington’s Diseases

Similar to Parkinson’s disease, Huntington’s disease is also a neurodegenerative disorder

with no known cure. The mechanisms underlying Huntington’s disease are even less well

understood than Parkinson’s, though it is known that the disease is caused by an autosomal

dominant mutation in the Huntingtin gene. Symptoms of Huntington’s involve both move-

ment disorders, cognitive decline, and behavioral changes such as depression and anxiety40.

Figure 4.5 displays the top thirty enriched terms for the Huntington’s disease gene list when

using LEEA, STOP, and DAVID. It should be noted that the Huntingtin gene itself is not

part of the gene list used as input.

Overall, performance of the enrichment analysis tools on the HTT list are perhaps

indicative of the fact that the underlying mechanisms of Huntington’s disease are not well

understood. The DAVID results, again limited to GO, are relatively non-specific. DAVID

does return a few results related to apoptosis, and apoptotic neuronal degeneration has

been associated with HDHickey and Chesselet (2003); Bano et al. (2011), but most of its

results are high-level terms (e.g. organelle part, biological regulation, binding) that provide

40http://web.stanford.edu/group/hopes/cgi-bin/hopes test/the-behavioral-symptoms-of-huntingtons-
disease/ [Accessed October 2015]

111



little to work with in terms of understanding potential underlying molecular mechanism.

STOP’s text mining approach show’s a clear advantage here over DAVID in that it has

several direct hits to enriched concepts with the word “Huntington” – its top hit is the

Huntingtin gene itself, and it has several hits for Huntington’s disease. Mixed in with the

“Huntington” concepts are concepts that are largely general in nature and somewhat similar

to the DAVID results, e.g. protein binding, chemical binding, interaction, cytoplasm, set,

formations, ligand binding protein, etc. STOP benefits from relations in the literature that

clearly associate the genes in the gene list with the Huntingtin gene and with Huntington’s

disease, but if this was a novel gene list for an previously unknown disease, developing a

working hypothesis based on the STOP results might prove to be challenging, with the

caveat that we are restricting our analysis to the top thirty genes.

LEEA makes use of the many ontologies for which we have generated gene annotations

and seems to provide a sampling of information from varied domains. The top ten most

highly significantly enriched concepts for a variety of ontologies as determined by LEEA are

shown in Tables 4.13 and 4.14. Given that LEEA also utilizes the GO, similar to DAVID,

there are some high-level GO concepts in the results, e.g cellular component organization,

and cytoplasmic part, but there are also GO concepts that appear quite relevant, e.g. ner-

vous system development, and cell projection. The GO concept membrane-bound vesicle

is observed to be enriched. This is in line with the fact that the Huntingtin protein is

known to associate with vesicle membranes and interacts with proteins involved with the

transport of vesiclesVelier et al. (1998). Enriched anatomy terms clearly place the context

of this gene list in the brain, e.g. prosomere and obsolete regional part of forebrain from

UBERON, and segment of forebrain from FMA. The fact that the enriched anatomy terms

specifically pinpoint the forebrain is significant as HD is characterized by progressive loss

of neurons primarily in the striatum Bano et al. (2011), which is part of the forebrain. Pro-

someres are also part of the forebrain according to the definition of prosomere in UBERON.

The lone HP term in the top 30 LEEA enriched concepts is arterial thrombosis. While

this may initially appear out of place, it turns out that many patients with advanced HD

suffer from nitric oxide (NO) dysregulationCarrizzo et al. (2014) and deficiencies in NO

have been linked to arterial thrombosisLoscalzo (2001). Patients with HD are also prone
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to adverse cardiac eventsAbildtrup and Shattock (2013) and its possible that NO plays a

role there as well since it is a known vasodilator. The top CHEBI hit is carbamate. It has

a possible connection in that carbamate derivatives have been used to treat dementia, e.g.

Rivastigmine41. There is also at least one patent specifically targeting the use of carbamate

compounds to treat neurodegeneration42. Analysis of the top 10 enriched terms from each

ontology reveals other relevant concepts. The NBO concepts seem to target relevant be-

havioral phenotype, and cognitive and motor related behaviors. The phenotype ontologies

show more cardiac circulatory related concepts.

Figure 4.5: Results from enrichment analyses using the STOP Huntington’s disease gene
list. This figure summarizes the enrichment analyses of three tools, STOP, LEEA, and
DAVID, on a list of genes associated with Huntinton’s disease. The top-30 enriched concepts
returned by each tool are displayed. Color bars indicate -log(p-value).

4.2.7 A custom Cytoscape interface for visualizing enriched paths

The purpose of computing enrichment of ontology terms is to facilitate the understand-

ing of high-throughput data in light of what is already known. Enrichment analysis provides

41http://www.drugbank.ca/drugs/DB00989 [Accessed July 2015]
42https://www.google.com/patents/CA2439295A1?cl=en [Accessed July 2015]
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GOBP HP
cellular component organization or biogenesis Arterial thrombosis
response to external stimulus Abnormality of the coronary arteries
cellular component organization Venous abnormality
response to abiotic stimulus Arteriovenous malformation
nervous system development Venous thrombosis
positive regulation of cellular component organization Lower limb asymmetry
response to radiation Abnormal thrombosis
anatomical structure morphogenesis Neoplasm of the lung
regulation of anatomical structure morphogenesis Pulmonary embolism
negative regulation of biological process Hemangioma

GOCC MP
cytoskeletal part arteriovenous malformation
cell projection coronary fistula
cytoplasm coronary arterio-venous fistula
cell projection part abnormal coronary artery morphology
nuclear part abnormal artery morphology
membrane-bounded vesicle abnormal tumor incidence
cytoplasmic part increased tumor incidence
cytoplasmic vesicle part tumorigenesis
vesicle altered tumor susceptibility
cytoplasmic membrane-bounded vesicle increased classified tumor incidence

GOMF NBO
amide binding behavioral phenotype
protein binding behavior process
peptide binding motor coordination
identical protein binding vestibular behavior
DNA binding somatic sensation related behavior
kinase activity perception behavior by means
RNA polymerase II transcription factor binding sensation behavior
transferase activity, transferring phosphorus-containing groups cognitive behavior
phosphotransferase activity, alcohol group as acceptor kinesthetic behavior
enzyme binding voluntary movement behavior

Table 4.13: Top 10 enriched terms for the Huntington’s Disease gene list from the Gene
Ontology, Mouse and Human Phenotype Ontologies, and the Neurobehavior Ontology as
computed by LEEA.
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CHEBI CL
carbamate epiblast cell
amino-acid residue fat cell
peptide neurectodermal cell
azanide erythroid lineage cell
carboxy group obsolete cell by histology
ammonium eukaryotic cell
carbonyl group photoreceptor cell
onium cation native cell
carbon atom obsolete cell by class
monovalent inorganic cation non-striated muscle cell

UBERON FMA
obsolete regional part of forebrain Segment of forebrain
prosomere Neural ectoderm
2 cell stage Blastomere
female organism Iris
obsolete blastomere Visual system
8 cell stage Neural layer of retina
presumptive mesoderm Organ component of neuraxis
brain Organ component layer
neural tube derived brain Anatomical space
ectoderm Segment of neuraxis

PR
amino acid chain
endoglin
Gallus gallus protein
beta-arrestin-2
beta-arrestin-2 isoform 1 (rat)
beta-arrestin-2 isoform 1
hemoglobin subunit beta (chicken)
5-oxoprolinase
5-oxoprolinase (human)
uncharacterized protein, gpd1b translation product (zebrafish)

Table 4.14: Top 10 enriched chemical, cell type, anatomy, and protein concepts for the
Huntington’s Disease gene list as computed by LEEA.
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a set of concepts that can serve as a basis for further exploration and hypothesis generation.

Understanding how the enriched concepts relate to each other is key when constructing a hy-

pothesis of some underlying mechanism. This understanding typically relies on background

knowledge known to the researcher analyzing the data, and is often required as most en-

richment tools provide results in the form of unstructured lists of enriched concepts (Huang

et al., 2009a). Recent efforts to integrate ontologies through the use of logical definitions,

however, have resulted in explicit representation of much of this background information

within biomedical ontologies. By mining the aggregate ontology graph described in Chap-

ter III for paths that contain the enriched concepts, background information relating the

ontology concepts can be extracted and presented to the researcher in the form of condensed

modules of biology. Returning enriched modules of biology instead of unstructured lists of

genes has also been targeted in the work of (Huang et al., 2007). While their modules still

consist of lists of enriched terms, the methodology proposed in this chapter is unique in that

it returns modules of enriched concepts that are themselves connected. Our foundation of

an integrated set of logically consistent ontologies facilitates this output modality unique

to our method.

A custom Cytoscape (Shannon et al., 2003) interface has been developed to enable the

exploration and analysis of these enriched modules. Figure 4.6 shows a screenshot of the

Cytoscape interface. In this example, paths containing the top 20 most significantly enriched

terms from GO BP, GO CC, GO MF, HP, CHEBI, CL, NBO, FMA, and UBERON for the

Parkinson’s Disease (PD) targeted gene list were extracted from the integrated ontology.

These paths embody biological modules and are shown in the Cytoscape network view on

the right side of the figure. Concepts are colored according to their ontology. Proteins are

represented by the black rectangles at the top of the network view and are connected to the

concepts for which they have direct annotations. A hierarchical network layout has been

applied resulting in more general terms trending towards the bottom of the network view.

The variety of concept types shown demonstrates the richness in relations expressed by the

ontologies.

Enriched modules (paths through the ontologies) are enumerated in the list on the left

side of the interface. Each entry in the list represents a distinct path. For each path, a score
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(currently the negative-log sum of the enriched terms in that particular path) is displayed

next to a coded abbreviation for the path. The path abbreviation shows the linkages between

concepts types that appear in the path. For example, “BP-A-A-A-Cl” indicates a path that

links a GO biological process (BP) concept to a chain of three anatomy concepts (A) and

terminates with a concept from the Cell Ontology (Cl). Single and multiple selection of

enriched paths is permitted in the list, and selection results in the highlighting of the given

path(s) in the network view. By selecting single paths or groups of paths, the user can create

subnetworks that are more easily navigable. Figure 4.7, right, demonstrates the isolation

of the single path selected in Figure 4.6, and shows an alternative coloring scheme of the

concepts, left, identifying those concepts that were in the set of top-twenty significantly

enriched concepts for each ontology.

Selecting a subset of paths can provide context to the phenomenon under study by

displaying how concepts relate to each other as shown in Figure 4.8. For each ontology,

the top scoring path containing the most significantly enriched concept was selected for

inclusion. For example, the path shown in Figure 4.7 is the highest scoring path containing

the most significantly enriched CHEBI concept benzenediols [CHEBI:33570], a parent class

of dopamine which is known to play a significant role in PD. The combination of these

paths forms a small biological module that contains many of the major themes of PD (e.g.

dopamine, motor function abnormality, neuron death, etc.) and would likely be a good

starting point for hypothesis generation.

4.3 Discussion

Knowledge base-driven enrichment analysis has become ubiquitous in its use as an initial

hypothesis generation technique for understanding the role a list of genes may play in some

phenomenon under study (Tipney and Hunter, 2010; Khatri et al., 2012). Historically,

the vast majority of enrichment approaches rely solely on GO annotations to genes, thus

restricting output to biological processes, cellular components, and molecular functions

(Khatri et al., 2012). The fact that this technique has been so successful gives credence

to the comprehensiveness of the GO and GO annotations. Although we are witnessing an

increase in variety of concepts being used for enrichment analysis, e.g. pathways (Zhang

et al., 2005; Huang et al., 2009b; Glaab et al., 2012; Chen et al., 2013), diseases (Zhang
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Figure 4.6: A screenshot depicting the Cytoscape interface developed for exploring en-
riched paths. Users can view a list (left) of all possible paths including path scores and
symbolic representation (A = anatomy, BP = biological process, CC = cellular compo-
nent, Ch = chemical, Cl = cell type, Bh = behavior, Ph = phenotype, O = other).
The network view (right) displays concept connectivity. Concepts are colored by con-
cept type: anatomy = orange, biological process = cyan, cellular component = magenta,
chemical = green, cell type = red, behavior = yellow, phenotype = pink, protein = black.
Paths that are selected in the list are selected and highlighted (yellow) in the network view
allowing for straightforward subnetwork generation.

et al., 2005; Chen et al., 2013), drugs (Zhang et al., 2005; Chen et al., 2013), microRNAs

(Zhang et al., 2005; Chen et al., 2013), etc, we have not seen a corresponding increase in

the number of ontologies being used in enrichment analysis. At the same time, we continue

to witness the underutilization of the axiomatization of ontologies, even in sophisticated

analysis tools Mungall et al. (2014).

The work presented in this chapter is a reversal of this trend. By taking advantage of

the full axiomatization of the OBOs, and by combining the power of deductive reasoning

with statistical reasoning commonly used in biology, our methodology not only makes full

use of available ontologies, but results in the generation of high quality gene annotations to

a wide variety of ontologies not previously annotated to genes. It is important to note that

the methodology is able to generate these high quality, prized gene annotations using only

information that is currently available, and does so with little-to-no manual intervention.

We have demonstrated the validity of the entailed gene annotations through the intrinsic

analyses using experimentally validated data as a gold standard. We have also demonstrated
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Figure 4.7: This figure shows the enriched path selected in Figure 4.6 isolated as a subnet-
work and colored by concept type (left) and by enriched significance (right). black = protein,
cyan = biological process, green = chemical, gray = significantly enriched concept.
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Figure 4.8: This figure shows the top-scoring paths containing the most significantly
enriched GO BP, GO CC, GO MF, HP, CHEBI, CL, NBO, FMA, and UBERON concepts
for the Parkinson’s disease data.
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the extrinsic value of applying the entailed gene annotation towards knowledge base-driven

enrichment analysis by analyzing the enriched concepts identified for two targeted gene lists.

4.4 Future work

This work highlights the value of curated gene annotations and presents a novel method-

ology to produce additional high quality annotations. Extensions to this work might involve

developing a formal methodology for determining if a relation can be used as part of an

entailment chain to assign novel gene annotations. Such a method will likely still involve

manual judgement, but may be able to incorporate the formal definitions of the relations

as well as their properties, e.g. whether or not they can be applied transitively. Future

work to add additional logical definitions would also be potentially beneficial. Although the

reported performance was varied, Oellrich et al. (2013) proposed an automatic methodol-

ogy for generating phenotype logical definitions. While such automated means may provide

some unreliable inter-ontology linkages, they may still prove useful. Further, any entailed

gene annotation that resulted from an automatically generated logical definition could be

assigned the IEA evidence code to indicate its source.

Consumption of ongoing work to add context to gene annotations may also prove fruit-

ful. An effort to add context to GO annotation of genes is now underwayHuntley et al.

(2014). The GO Consortium has developed knowledge representations for these annotation

extensions to allow curators to add context, such as localization, temporality, and tissue

types to manually curated GO annotations. These annotation extensions are formed by

composing terms from other ontologies. They represent a novel source for cross-product-

like information, and provide new links that may be useful for the entailment work described

herein. Future extensions of the methodology described in this chapter will investigate the

incorporation of these annotation extension into the entailment computation.

There are a few smaller sources of directory gene-to-ontology concept mappings that

were not used in this initial implementation. In particular, annotations from mouse genes

to NBO are available and may provide greater integration of the ontologies. Future work

will integrate NBO annotations and others, as well as investigate prior work by others

regarding leveraging cross-species information to make stronger inferences. Further, logical
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definitions of fly and zebrafish phenotypes which were excluded due to difficulties in using

their raw forms will be integrated into our unified representation of biology and used for

the entailment of gene annotations.

Future work could also involve the development of an online resource to provide our

enrichment methodology publicly. Distribution could also take the form of custom input

files for the Ontologizer, or an extension to the Ontologizer code that would make use of

the variety of new concept types available for enrichment. Integration of the enrichment

functionality with the prototype enriched path viewer Cytoscape plugin would also be an

option. Further, the amount of enriched paths to choose from is often quite daunting.

Research into how best to choose the most interesting paths for the user would be an

important step in improving the communication of enrichment results to the researcher.

Although the Cytoscape interface presented here provides a convenient means for a user

to view a selected subset of enriched paths, determining which paths to select remains a

challenge due to redundancy in many paths as well as the shear number of paths from which

to choose. Further development of this Cytoscape interface will focus on the implementation

of automated methodologies for path selection and subnetwork generation, such as the “top

scoring path for the most significantly enriched term for each ontology” method used to

generate Figure 4.7. Manual techniques of path selection via filters and/or faceted search

will be implemented to allow a user to focus on paths containing specific concept types

or specific concepts themselves. Visualization techniques to simplify the network views

including node collapsing will also be explored. Finally, the interface will add functionality

that allows the user to interact with and explore the relations used to connect the concepts.

Finally, future research should involve the investigation of opportunities to enhance

second and third generation enrichment methodologies using the entailed gene annotations

generated using our methodology. For example, it would be a straightforward proposition

to generate gene sets for use with GSEA based on the entailed gene annotations.

4.5 Conclusions

The work in this chapter represents a significant advancement in the state of the art

of knowledge based-enrichment analysis. Building on the comprehensive analysis of Open
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Biomedical Ontology (OBO) topology presented in Chapter III, the work in this chapter

combines the powerful deductive reasoning capabilities of description logics with a proba-

bilistic reasoning method that is used ubiquitously throughout biomedicine. At the core

of this advancement in knowledge based-enrichment analysis is a novel methodology that

enables the generation of high quality, novel gene annotations to a wide variety of ontolo-

gies to which genes have not previously been connected. Using available gene annotations

to the GO and phenotype ontologies as seeds, the methodology proposed in this chapter

leverages interconnections among ontology concepts and the principle of deductive entail-

ment to create novel associations between genes and ontology concepts. Not only are novel

gene annotations generated to previously unannotated ontologies, but novel annotations

to previously annotated ontologies, e.g. the GO and phenotype ontologies, are also de-

rived. Taking advantage once again of the logical definitions integrating the ontologies, our

method improves on the typically returned lists of enriched concepts provided by many tools

by enabling the return of enriched modules of biology. By providing modules of enriched

concepts we provide the researcher with larger pieces of biology with which to incorporate

into their hypotheses. Novel gene annotations are validated quantitatively by comparing

against experimentally verified protein expression as well as curated gene-chemical interac-

tions. Overall performance is gauged through the analysis of a number of targeted gene lists.

Our methodology overcomes clear limitations of previous approaches and is complementary

to many of the recent enrichment efforts that have begun to integrate disparate data types.

Our method responds to the call by Huang et al. (2009a) that enrichment methodologies

should strive to incorporate more than just the Gene Ontology, and in doing so we have

addressed a number of challenges that face the current field of enrichment analysis (Khatri

et al., 2012). Given that integration of ontologies by the biomedical community through

the use of logical definitions is an ongoing process, the utility of our methodology will only

improve over time thus enabling a more comprehensive, intuitive, and adaptable resource

to help biologists better interpret and understand their genome-scale experimental data.
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4.6 Methods

4.6.1 Integrating ontologies

Ontology files were downloaded on May 25, 2015 and an integrated ontology was con-

structed as detailed in Chapter III. Table A.3 details the ontologies used. OWL reasoners

were run over each individual ontology, uncovering issues such as invalid import state-

ments and internal inconsistencies. Manual attempts were made to repair ontologies and

understand inconsistencies when possible. Ontology files were subsequently evaluated in

pairs via processing by OWL reasoners. Further issues regarding inter-ontology consis-

tency were identified. Eighty-four of the 133 ontology files were integrated into a logically

consistent aggregate ontology that was augmented with inferences produced by an OWL

reasoner. Modifications required to attain internal consistency included removal of many

owl:disjointWith axioms as well as all equivalencies with owl:Nothing from the UBERON-

EXT ontology file. The resulting aggregate ontology serves as the basis for all analyses

completed in this chapter.

4.6.2 Compute environment

All experiments were conducted using the Pando supercomputer hosted by the Univer-

sity of Colorado BioFrontiers Institute making extensive use of its 60 – 64 core systems,

each with 512 GB RAM and mirrored 1T disks. For jobs that could be run in parallel

Pando’s Torque job scheduling system was used to distribute the jobs across all available

cores. The process of extracting entailed paths from the aggregate ontology made extensive

use of Pando distributed system by allowing the simultaneous use of >100 AllegroGraph

triple stores.

4.6.3 Manual audit of OBO relations to filter non-entailment relations

A manual audit of all OBO relations that 1) were observed in the aggregate ontology,

and 2) appeared in an entailed ontology path emanating from a seed ontology concept. Seed

ontology concepts were defined as GO and phenotype concepts that are directly referenced

by human or mouse gene annotations. Performed by a domain expert, the audit filtered

relations that do not comply with the principle of deductive entailment. For each relation,
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the auditor asked the question: if a gene is annotated to concept A that has a relation to

concept B, then would an annotation from the gene to concept B always be true? If not,

then the relation was excluded from being used to compute entailed annotations.

4.6.4 Computing entailed gene annotations

Gene annotation files containing mappings from ontology terms to gene and gene prod-

ucts were downloaded from various sources. Table A.5 details the location of all files down-

loaded and their respective creation dates. Attempts were made to obtain annotation files

as close as possible, but not exceeding, the download date of the ontology files (May 25,

2015). A list of all ontology terms used for annotation was compiled from the downloaded

files. This unique list of “seed” terms was used as a starting point for computing all entailed

gene annotations.

The process of determining entailed gene annotations was facilitated by the AllegroGraphr43

triple store version 4.14 and its inherent support for Prolog. The integrated ontology, as de-

scribed above, was loaded into an AllegroGraphrrepository on the Pando supercomputer.

Prolog rules were written to traverse the OWL constructs of the integrated ontology as a

graph (See Appendix B). A sample Prolog rule demonstrating traversal over the RDF list

construct is shown below:

; ; A member o f an RDF l i s t i s e i t h e r t h e f i r s t member o f t h e l i s t

(<−− ( rdfListMember ? l i s t h e ad ?member)

(q− ? l i s t h e ad ! rd f : f i r s t ?member) )

; ; Or i t i s t h e f i r s t member o f t h e r e s t o f t h e l i s t

(<− ( rdfListMember ? l i s t h e ad ?member)

(q− ? l i s t h e ad ! rd f : rest ?b)

( rdfListMember ?b ?member) )

The first part of this rule defines a member of the list as something that is the head

of the list, i.e. something that is referred to by the rdf:first predicate. The second part of

the rule defines a member of the list as being the first member of the rest of the list, i.e.

something that is referred to by the rdf:rest predicate. Note that this rule is recursive, and

thus capable of returning all members of an RDF list construct. The full set of Prolog rules

used to traverse the OWL graph and extract entailment paths is shown in Appendix B.

43AllegroGraph – http://franz.com/agraph/allegrograph/
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Using an iterative deepening depth first search algorithm, the Prolog rules were invoked

for each “seed” term in order to capture all paths emanating from it. Paths were captured

incrementally using a path-length threshold to avoid memory and stack overflow issues.

The process was repeated several times, and the resulting path sections were compiled into

complete paths. Traversal through the ontology graph was restricted to the set of approved

relations that resulted from the manual audit of all OBO relations. From the complete

paths, the entailed concepts from each “seed” term were cataloged and saved to a file.

These entailed concepts were then associated with the genes that are directly annotated by

the “seed” concepts to generate the entailed gene annotations.

In order to speed up the entailment computation, the Pando supercomputer of the

University of Colorado BioFrontiers Institute44. The processed were divided up over 2000

instances of the AllegroGraphrtriple store and computed in parallel.

4.6.5 Computing enriched ontology terms for candidate gene lists

The Ontologizer (Robinson et al., 2004; Grossmann et al., 2007) tool was used to com-

pute enriched ontology terms. The output of the entailment computation was converted

into a GAF45 formatted annotation file and fed to the Ontologizer. The GAF file includes

each entailed annotation and all of its ancestor concepts. An ontology in the OBO format

is also required by the Ontologizer. The OBO format ontology was derived from the inte-

grated ontology using OWLTools. Because the Ontologizer appears to make use of some

non-subclass relations, the OBO formatted ontology was limited to the subclass hierarchy

only. The “term-for-term” analysis parameter was selected and p-values were adjusted using

the Benjamini-Hochberg multiple-testing correction.

Different annotation files use different identifiers for the genes and gene products they

reference. UniProt identifiers are commonly used for GO annotations, so all annotations

were normalized to UniProt identifiers prior to the generation of the GAF files. This

normalization required conversion of NCBI Gene identifiers used in the HP annotation file,

MGI identifiers used in the mouse Mammalian Phenotype ontology annotation file, and

44BioFrontiers Institute – https://biofrontiers.colorado.edu/ [Accessed October 2015]
45GAF format – http://geneontology.org/page/go-annotation-file-gaf-format-20 [Accessed October 2015]
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RGD identifiers used in the rat MP annotation file, to UniProt IDs. This conversion was

done using the UniProt identifier mapping file available on the Uniprot FTP site46.

4.6.6 Extracting enriched modules of biology

The process of traversing the aggregate ontology and extracting entailed paths which

emanate from each seed concept results in an immense number of paths. This collection

of paths includes quite a bit of redundancy as the paths were traversed exhaustively. To

facilitate the extraction of enriched paths, a Lucene47 index was used to store all paths.

Paths were indexed based on their member concepts. To obtain a set of enriched paths,

a query consisting of a list of enriched concepts was composed and submitted to Lucene.

Returned paths were scored based on their enrichment significance levels (p-values), and are

returned to the user or saved to file for loading into the prototype path viewer Cytoscape

plugin that was constructed as part of this work.

4.6.7 Reproducing the STOP Evaluation

In Wittkop et al. (2013), an evaluation of an enrichment methodology is conducted on

two sets of pre-composed gene lists. They compare their NLP-based enrichment method

(STOP) to DAVID using a list of genes related to Parkinson’s disease and one related to

Huntington’s disease. Here, we repeat their evaluation and compare the methodology pro-

posed in this chapter to both DAVID and STOP. The gene lists used in the Wittkop paper

are made available as a supplementary files48. After downloading the lists of gene symbols,

the symbols were converted to UniProt identifiers using DAVID’s Gene Accession Conver-

sion Tool(Huang et al., 2007). The STOP analysis was repeated using their webserver-based

tool49, using the following settings – Input: UniProt IDs, Species: Human, Multiple testing

correction: Benjamini-Hochberg, Background: UniProtKB/Swiss-Prot. It was necessary to

submit the gene symbols to STOP. Submitting UniProt IDs resulted in an empty result

set. The UniProt IDs were used, however, as input to both DAVID and the methodology

46ftp://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/idmapping/
by organism/HUMAN 9606 idmapping selected.tab.gz [Accessed October 2015]

47https://lucene.apache.org/core/ [Accessed July 2015]
48STOP paper supplementary files: http://www.biomedcentral.com/1471-2105/14/53/additional
49STOP server – http://www.mooneygroup.org/stop/input#
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developed in this chapter. For each enrichment approach, the top 30 enriched concepts were

evaluated and compared.
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CHAPTER V

CONTRIBUTIONS AND FUTURE DIRECTIONS

Knowledge base-driven enrichment analysis is used ubiquitously among biologists in

the interpretation of genomic scale data (Tipney and Hunter, 2010; Khatri et al., 2012).

Through the reduction of complexity enabled by the identification of common themes among

the genes under study, enrichment analysis offers insight into the underlying molecular mech-

anisms at play (Khatri et al., 2012). Our unique combination of the powerful deductive

reasoning capabilities of description logics with statistical reasoning approaches common

to biology has resulted in the significant advancement of the state of the art in knowl-

edge base-driven enrichment analysis that is presented in this thesis. Not only does the

proposed methodology increase the number of linkages from genomic contexts to the most

predominantly used concepts for enrichment analysis (Gene Ontology concepts), but it also

increases the variety of concept types available for enrichment analysis; and does so in a way

that makes use of data that already exists while simultaneously guaranteeing high quality

linkages. By basing our methodology on the community of existing biomedical ontologies

and demonstrating how they can be integrated in a logically sound manner, the method

is ensured of returning modules of enriched concepts that are inherently inter-linked thus

giving the researcher a head start in the task of hypothesis generation. Each component of

this thesis delivers novel and innovative solutions to various problems, and in this section

we describe individual contributions made by each component and the contribution of this

work in its entirety to the field of computational biology. We also discuss the merits and

weaknesses of the use of description logics (DLs) in the field of biomedical ontology, and

explore potential alternatives for representing knowledge that cannot be represented using

DLs.

5.1 Evaluating the state of biomedical annotation

Knowledge base construction has been an area of intense activity and great importance

in the growth of computational biology. However, there is little or no history of work

on the subject of evaluation of knowledge bases, either with respect to their contents or
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with respect to the processes by which they are constructed. This chapter proposes the

application of a metric from software engineering known as the found/fixed graph to the

problem of evaluating the processes by which genomic knowledge bases are built, as well as

the completeness of their contents.

Well-understood patterns of change in the found/fixed graph are found to occur in two

large publicly available knowledge bases. These patterns suggest that the current manual

curation processes will take far too long to complete the annotations of even just the most

important model organisms, and that at their current rate of production, they will never

be sufficient for completing the annotation of all currently available proteomes.

The state of biomedical annotation, particularly with respect to annotation to ontology

concepts, has direct implications to the advancement in knowledge base-driven enrichment

analysis proposed in this thesis. Our analyses of both GO annotations and GO logical

definitions highlights the value of these prized and limited resources and motivates the

development of the methodologies in Chapters III and IV that result in the generation of

large numbers of high quality gene annotations to a wide variety of concept types.

5.2 Assessing the synergy of the Open Biomedical Ontologies

Use of Semantic Web technologies and efforts to further formal representation of biology

have resulted in the Open Biomedical Ontologies becoming increasingly integrated (Bada

and Hunter, 2007; Mungall et al., 2011). These continuing efforts will only drive further

ontology integration in the future. As ontologies have become more integrated, their com-

bined use has become more prevalent, e.g. Hoehndorf et al. (2011a, 2012); Gkoutos and

Hoehndorf (2012); Köhler et al. (2013), demonstrating a unique ability to provide insight

over multiple domains of biology. The ability to gauge how well these ontologies can work in

combination with each other, i.e. their interoperability, has become increasingly important.

The work described in Chapter III represents the most comprehensive and inclusive exami-

nation of OBO interoperability to date, as far as the authors are aware. Through evaluation

of inter-ontology connectedness and the use of OWL reasoners to determine individual and

inter-ontology consistency, we have quantified the interoperability of the OBOs. Our as-

sessment of OBO topology suggests that interoperability is achievable, however with some
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caveats. These caveats, such as removal of owl:disjointWith axioms, point to errors in rep-

resentation and illuminate differing perspectives in knowledge representation in many cases.

We have investigated the etiologies of many of the unsatisfiable classes that were detected

in our analyses. Unique to this thesis, an exhaustive examination of all pairs of OBOs

details the sporadic inconsistencies that arise when integrating many of these disparate do-

main ontologies. Our experiences have been summarized in a set of ontology development

guidelines aimed at preventing easily detectable errors from propagating into the public do-

main. Using results of intra- and inter-ontology classifications, eighty-four OBO files have

been integrated into a logically consistent, unified, aggregate representation of biology, aug-

mented with inferences computed by an OWL reasoner. The work in this chapter sets the

foundation for a significant advancement in the state of the art of knowledge base-driven

enrichment analysis presented in Chapter IV.

5.3 Logical entailment of gene annotations for biological discovery

Chapter IV introduces a significant advancement in the state of the art of knowledge

based-enrichment analysis. Building on the comprehensive analysis of Open Biomedical

Ontology (OBO) topology presented in Chapter III, the work in this chapter combines the

powerful deductive reasoning capabilities of description logics with a probabilistic reasoning

method that is used ubiquitously throughout biomedicine. At the core of this advancement

in knowledge based-enrichment analysis is a novel methodology that enables the generation

of high quality, novel gene annotations to a wide variety of ontologies to which genes have

not previously been connected. Using available gene annotations to the GO and phenotype

ontologies as seeds, the methodology proposed in this chapter leverages interconnections

among ontology concepts and the principle of deductive entailment to create novel associa-

tions between genes and ontology concepts. Not only are novel gene annotations generated

to previously unannotated ontologies, but novel annotations to previously annotated on-

tologies, e.g. the GO and phenotype ontologies, are also derived. Taking advantage once

again of the logical definitions integrating the ontologies, our method improves on the typ-

ically returned lists of enriched concepts provided by many tools by enabling the return of

enriched modules of biology. By providing modules of enriched concepts we provide the
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researcher with larger pieces of biology with which to incorporate into their hypotheses.

Novel gene annotations are validated quantitatively by comparing against experimentally

verified protein expression as well as curated gene-chemical interactions. Overall perfor-

mance is gauged through the analysis of a number of targeted gene lists. Our methodology

overcomes clear limitations of previous approaches and is complementary to many of the

recent enrichment efforts that have begun to integrate disparate data types. Our method

responds to the call by Huang et al. (2009a) that enrichment methodologies should strive

to incorporate more than just the Gene Ontology, and in doing so we have addressed a

number of challenges that face the current field of enrichment analysis (Khatri et al., 2012).

Given that integration of ontologies by the biomedical community through the use of logical

definitions is an ongoing process, the utility of our methodology will only improve over time

thus enabling a more comprehensive, intuitive, and adaptable resource to help biologists

better interpret and understand their genome-scale experimental data.

5.4 Use of formal logic in biology: why Description Logic?

The inherent complexities of biology and the need for life science researchers to com-

municate about those complexities in an unambiguous, standardized fashion have driven

the adoption of formal knowledge representation using ontologies in the biomedical com-

munity (Ashburner et al., 2000; Schulz et al., 2009). When it comes to the use of logics

to define these formal representations, Description Logics (DLs) are the most often used.

The dominance of DLs stems from a number of facts, as suggested by Schulz et al. (2009).

The tool-base for DLs, and in particular OWL, is mature, actively developed, largely open

source, and wide-ranging including OWL editors (Noy et al., 2003),OWL-specific software

libraries (Horridge and Bechhofer, 2011), and OWL Reasoners (Glimm et al., 2014; Kaza-

kov et al., 2014; Mendez, 2012; Tsarkov and Horrocks, 2006). The DL subset of the Web

Ontology Language (OWL), OWL DL, has been widely adopted and is a W3C standard

representational language of the Semantic Web (Group, 2015). Further, many DLs have

computationally useful properties such as being decidable, meaning that reasoning algo-

rithms exist that are guaranteed to return a result. Although the expressiveness of DLs

is ideally suited to assign definitions and properties to categories of biology, Schulz et al.
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(2009) notes that DLs have some deficiencies with regard to certain areas of knowledge

representation, and overall are insufficient to formally represent all that is known about

biology. They note two things in particular. First, DL object properties used to relate one

concept to another are unable to represent a notion of time. To borrow their example, that

is to say there is no way to represent that something is an Embryo at time t1 and that same

thing is a Fetus at time t2. Second, DLs are incapable of formulating expressions about

what is typically true. That is, they are unable to express default knowledge or handle

exceptions. For example, DLs cannot express the fact that cells have a nucleus except for

erythrocytes which do not. Both Hoehndorf et al. (2007) and Schulz et al. (2009) note that

attempts to model default knowledge often result in erroneous or unintended models. For

example, Schulz et al. (2009) notes that if a DL is used to represent the fact that Hepati-

tis normally has symptom Fever, then such an assertion implies that for every instance of

Hepatitis there is an accompanying instance of Fever. The word “normally” can be inter-

preted by humans, but plays no “logical role” according to a reasoner. Schulz et al. (2009)

attributes the prevalence of these types of errors to the fact that ontology developers are

typically domain experts and not experts in formal knowledge representation.

The large-scale ontology integration presented in Chapter III of this thesis encountered

this inability of DLs to model default knowledge directly. As has been well documented

elsewhere (Hoehndorf et al., 2007, 2010a), there is a representational disconnect when com-

paring representations of the canonical in anatomy ontologies with representations of the

abnormal in phenotype ontologies. The differences between the two largely stem from

their underlying representational perspectives. Anatomy ontologies, for the most part, are

charged with representing the canonical, normal organization of bodily structure. Phe-

notype ontologies, represent the abnormal and frequently rarer state of some observable

characteristic. When it relates to some piece of anatomy, representation of a phenotype

can be in direct opposition to the canonical representation of that same piece of anatomy.

Integration of UBERON-EXT with the Zebrafish Phenotype ontology (ZP) provides a con-

crete example that results in the unsatisfiability of the concept abnormal(ly) mislocalised

anteriorly midbrain fourth ventricle [ZP:0010127]. The concept abnormal(ly) mislocalised

anteriorly midbrain fourth ventricle [ZP:0010127] is used to represent a zebrafish phenotype
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in which the fourth ventricle which is normally found in the hindbrain, is instead found in

the midbrain. The representation of this phenotype results in a class that is part of both

midbrain and hindbrain. Given the open world assumption, there is nothing wrong with

the phenotype representation expressed in ZP, however UBERON-EXT contains statements

that explicitly prohibit something from being simultaneously part of both midbrain and

hindbrain. From the perspective of representing normal anatomy, UBERON-EXT is correct

to prohibit such a joint localization. In doing so, it has provided an internal sanity check

that can be used to prevent modeling errors during ontology development. In this case,

UBERON-EXT is correct in its representation of a canonical state, just as ZP is correct in

its representation of an abnormal state, however when combined a conflict in perspectives

ensues. Ability for DLs to handle default knowledge, e.g. to model the fourth ventricle as

part of the hindbrain unless it is declared part of something else, would greatly benefit

the biological ontology community as shown in this simple example.

There have been efforts to develop compatible models of canonical anatomy and abnor-

mal phenotypes using DLs. The work of Hoehndorf et al. (2010b), for example, proposed

a method to explicitly represent the semantics of phenotypes. Their work involved the

generation of a novel top-level classification of phenotypic characteristics. They distinguish

between phenotypic characteristics such as those that represent the presence or absence of

parts or the function or dysfunction of an organism or one of its parts. In order to integrate

with ontologies representing canonical entities, the canonical ontologies must be transformed

such that they explicitly reference canonical entities. Thus, their methodology requires sig-

nificant ontology reengineering in order to succeed. More course-grained solutions to avoid

potential conflicts caused by the attempted modeling of default knowledge have also been

used including the exclusion of owl:disjointWith axioms (Hoehndorf et al., 2011b), or as

we demonstrated in our integration efforts in Chapter III, the removal of equivalencies to

owl:Nothing.

Schulz and Jansen (2013) argue that the task of ontologies should be restricted to the

representation of universal facts, and that attempts to represent such things as default or

probabilistic knowledge often result in incorrect and/or inadvertent models. That is, they

condone only relationships between ontology concepts that are always true.
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“The most important message is that ontology axioms can only express what
is true for all members of a class. This precludes contingent, probabilistic and
default statements, as well as rules and meta-class assertions, to be included
into formal ontologies. The advantage of this restriction is that ontologies are,
therefore, limited to express the most stable assertions about a domain.”(Schulz
and Jansen, 2013)

Others have also noted the severe limitation on DLs because of their inability to repre-

sent default knowledge (Rector, 2004, 2008). Although they may be marred by increased

computational complexity, there are logics that have been developed to handle such cases.

DLs are monotonic logics in that reasoning over additional knowledge will only result

in the inference of new knowledge, and any conclusions previously drawn will always re-

main true (Russell and Norvig, 2003). Non-monotonic logics, on the other hand, allow for

previous inferences to be altered or negated based on the presence of additional knowledge.

Among other things, non-monotonic logics enable the representation of exceptions, tempo-

ral constraints, and default knowledge. The work by Hoehndorf et al. (2007) is one of the

only attempts to use non-monotonic reasoning in the biomedical domain as far as we are

aware. Hoehndorf et al. (2007) introduces a new class of relationships that implies negation

and facilitates the treatment of canonical knowledge as default. In their approach, they

explicitly identify an ontology as representing the canonical, and another as representing

the phenotype. Their non-monotonic logic treats statements contained in the canonical

ontology true by default, and allows invalidation of previous inferences/conclusions if ad-

ditional knowledge warrants. By using the formalisms of answer set programming (Eiter

et al., 2005) they are able to apply their methodology to achieve interoperability between

ontologies of mouse anatomy and mammalian phenotype. Their method requires extensive

ontology reengineering but demonstrates ability to accomodate exceptions and defaults in

biomedical knowledge representation.

The work of Hoehndorf et al. (2007) is an example of default logic. Default logic provides

a mechanism to specify rules that control the addition of knowledge to the knowledge base.

These default rules consist of three components: 1) a prerequisite which must be met for the

rule to be invoked; 2) a justification; and 3) a conclusion which states the default knowledge.

The conclusion is added to the KB if the prerequisite is met and if the justification is
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consistent with the rest of the KB. For example, a default rule might specify that if given a

cell (prerequisite) it has a nucleus (conclusion) if having a nucleus (justification) is consistent

with the KB. Rules where the conclusion matches the justification are called normal default

rules, and are the most common type of rule by far (Brachman and Levesque, 2004).

Other types of default reasoning include circumscription and autoepistemic logic (Brach-

man and Levesque, 2004). Circumscription makes use of a special predicate (Ab) to indicate

when something is abnormal, and thus when a default should not apply. To express our

cell/nucleus example using circumscription we would add a sentence that says all cells that

are not abnormal have a nucleus. In cases where multiple abnormalities are in play, cir-

cumscription adopts a strategy for drawing default conclusions that minimizes the number

of abnormal instances. Often multiple Ab predicates are used to indicate different aspects

of individuals, e.g. Ab1 might be used to indicate abnormality with regard to having a

nucleus and Ab2 might be used to indicate abnormality with regard to cell shape. Cir-

cumscription has the advantage over default logic that the defaults are entered as ordinary

sentences into the KB so they are available to reason over (Brachman and Levesque, 2004).

Sojic and Kutz (2012) demonstrates the use of circumscription in the biomedical domain

to distinguish between normal and abnormal breast cancer phenotypes.

Autoepistemic logic is a modal logic. Modal logics extend classical propositional and

predicate logic with operators that express modality, i.e. operators that allow the quali-

fication of statements (Russell and Norvig, 2003). In the case of autoepistemic logic the

qualification is one of belief. Autoepistemic logic is similar to circumscription in that the

defaults are represented as sentences in the KB, and is similar to default logic in that the

sentences include a justification. For example, we will represent the default about cells by

stating Any cell consistently believed to have a nucleus does indeed have a nucleus.

Default reasoning remains an open problem in the field of knowledge representation

(Brachman and Levesque, 2004).

“In fact, because so much of what we know involves default reasoning, it
is perhaps the open problem in the whole area of knowledge representa-
tion.”(Brachman and Levesque, 2004)
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It has clear application in the biomedical domain, but its complexity, lack of support

infrastructure in the form of ready-to-use tools, and out-of-the-box implementations may

continue to delay its uptake by the biomedical community.

5.5 Future directions

The work described in this thesis has incorporated aspects of ontology integration, com-

putational reasoning, deductive entailment, and enrichment analysis. There are a number

of areas where future research could enhance the overall utility of our methodology. Ex-

tending the ontology integration efforts to include ontologies external to the OBO Foundry,

e.g. the more than 300+ other biomedical ontologies cataloged by the NCBO BioPortal

(Noy et al., 2009; Whetzel et al., 2011), has the potential to further integrate the existing

unified representation of biology as well as provide novel enriched concept types. Integra-

tion of other ontologies is dependent upon their use of logical definitions however. As it is

unclear if there are ontologies outside of the OBO Foundry that contain formal definitions

referencing OBOs, an exploratory search for logical definitions would be required prior to

any integration effort.

As discussed in Chapter III, the application of the methodology proposed by Hoehn-

dorf et al. (2011a) to formally define all relations used in the OBOs would be a beneficial

extension of our work. The formal definition of all relations, including assignment of their

domains and ranges, and the subsequent reasoning over the unified ontology would result in

a more robust quantification of OBO interoperability. It is likely that further inconsistencies

would be detected, but also likely that additional inferences would be made. Automating

this integration and the assessments conducted in Chapter III, and providing a publicly

available portal would benefit the ontology development community as a whole through

the automated monitoring of community-wide ontology development, e.g. (Mungall et al.,

2012a). As the OBOs become further integrated, it will become increasingly important

to check for unintended interactions among the ontologies, especially given the distributed

development environment in which they reside.

This work highlights the value of curated gene annotations and presents a novel method-

ology to produce additional high quality annotations. Extensions to this work might involve
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developing a formal methodology for determining if a relation can be used as part of an

entailment chain to assign novel gene annotations. Such a method will likely still involve

manual judgement, but may be able to incorporate the formal definitions of the relations

as well as their properties, e.g. whether or not they can be applied transitively. Future

work to add additional logical definitions would also be potentially beneficial. Although the

reported performance was varied, Oellrich et al. (2013) proposed an automatic methodol-

ogy for generating phenotype logical definitions. While such automated means may provide

some unreliable inter-ontology linkages, they may still prove useful. Further, any entailed

gene annotation that resulted from an automatically generated logical definition could be

assigned the IEA evidence code to indicate its source.

Future work could also involve the development of an online resource to provide our

enrichment methodology publicly. Distribution could also take the form of custom input

files for the Ontologizer, or an extension to the Ontologizer code that would make use of

the variety of new concept types available for enrichment. Integration of the enrichment

functionality with the prototype enriched path viewer Cytoscape plugin would also be an

option. Further, the amount of enriched paths to choose from is often quite daunting.

Research into how best to choose the most interesting paths for the user would be an

important step in improving the communication of enrichment results to the researcher.

Finally, future research should involve the investigation of opportunities to enhance

second and third generation enrichment methodologies using the entailed gene annotations

generated using our methodology. For example, it would be a straightforward proposition

to generate gene sets for use with GSEA based on the entailed gene annotations.

5.6 Conclusion

The application of formally defined knowledge to the task of biological discovery has a

rich and growing history. While extensive work has gone into the development of formal

representations of biology in the form of ontologies and logically defined concepts (Ash-

burner et al., 2000; Mungall et al., 2014; Bada and Hunter, 2007; Mungall et al., 2011),

the axiomatization of these representations is largely ignored when these resources are used

in practice (Mungall et al., 2014), leaving valuable information unexploited. The work
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presented in this thesis reverses that trend by combining the powerful deductive reasoning

capabilities of description logics with statistical reasoning common to biology to advance the

state of the art of knowledge base-driven enrichment analysis. Our innovative application of

a software engineering metric to measure completeness of community-wide gene annotation

efforts highlights the value of these prized and limited resources. Through the a collection of

methodologies working synergistically, we demonstrate the derivation of novel, high quality

gene annotations to a wide variety of domain ontologies not previously annotated to genes.

Our methodology takes advantage of the integration among ontologies to uniquely provide

to the user intuitive modules of biology relevant to the underlying biological mechanisms at

play. Our methodology addresses some of the most prominent challenges facing contempo-

rary knowledge base-driven enrichment analysis while consuming and enhancing data that

already exists. As ongoing efforts to formally integrate biomedical ontologies continue, the

extensibility of our approach guarantees continued advances in enrichment analysis in re-

gards to the types of enriched concepts that can be detected. Over time, the utility of our

methodology will continue to enable an increasingly comprehensive, intuitive, and adaptable

resource to help biologists better interpret and understand their genome-scale experimental

data.
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APPENDIX A

DATA PROCUREMENT

This appendix provides details about the ontologies analyzed and used throughout this

manuscript. Table A.1 lists the five ontologies cataloged by the OBOFoundry website that

were excluded from analysis, and the reason for the exclusion. Table A.2 details the domain

assignments for the OBOFoundry ontologies. the Table A.3 lists all 133 ontology files used

in the analyses described in Chapter III.

Abbreviation Name Reason for exclusion
CMF CranioMaxilloFacial ontology no OWL or OBO file available
LiPrO Lipid Ontology no OWL or OBO file available
PD ST Platynereis stage ontology available obo file results in a parse error
RESID Protein covalent bond no OWL or OBO file available

OBO relationship types (legacy) Used ro.owl instead due to “legacy” annotation
SEP Sample processing and separation techniques parse error in one of its imports

Table A.1: The five ontology files listed on the OBOFoundry website that were excluded
from this analysis, and the reason for their exclusion. Files were either unavailable in any
format or were observed to be unparsable.

Domain Ontology count Domain Ontology count
anatomy 32 adverse events 1
health 19 algorithms 1
phenotype 9 all 1
experiments 8 behavior 1
taxonomy 4 biological function 1
biochemistry 3 biological sequence 1
environment 3 development 1
biological process 2 information 1
medicine 2 molecular structure 1
neuroscience 2 resources 1
proteins 2 upper 1
statistics 2

Table A.2: Domain assignments for ontologies as specified on the OBO Foundry web site.
Thirty-five ontology files used in this analysis do not have a specified domain.
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Table A.3: Listing of all ontology files analyzed in Chapter III. For clarity, the oft-used http://purl.obolibrary.org/obo/ URL has
been abbreviated obo://. OBO activity categories: A — active; DR — discussion and review; In — inactive; n/a — not available;
PR — production and review; Q — quiescent. OBO domain categories: A — anatomy; AE — adverse events; Alg — algorithms;
All — all domains; B — behavior; BC — biochemistry; BF — biological function; BP — biological process; BS — biological sequence;
D — development; En — environment; Ex — experiments; H — health; I — information; M — medicine; MS — molecular structure;
N — neuroscience; Ph — phenotype; Pr — proteins; R — resources; S — statistics; T — taxonomy; U — upper ontology; n/a —
not available.

Abbreviation Full name Activity Domain

Anatomical Entity Ontology DR A
AEO

obo://aeo.owl

AERO
Adverse Event Reporting Ontology PR H
obo://aero.owl
Ascomycete phenotype ontology PR Ph

APO
obo://apo.owl

BCGO
Beta Cell Genomics Ontology DR Ex
obo://bcgo.owl
Biological Collections Ontology DR n/a

BCO
obo://bco.owl

BFO-1.1
Basic Formal Ontology v1.1 A U
http://ifomis.uni-saarland.de/bfo/owl
Basic Formal Ontology v2.0 n/a n/a

BFO-2.0
http://bfo.googlecode.com/svn/releases/2012-07-20-graz/owl-group/bfo.owl

BIO-ATT
Ontology of Biological Attributes n/a n/a
obo://bio-attributes.owl
Biological Spatial Ontology DR A

BSPO
obo://bspo.owl

BTO
BRENDA tissue ontology A A
obo://bto.owl

Continued on next page



Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

Common Anatomy Reference Ontology DR A
CARO

obo://caro.owl

CDAO
Comparative Data Analysis Ontology DR n/a
obo://cdao.owl
Chemical entities of biological interest PR BC

CHEBI
obo://chebi.owl

CHEMINF
Chemical Information Ontology A BC
obo://cheminf.owl
Chemical Methods Ontology PR H

CHMO
obo://chmo.owl

CL
Cell type ontology PR A
obo://cl.owl
Cell Line Ontology DR n/a

CLO
obo://clo.owl

CTENO
Ctenophore Ontology DR A
https://raw.githubusercontent.com/obophenotype/ctenophore-
ontology/master/src/ontology/cteno.owl
Cardiovascular Disease Ontology PR H

CVDO
obo://cvdo.owl

DDANAT
Dictyostelium discoideum anatomy PR A
obo://ddanat.owl
Dictyostelium discoideum phenotype PR A

DDPHENO
obo://ddpheno.owl

DINTO
The Drug-drug Interaction Ontology DR n/a
https://4625527d7e0f0589865f115fb0c87fc18bef216f.googledrive.com/host/0B-
7Po9tR1KLUNkpNdmFEcG44RjA/DINTO 1.owl
Human disease ontology DR H

DOID
obo://doid.owl

Continued on next page
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Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

The Drug Ontology DR H
DRON

obo://dron.owl

ECO
Evidence codes PR Ex
obo://eco.owl
Human developmental anatomy, abstract version DR A

EHDAA2
obo://ehdaa2.owl

EMAP
Mouse gross anatomy and development, timed PR A
obo://emap.owl
Mouse gross anatomy and development, abstract PR A

EMAPA
obo://emapa.owl

ENVO
Environment Ontology DR En
obo://envo.owl
Plant Environmental Conditions A En

EO
obo://eo.owl

EPO
Epidemiology Ontology DR n/a
obo://epo.owl
eagle-i resource ontology PR R

ERO
obo://ero.owl

EXO
Exposure ontology DR H
obo://exo.owl
Fungal gross anatomy PR A

FAO
obo://fao.owl

FBBI
Biological imaging methods A Ex
obo://fbbi.owl
Drosophila gross anatomy PR A

FBBT
obo://fbbt.owl

FBCV
Drosophila Phenotype Ontology PR n/a
obo://fbcv.owl

Continued on next page
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Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

Drosophila development PR A
FBDV

obo://fbdv.owl

FBSP
Fly taxonomy DR T
obo://fbsp.owl
Physico-chemical methods and properties In n/a

FIX
obo://fix.owl

FLU
Influenza Ontology DR H
obo://flu.owl
Foundational Model of Anatomy PR A

FMA
obo://fma.owl

FYPO
Fission Yeast Phenotype Ontology PR Ph
obo://fypo.owl
Geographical Entity Ontology PR n/a

GEO
obo://geo.owl

GO
Gene Ontology PR BP,BF,A
obo://go.owl
Gene Ontology Plus n/a n/a

GO-PLUS
http://geneontology.org/ontology/extensions/go-plus.owl

GO-PLUS-DEV
Gene Ontology Plus (development) n/a n/a
http://geneontology.org/ontology/extensions/go-plus-dev.owl
Hymenoptera Anatomy Ontology PR A

HAO
obo://hao.owl

HOM
Homology ontology DR n/a
obo://hom.owl
Human phenotype ontology PR Ph

HP
obo://hp.owl

HP-EQUIV
Human Phenotype Ontology Logical Definitions n/a n/a
http://phenotype-ontologies.googlecode.com/svn/trunk/src/ontology/hp/hp-
equivalence-axioms-subq-ubr.owl

Continued on next page
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Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

Information Artifact Ontology PR I
IAO

obo://iao.owl

ICO
Informed Consent Ontology DR H
obo://ico.owl
Infectious disease DR H

IDO
obo://ido.owl

IDOMAL
Malaria Ontology DR H
obo://idomal.owl
INOH Protein Molecular Role Ontology n/a n/a

IMR
obo://imr.owl

KISAO
Kinetic Simulation Algorithm Ontology A Alg
http://svn.code.sf.net/p/kisao/code/tags/kisao-owl-latest/kisao.owl
Mouse adult gross anatomy PR A

MA
obo://ma.owl

MAMO
Mathematical modeling ontology DR n/a
http://sourceforge.net/p/mamo-ontology/code/13/tree/trunk/mamo-xml.owl?format=raw
Mental Functioning Ontology DR n/a

MF
obo://mf.owl

MFO
Medaka fish anatomy and development Q A
http://www.berkeleybop.org/ontologies/mfo.owl
Emotion Ontology DR H

MFOEM
obo://mfoem.owl

MFOMD
Mental Disease Ontology DR H
https://mental-functioning-ontology.googlecode.com/svn/trunk/ontology/MFOMD.owl
Microarray experimental conditions A Ex

MGED
http://mged.sourceforge.net/ontologies/MGEDOntology.owl

MI
Protein-protein interaction DR Ex
obo://mi.owl

Continued on next page
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Abbreviation Full name Activity Domain

MIAPA Ontology DR n/a
MIAPA

obo://miapa.owl

MIRNAO
microRNA Ontology DR n/a
obo://mirnao.owl
Mosquito insecticide resistance DR En

MIRO
obo://miro.owl

MOD
Protein modification DR Pr
obo://mod.owl
Molecular Process Ontology DR n/a

MOP
https://rxno.googlecode.com/svn/trunk/mop.owl

MP
Mammalian phenotype PR Ph
obo://mp.owl
Mammalian Phenotype Ontology Logical Definitions n/a n/a

MP-EQUIV
obo://mp/mp-equivalence-axioms-subq-ubr.owl

MPATH
Mouse pathology Q H
obo://mpath.owl
Mass spectrometry DR Ex

MS
obo://ms.owl

NBO
Neuro Behavior Ontology A B
http://behavior-ontology.googlecode.com/svn/trunk/behavior.owl
NCBI organismal classification A T

NCBITAXON
obo://ncbitaxon.owl

NCI-THES
NCI Thesaurus A H
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
NIF Cell ontology PR N

NIF-CELL
http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Cell.owl

NIF-DYS
NIF Dysfunction ontology PR N
http://ontology.neuinfo.org/NIF/Dysfunction/NIF-Dysfunction.owl

Continued on next page
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Abbreviation Full name Activity Domain

NMR-instrument specific component of metabolomics investigations In Ex
NMR

https://msi-workgroups.svn.sourceforge.net/svnroot/msi-workgroups/ontology/NMR.owl

OAE
Ontology of Adverse Events PR AE,H
http://svn.code.sf.net/p/oae/code/trunk/src/ontology/oae.owl
Ontology of Biological Attributes DR Ph

OBA
obo://oba.owl

OBCS
Ontology of Biological and Clinical Statistics DR S
obo://obcs.owl
Ontology for biomedical investigations DR Ex

OBI
obo://obi.owl

OBIB
Ontology for Biobanking DR H
obo://obib.owl
The Ontology of Genes and Genomes DR n/a

OGG
obo://ogg.owl

OGI
Ontology for genetic interval DR n/a
obo://ogi.owl
Ontology for General Medical Science DR M

OGMS
obo://ogms.owl

OGSF
Ontology of Genetic Susceptibility Factor DR n/a
obo://ogsf.owl
Ontology for MIRNA Target Prediction DR n/a

OMIT
http://soc.southalabama.edu/ huang/OMIT/Ontology/OMIT.owl

OMRSE
Ontology of Medically Related Social Entities DR M
obo://omrse.owl
Ontology for Parasite LifeCycle DR n/a

OPL
obo://opl.owl

OVAE
Ontology of Vaccine Adverse Events DR n/a
obo://ovae.owl

Continued on next page
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Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

Phenotypic quality PR Ph
PATO

obo://pato.owl

PCO
Population and Community Ontology PR n/a
obo://pco.owl
Plant Ontology DR A,D

PO
obo://po.owl

PORO
Porifera Ontology DR A
obo://poro.owl
Protein Ontology DR Pr

PR
obo://pr.owl

PW
Pathway ontology A BP
obo://pw.owl
Physico-chemical process In n/a

REX
obo://rex.owl

RNAO
RNA ontology PR MS
http://rnao.googlecode.com/svn/tags/RNAO-1.0/rnao.owl
Relation ontology PR All

RO
obo://ro.owl

RS
Rat Strain Ontology n/a n/a
obo://rs.owl
Name Reaction Ontology DR n/a

RXNO
obo://rxno.owl

SBO
Systems Biology DR BC
http://www.ebi.ac.uk/sbo/exports/Main/SBO OWL.owl
Sequence ontology PR BS

SO
obo://so.owl

SPD
Spider Ontology DR A
obo://spd.owl

Continued on next page

163



Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

STATistics Ontology DR S
STATO

obo://stato.owl

SWO
Software ontology PR n/a
obo://swo.owl
Symptom Ontology DR H

SYMP
obo://symp.owl

TADS
Tick gross anatomy DR A
obo://tads.owl
Teleost Anatomy Ontology DR A

TAO
obo://tao.owl

TAXRANK
Taxonomic rank vocabulary DR T
obo://taxrank.owl
Mosquito gross anatomy PR A

TGMA
obo://tgma.owl

TO
Plant Trait Ontology DR Ph
obo://to.owl
Pathogen transmission DR H

TRANS
obo://trans.owl

TTO
Teleost taxonomy DR T
obo://tto.owl
Uber anatomy ontology DR A

UBERON
obo://uberon.owl

UBERON-EXT
Uber anatomy ontology DR A
obo://uberon/ext.owl
Units of measurement PR Ph

UO
obo://uo.owl

VARIO
Variation Ontology DR n/a
obo://vario.owl

Continued on next page
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Table A.3 – Continued from previous page

Abbreviation Full name Activity Domain

verteberate Homologous Organ Groups DR A
VHOG

obo://vhog.owl

VO
Vaccine ontology PR H
obo://vo.owl
Vertebrate Skeletal Anatomy Ontology DR A

VSAO
obo://vsao.owl

VTO
Vertebrate Taxonomy Ontology DR n/a
obo://vto.owl
C. elegans gross anatomy PR A

WBBT
obo://wbbt.owl

WBLS
C. elegans development PR A
obo://wbls.owl
C. elegans phenotype DR Ph

WBPHENO
obo://wbphenotype.owl

WP-EQUIV
C. elegans Phenotype Ontology Logical Definitions n/a n/a
http://phenotype-
ontologies.googlecode.com/svn/trunk/src/ontology/wbphenotype/wbphenotype-
equivalence-axioms-subq-ubr.owl
Xenopus anatomy and development DR A

XAO
obo://xao.owl

ZFA
Zebrafish anatomy and development PR A
obo://zfa.owl
Zebrafish developmental stages PR A

ZFS
obo://zfs.owl

ZP-EQUIV
Zebrafish Phenotype Ontology Logical Definitions n/a n/a
http://phenotype-ontologies.googlecode.com/svn/trunk/src/ontology/zp/zp-
equivalence-axioms-subq-ubr.owl
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Ontology Change required to run EL Vira
CDAO Removed rdf:datatype=”http://www.w3.org/2000/01/rdf-schema#Literal” from an

rdfs:comment declaration.
EXO Removed duplicate namespace: xmlns:interacts with an exposure stressor via2
MIAPA Removed duplicate properties:

<owl:AnnotationProperty rdf:about=”http://www.w3.org/ns/prov#wasRevisionOf”/>
<owl:NamedIndividual rdf:about=”http://www.w3.org/ns/prov#EmptyCollection”/>
<owl:AnnotationProperty rdf:about=”http://www.w3.org/ns/prov#specializationOf”/>

Table A.4: The three ontologies requiring manual fixes to run EL Vira, and a description
of the changes made.

Type Species Ontology File date

G
en

e
O
n
to
lo
g
y

GO May 1, 2015
A. thaliana http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/

gene-associations/gene association.tair.gz?revision=25532

C. elegans
GO Feb 21, 2015
http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.wb.gz?revision=23771
GO Apr 17, 2015

D. melanogaster http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.fb.gz?revision=25235

D. rerio
GO May 23, 2015
http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.zfin.gz?revision=26023
GO May 24, 2015

S. cerevisiae http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.sgd.gz?revision=26034

S. pombe
GO May 23, 2015
http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.pombase.gz?revision=26020
GO May 23, 2015

H. sapiens http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.goa human.gz?revision=26013

M. musculus
GO May 23, 2015
http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.mgi.gz?revision=26019
GO May 24, 2015

R. norvegicus http://viewvc.geneontology.org/viewvc/GO-SVN/trunk/
gene-associations/gene association.rgd.gz?revision=26033

P
h
en

o
ty
p
e

WBPHENO Feb 17, 2015
C. elegans ftp://ftp.wormbase.org/pub/wormbase/releases/current-

production-release/ONTOLOGY/phenotype association.WS247.wb
HP May 1, 2015

H. sapiens
http://compbio.charite.de/hudson/job/hpo.annotations.monthly/
85/artifact/annotation/ALL SOURCES ALL FREQUENCIES
genes to phenotype.txt

M. musculus
MP June 15, 2015
ftp://ftp.informatics.jax.org/pub/reports/MGI PhenoGenoMP.rpt
MP June 12, 2015

R. norvegicus ftp://rgd.mcw.edu/pub/data release/annotated
rgd objects by ontology/rattus genes mp

S. pombe
FYPO May 11, 2015
ftp://ftp.ebi.ac.uk/pub/databases/pombase/pombe/Phenotype
annotations/OLD/20150511/phenotype
annotations.pombase.phaf.gz

O
th

er

NBO June 12, 2015
R. norvegicus ftp://rgd.mcw.edu/pub/data release/annotated

rgd objects by ontology/rattus genes nbo

R. norvegicus
PW June 12, 2015
ftp://rgd.mcw.edu/pub/data release/annotated
rgd objects by ontology/rattus genes pw

Table A.5: List of annotation files used and their respective URLs.
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APPENDIX B

PROLOG RULES

; ;

; ; This f i l e conta in s Prolog r u l e s f o r t r av e r s i n g OWL on t o l o g i e s .

; ; The t r a v e r s a l uses a depth− f i r s t approach .

; ;

(<−− ( i sPredProh ib i t ed ?pred )

(not (member ? pred

( ! obo : pr#l a c k s pa r t .

( ! obo : c l#lacks plasma membrane part .

( ! obo : c l#l a c k s pa r t .

( ! obo : c l#has not completed ) ) ) ) ) ) )

; ;

; ; I t turns out that owl : Nothing appears in some o f the on t o l o g i e s and i t i s subc l a s s o f

; ; everyth ing . This was a cause o f a prev ious s tack over f l ow e r r o r ( and r i g h t l y so ) .

; ; We want to cut our t r a v e r s a l i f owl : Nothing i s encountered .

; ;

(<−− ( i sC l sP roh ib i t ed ? c )

(not (member ? c ( ! owl : Nothing . ; ; owl : Nothing i s subClassOf everyth ing

; ; so d e f i n i t e l y stop i f we encounter

( ! obo : BFO 0000001 .

( ! obo : BFO 0000002 .

( ! obo : BFO 0000003 .

( ! obo : BFO 0000004 .

( ! obo : BFO 0000007 .

( ! obo : BFO 0000015 .

( ! obo : BFO 0000019 .

( ! obo : BFO 0000020 .

( ! obo : BFO 0000030 .

( ! obo : BFO 0000034 .

( ! obo : BFO 0000035 .

( ! obo : BFO 0000040 .

( ! obo : RO 0002577 . ; ; system

( ! obo : IAO 0000144 .

( ! bfosnap : Qual i ty .

( ! obo : sc ratch bc9cd657 1b16 481d a157 0ee9d4fb3b84 .

( ! bfosnap : Spec i f i ca l lyDependentCont inuant .

( ! obo : span Process .

( ! obo : FBdv 00007008 . ; ; occur rent

( ! obo : IDOMAL 0000000 .

( ! bfospan : Proces sua lEnt i ty .

( ! bfosnap : Mater ia lEnt i ty .

( ! obo : snap Object .

( ! obo : snap Mater ia lEnt i ty .

( ! bfosnap : Object .

( ! s emant i c s c i ence : CHEMINF 000000 .

( ! obo : OBI 0100026 . ; ; organism

( ! obo : span Process .
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( ! obo : span Proces sua lEnt i ty .

( ! bfospan : Proces sua lEnt i ty .

( ! obo : snap Object .

( ! obo : snap Mater ia lEnt i ty .

( ! bfosnap : Mater ia lEnt i ty .

( ! obo : snap Gener ica l lyDependentContinuant .

( ! bfo : Entity .

( ! bfosnap : Continuant .

( ! bfosnap : DependentContinuant .

( ! bfosnap : FiatObjectPart .

( ! bfosnap : Generical lyDependentContinuant .

( ! bfosnap : IndependentContinuant .

( ! bfosnap : Rea l i z ab l eEnt i ty .

( ! bfosnap : Role .

( ! bfospan : Occurrent .

( ! bfospan : Process .

( ! n i f backendb i rn l ex : b i r n l e x r e t i r e d c l a s s .

( ! obo : snap Continuant .

( ! obo : snap DependentContinuant .

( ! obo : snap IndependentContinuant .

( ! obo : snap Rea l i zab l eEnt i ty .

( ! obo : snap Role .

( ! obo : snap Spec i f i ca l lyDependentCont inuant .

( ! oboinowl : Obso le teClass .

( ! obo l i b ra ry : BFO 0000035 .

( ! owl : DeprecatedClass .

( ! owl : Thing .

( ! obo : BFO 0000005 .

( ! obo : BFO 0000016 .

( ! obo : BFO 0000017 .

( ! obo : BFO 0000024 .

( ! obo : BFO 0000031 .

( ! obo : BFO 0000141 .

( ! obo : FBcv 0000525 .

( ! obo : FBcv 0000452 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

;;(<−− ( i sC l sP roh ib i t ed ? c )

; ; (not (member ? c ( ! owl : Nothing ) ) ) )
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; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; Traversa l r u l e s

; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; f o l l ow ?x rd f s : subClassOf ?y

(<−− ( subClassOf ?x ?y )

(q− ?x ! r d f s : subClassOf ?y )

( i sC l sP roh ib i t ed ?y ) )

; ; f o l l ow ?x owl : equ iva l en tC la s s ?y

(<−− ( equ iva l en tC la s s ?x ?y )

(q− ?x ! owl : equ iva l en tC la s s ?y )

( i sC l sP roh ib i t ed ?y ) )

; ; f o l l ow ?x owl : i n t e r s e c t i o nO f ?y where ?y i s

; ; any member o f the r e s u l t i n g RDF l i s t

; ; A member o f an RDF l i s t i s e i t h e r the f i r s t member o f the l i s t

(<−− ( rdfListMember ? l i s t h e ad ?member)

(q− ? l i s t h e ad ! rd f : f i r s t ?member ) )

; ; Or i t i s the f i r s t member o f the r e s t o f the l i s t

(<− ( rdfListMember ? l i s t h e ad ?member)

(q− ? l i s t h e ad ! rd f : r e s t ?b)

( rdfListMember ?b ?member ) )

(<−− ( i n t e r s e c t i o nO f ?x ?y )

(q− ?x ! owl : i n t e r s e c t i o nO f ?b1 )

( rdfListMember ?b1 ?y )

( i sC l sP roh ib i t ed ?y ) )

; ; f o l l ow some−values−from r e s t r i c t i o n

(<−− ( r e s t r i c t i onSVF ? r ?y ?pred )

(q ? r ! owl : onProperty ? pred )

( i sPredProh ib i t ed ?pred )

(q ? r ! owl : someValuesFrom ?y)

( i sC l sP roh ib i t ed ?y ) )

; ; f o l l ow s any a l l−values−from r e s t r i c t i o n

(<−− ( rest r i c t ionAVF ? r ?y ?pred )

(q ? r ! owl : onProperty ? pred )

( i sPredProh ib i t ed ?pred )

(q ? r ! owl : al lValuesFrom ?y)

( i sC l sP roh ib i t ed ?y ) )
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; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; Path r u l e s

; ; Def ine path components based on the t r a v e r s a l r u l e s so

; ; that we can track the r e l a t i o n that was used

; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(<−− ( subClassOfPath ?x ?y ! r d f s : subClassOf )

( subClassOf ?x ?y ) )

(<−− ( in t e r s e c t i onOfPath ?x ?y ! owl : i n t e r s e c t i o nO f )

( i n t e r s e c t i o nO f ?x ?y ) )

(<−− ( equ iva lentClassPath ?x ?y ! owl : equ iva l en tC la s s )

( equ iva l en tC la s s ?x ?y ) )

; ; pathpart d e f i n e s a l l p o s s i b l e connect ions

; ; between two nodes in the graph

(<−− ( pathpart ?x ?y ?pred )

( subClassOfPath ?x ?y ?pred ) )

; ; ( l i s p ( ppr int ( l i s t ”PRED: ” + ?pred ) ) ) )

(<− ( pathpart ?x ?y ?pred )

( in t e r s e c t i onOfPath ?x ?y ?pred ) )

; ; ( l i s p ( ppr int ( l i s t ”PRED: ” + ?pred ) ) ) )

(<− ( pathpart ?x ?y ?pred )

( equ iva lentClassPath ?x ?y ?pred ) )

; ; ( l i s p ( ppr int ( l i s t ”PRED: ” + ?pred ) ) ) )

(<− ( pathpart ?x ?y ?pred )

( r e s t r i c t i onSVF ?x ?y ?pred ) )

; ; ( l i s p ( ppr int ( l i s t ”PRED: ” + ?pred ) ) ) )

(<− ( pathpart ?x ?y ?pred )

( rest r i c t ionAVF ?x ?y ?pred ) )

; ; ( l i s p ( ppr int ( l i s t ”PRED: ” + ?pred ) ) ) )
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; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; c onne c t i v i t y r u l e s

; ; The goa l o f these r u l e s i s to return a l l nodes ( concepts )

; ; that are reachab l e from a pa r t i c u l a r node by

; ; t r a v e r s i n g the graph us ing the r u l e s de f ined above .

; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; entry f o r r e tu rn ing the concepts (? c ) connected to ?node

; ; ? count t rack s r e cu r s i on depth

; ; ?max i s a user−s p e c i f i e d maximum re cu r s i on depth

(<−− ( connected ?node ? c ? count ?max)

; ; i n c r e a s e the stack s i z e to avoid stack over f l ow

; ; the re seems to be a l im i t o f 65536 ( I ’m ju s t gues s ing that i t ’ s a power o f 2)

; ; lower va lues r e s u l t in sha l l ower t r a v e r s a l s and stack over f l ow

; ; h igher va lues don ’ t r e s u l t in deeper t r a v e r s a l s ( s ee ana l y s i s at bottom of t h i s f i l e )

( l i s p ( s e t f ∗prolog−stack−l im i t ∗ 65536))

( connected (? node . ( ) ) ( ) ? r e s u l t s ? count ?max)

; ; the member c a l l below re tu rns each item i nd i v i d u a l l y

(member ? c ? r e s u l t s ) )

; ; base case ; when the to−v i s i t l i s t i s empty swap ? r e s u l t with ? v i s i t e d

(<−− ( connected ( ) ? v i s i t e d ? v i s i t e d ? count ?max) )

; ; cut based on the r e cu r s i on depth thre sho ld (?max)

(<− ( connected ? ? v i s i t e d ? v i s i t e d ? count ?max)

( i s ?max ? count )

\ ! )

; ; i f ? f has not been v i s i t e d prev ious ly , then ?nodes i s

; ; the s e t o f nodes connected to ? f v ia pathpart

(<−− ( n od e l i s t ? f ? nodes ? v i s i t e d )

( not (memberp ? f ? v i s i t e d ) )

( s e t o f ?y ( pathpart ? f ?y ?) ? nodes )

( l i s p ( ppr int

( l i s t ”Adding edges to v i s i t from : ” ? f ” −− ” ?nodes ) ) )

\ ! )

; ; base case ;

(<− ( n od e l i s t ? f ( ) ? ) )

; ; u t i l i t y ru l e f o r increment ing a number

(<−− ( increment ?x ?x1 )

( i s ?x1 (+ ?x 1 ) ) )

; ; nodes connected to the input l i s t ? f . ? r c o n s i s t o f

; ; the nodes reachab l e from ? f + the nodes in ? r

(<− ( connected (? f . ? r ) ? v i s i t e d ? r e s u l t s ? count ?max)

( n od e l i s t ? f ? nodes ? v i s i t e d )

( append ?nodes ? r ? t o v i s i t )

( increment ? count ?nextCount )

; ; p r i n t s what should be the r e cu r s i on l e v e l to the agraph log f i l e

( l i s p ( ppr int ( l i s t ”COUNT: ” ?nextCount ) ) )

( connected ? t o v i s i t (? f . ? v i s i t e d ) ? r e s u l t s ?nextCount ?max) )
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; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; path r u l e s

; ; The goa l o f these r u l e s i s to return a l l paths emanating f o r a

; ; g iven seed node o f a pre−determined length . Unbound l eng ths are

; ; not f e a s i b l e due to the many po s s i b l e path opt ions . The returned

; ; paths c on s i s t o f nodes and the r e l a t i o n s used to connect them .

; ; Paths c on s i s t o f l i n k i n g the pathpart r u l e s above .

; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; s imple u t i l i t y ru l e f o r r e v e r s i n g the contents o f a l i s t . The paths

; ; are bu i l t such that the seed concept i s at the end o f the l i s t ,

; ; i . e . backwards . Using t h i s r u l e we can r ev e r s e the path be f o r e

; ; r e tu rn ing them .

(<−− ( rev−member ? item (? . ? r e s t ) )

( rev−member ? item ? r e s t ) )

(<− ( rev−member ? item (? item . ? ) ) )

; ; ?max ( the maximum path length permitted ) must be an odd number or e l s e i t

; ; won ’ t cut o f f the search

; ; HOWEVER b/c we now add the SOP tag to the s t a r t o f the path , the max must now be EVEN

(<−− ( path ?x ?y ?pmem ?max)

; ; t h i s r e qu i r e s a t r i p l e to be placed in the KB:

; ; http :// ex/ s t a r t http :// ex/ tag http :// ex/SOP

; ; the SOP URI i s used to mark the s t a r t o f paths

; ; This was nece s sa ry due to i s s u e s when running through the java c l i e n t

; ; The i s s u e s seemed to stem from try ing to dot a l i s t with a constant ,

; ; e . g . (? x . ( ! ex :SOP . ( ) ) −− t h i s r e s u l t e d in ”Received s i g n a l number 7 (Bus e r r o r ) ”

; ; query f o r the s t a r t tag concept

(q− ! ex : s t a r t ! ex : tag ? t )

( path ?x ?y (?x . (? t . ( ) ) ) ? revp 0 ?max)

( rev−member ?pmem ? revp ) )

; ; This i s the f a i l cond i t i on f o r cu t t ing o f f the search at a given path length

(<−− ( path ?x ?y ? pin ?pout ? l e v e l ?max)

( i s ?max ( length ? pin ) )

\ !

( f a i l ) )

(<− ( path ?x ?x ?p ?p ? ? ) )

(<− ( path ?x ?y ? pin ?pout ? l e v e l ?max)

( pathpart ?x ? z ? pred )

(not (memberp ?z ? pin ) )

; ; f a i l i f the length o f the path exceeds ?max

; ; ( not ( i s ?max ( length ? pin ) ) )

( increment ? l e v e l ? nextLeve l )

( path ? z ?y (? z . (? pred . ? pin ) ) ?pout ? nextLeve l ?max) )
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