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ABSTRACT 

 The incidence of type 1 diabetes (T1D) is increasing worldwide, likely due to the 

increase (or decrease, if protective) of key non-genetic factors. Though diet has been 

implicated in T1D development, its role is poorly understood, perhaps due to 

oversimplification of dietary exposures or failure to account for differences in biological 

processing of nutrients and foods. Metabolites mark response to diet, and may help 

elucidate this role when used in combination with reported intake. We examined 

combinations of dietary factors in the development of preclinical autoimmunity and 

T1D in two prospective studies: The Environmental Determinants of Diabetes in the 

Young (TEDDY) and the Diabetes Autoimmunity Study in the Young (DAISY). First, we 

identified individual metabolites and chemically similar metabolite groups associated 

with the development of multiple autoantibodies (mAb+) and T1D in metabolome-wide 

association studies. Candidate metabolites were used to capture disease-related dietary 

and nutrient patterns, which were subsequently tested for association with disease 

endpoints.  

 In TEDDY, unsaturated phosphatidylcholines, sphingomyelins, 

phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy 

were inversely associated with mAb+ risk, while dicarboxylic acids were associated 

with an increased risk. A dietary pattern explaining these metabolites in infancy was 

associated with decreased risk of mAb+ but was not generalizable when applied to 

similarly at-risk infants. In DAISY, a nutrient pattern explaining unknown metabolites at 
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seroconversion was associated with increased risk of progression to T1D. Nutrients 

highly contributing to this pattern included both established (linoleic acid, total sugars, 

niacin) and novel (vitamin C, riboflavin, vitamin K) dietary risk factors for T1D.   

 We made significant and novel contributions to the understanding of 

metabolomics and dietary patterns in the natural history of T1D. Our findings suggest 

that the contents of the diet may work in combination to affect the development of T1D, 

and should be considered jointly in future work. As demonstrated by this dissertation, 

expanding our methodological repertoire beyond individual risk factor epidemiology 

will improve our understanding of the disease process, and ultimately lead to more 

effective interventions to prevent, reverse, or delay development of T1D. 

The form and content of this abstract are approved. I recommend its publication. 

Approved: Jill M. Norris 

  



Everyone needs food. 

Not all bodies self-attack. 

Should you change habits? 
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INTRODUCTION 

Overview 

 Comprehensive dietary intake measurements and analyses are paramount to 

understanding the causes of nutrition-related chronic diseases. Type 1 diabetes (T1D) 

is a chronic autoimmune disease characterized by destruction of the insulin-producing 

beta-cells of the pancreas. Incidence of T1D is increasing worldwide, suggesting that an 

essential environmental (non-genetic) factor is increasing (or decreasing, if protective) 

with time. Diet may be an important environmental factor in the development of T1D 

and its preclinical phase, islet autoimmunity (IA), which is defined by circulating 

autoantibodies. Importantly, diet is a modifiable risk factor for IA and T1D.  

 Decades of research in the appearance of IA and progression to T1D have 

identified several putative nutrients and food groups that are associated with risk. For 

example, omega-3 fatty acids have been shown to decrease risk, and cow’s milk protein 
intake increases risk. However, inconsistencies across studies suggest that focusing on 

single nutrients or foods may oversimplify the exposure. Nutrients enter the body as 

part of foods that contain other nutrients that may have synergistic or antagonistic 

effects. These nutrient intakes are so highly correlated that their effects are difficult to 

separate using traditional analytical approaches. To better understand the effects of 

diet on IA, we examined a more comprehensive picture of intake than previous studies 

using a summary measure of foods eaten in combination, hereafter referred to as a 

dietary pattern. 
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 In addition to dietary intake, the biological response to what is eaten may also be 

implicated in the disease process. Once in the body, the pathways by which diet affect 

IA are not known. Ingested foods are digested, absorbed, and metabolized by the body, 

resulting in small molecules (i.e., metabolites) circulating in the bloodstream. These 

metabolites are important intermediaries because they reflect both what is ingested, 

and how it is processed by the body. Metabolites are often used as independent 

markers of dietary intake, as a solution to the inaccuracies associated with self-reported 

measures. However, metabolites can also be used to identify important biological 

pathways in disease etiology when used in conjunction with comprehensive dietary 

intake information. Previous studies have shown that changes in diet are reflected by 

changes in metabolites. Despite the important link between dietary intake and 

metabolites, no IA or T1D studies have examined them together. In order to understand 

the true effects of diet on IA, and ultimately T1D, we need new approaches to 

characterizing dietary exposure that account for complex dietary intake and 

metabolism. 

 The primary purpose of this study was to identify metabolite-related dietary 

patterns associated with IA or T1D risk. By creating dietary patterns reflective of 

important metabolites, we gained new insights into the mechanism by which diet may 

exert influence in the development of IA/T1D. While dietary pattern analyses have been 

increasingly utilized in nutritional epidemiologic studies, this was the first application 

of these methods to IA or T1D etiologic research. The study was conducted in two 

prominent ongoing T1D cohorts that both recruited children at high genetic risk of T1D 

at birth and still follow them prospectively for the development of the disease: The 
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Environmental Determinants of Diabetes in the Young (TEDDY), and the Diabetes 

Autoimmunity Study in the Young (DAISY). We accomplished the objective in three 

primary aims: 

 Identify metabolites associated with IA/T1D. 

Hypothesis 1.1: Nutrition-related metabolites are associated with development of 

IA/T1D. 

 Create dietary patterns reflective of important metabolites. 

 Test the association of dietary patterns with development of IA/T1D. 

Hypothesis 3.1: At least one dietary pattern is associated with the development of 

IA/T1D. 

 Metabolites are products of interactions among the genome, microbiome, and 

dietary intake. Using the metabolome to identify potential mechanisms by which diet 

may lead to IA can focus future etiologic research to those upstream factors in identified 

pathways. Overall, this study’s examination of the effect of combinations of metabolites 
and food was a critical next-step for the long-term goal of developing dietary 

interventions to prevent IA/T1D. 

Innovation 

The study utilized innovative approaches to estimate dietary exposure and risk 

of IA/T1D. To our knowledge, this was the first study to look at metabolite-associated 

dietary patterns in risk of IA/T1D. It was also the first in the nutrition epidemiology 

literature to examine nutrients in the identification of dietary patterns—previous 

studies have exclusively used food group intake. Combining multiple food, nutrient, and 

biomarker indicators allowed for a more complete picture of dietary exposure than 
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previous studies of IA and T1D, which have exclusively looked at individual rather than 

combinations of dietary risk factors. The use of metabolites to focus dietary patterns 

was a novel approach to “big data” studies.  
The TEDDY study is an international, multi-site consortium that provides a rich 

opportunity to examine diet and metabolomics in a pediatric population that has been 

followed closely since birth. TEDDY also offers enough power and sample size to 

answer research questions utilizing novel empirically driven statistical methods, such 

as those proposed in this project. While the DAISY study is smaller, the ability to 

implement prospective dietary pattern and metabolomics analyses in two comparable 

yet independent populations uniquely positioned us to conduct the proposed 

innovative research.  Figure I-1 summarizes the prospective follow-up of children in 

the TEDDY and DAISY studies, and an overview of the identification of dietary patterns 

and metabolomics in the development of IA/T1D. 

Figure I-1: Dissertation introduction. The prospective TEDDY and DAISY cohorts 
follow children for the development of islet autoimmunity (IA) and type 1 diabetes 
(T1D). We identified dietary patterns and metabolomics that were associated with the 
development of IA in the TEDDY study, and nutrient patterns and metabolomics that 
were associated with progression from IA to T1D in DAISY. 



5 
 

  

LITERATURE REVIEW 

Natural History of Type 1 Diabetes 

T1D is a chronic, immune-mediated disease characterized by the destruction of 

the insulin-producing beta-cells of the pancreas by autoreactive T-cells.1 Development 

of these islet reactive autoantibodies is thought to be induced after a genetically-

susceptible individual is exposed to some putative environmental risk factor that 

triggers a loss of immune regulation.2 Destruction of the beta-cells leads to a decrease in 

insulin secretion, the development of hyperglycemia, and ultimately T1D diagnosis. 

Preclinical Markers 

T1D is preceded by IA, a preclinical, asymptomatic phase in which 

autoantibodies to beta-cell antigens are detectable in serum.3 Four autoantibodies are 

considered biomarkers for IA, including insulin,4 GAD,5 IA-2,6 and zinc transporter.7 

Seroconversion to IA-positivity occurs when one of the four autoantibodies are 

persistently detectable by immunoassay, typically no earlier than 3 months of age and 

by 2-4 years of age for the majority of people who progress on to T1D.8–10  

The autoimmune process preceding T1D is heterogeneous—the type and 

number of first-appearing autoantibodies distinguish subgroups with shared 

characteristics in the disease process.11 For example, while incidence of any IA peaks at 

2 years of age, the incidence of insulin as the first-appearing autoantibody (IAA) peaks 

at age 1-year and rapidly declines while incidence of GAD as the first-appearing 

autoantibody (GADA) appears later with steadier incidence.12,13  Other genetic and 

environmental factors, such as human leukocyte antigen (HLA) genotype, SNPs in 
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PTPN22, ERBB3, INS, and BACH2 genes, age-at first-appearing autoantibody, male sex, 

and father as the diabetic proband may distinguish autoimmune phenotypes and the 

risk for developing a second autoantibody and/or T1D.12 A study pooling data from 

three prominent T1D cohorts showed that 70% of children with multiple autoantibody 

positivity (mAb+, or stage 1 T1D) progressed on to T1D within 10 years of 

seroconversion, and the progression was faster for 1) children who seroconverted at 

less than 3 years of age compared to those 3 years and older, 2) children with the high-

risk HLA DR3/DR4 genotype compared to other HLA genotypes, and 3) girls compared 

to boys.14 

Genotype is another marker used to identify at-risk populations, and is used to 

recruit patients into most T1D etiologic studies. The Type 1 Diabetes Genetic 

Consortium was an international, multi-site collaborative that made major 

contributions to the understanding of genetic risk predictors for T1D,15 including the 

identification of over 40 genetic loci associated with T1D risk.16 The HLA region on 

chromosome 6 accounts for over 50% of the genetic risk for the disease, with some HLA 

class II haplotypes increasing disease risk (i.e., DRB1*0301-DQA1*0501-DQB1*0201, 

DRB1*0405-DQA1*0301-DQB1*0302), and some haplotypes decreasing risk (i.e., 

DRB1*1501-DQA1*0102-DQB1*0602, DRB1*1401-DQA1*0101-DQB1*0503).17  However, 

the frequency of high-risk HLA genotypes among T1D cases has decreased over time, 

indicating that genetic predisposition is less predictive than in the past.18,19  

Diagnosis and Treatment 

 T1D diagnoses occurs in stages, following guidelines set forth by the American 

Diabetes Association.20 Given the high probability of progression to T1D once multiple 
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autoantibodies are detectable, Stage 1 of T1D is characterized by multiple autoantibody 

positivity, normoglycemia, and is generally presymptomatic. Patients with multiple 

autoantibody positivity and no clinical symptoms progress to Stage 2 T1D when 

dysglycemia begins, as measured by impaired fasting glucose or impaired glucose 

tolerance. Further onset of hyperglycemia and clinical symptoms indicates Stage 3 T1D, 

diagnosed by standard criteria where fasting blood glucose is higher than 7 mmol/L 

(126 mg/dL), 2-hour blood glucose is 11.1 mmol/L (200 mg/dL) or higher, symptoms 

of hyperglycemia accompanied by any blood glucose test is 11.1 mmol/L (200 mg/dL) 

or higher, or glycated hemoglobin (HbA1c) test is 48 mmol/mol (6.5%) or higher.  

After disease onset, T1D cases are treated with exogenous insulin for the 

remainder of their lives. Modern technological advances have improved treatment of 

T1D and development of complications through the use of devices that better monitor 

and regulate insulin and blood glucose levels (i.e., insulin pump, continuous glucose 

monitor, artificial pancreas device system), and by improved insulin preparations (i.e., 

long-acting versus rapid-acting insulin).21 The Diabetes Complications and Control Trial 

(DCCT), which began in 1983, showed that intensive treatment aimed at keeping blood 

glucose close to normal levels was more effective at reducing diabetic-induced eye, 

kidney, and nerve damage than the standard treatment aimed at avoiding symptomatic 

hyper- or hypoglycemia.22 These results changed the standard of clinical care for T1D 

patients. However, much of this progress is limited to the developed-world, as vast 

global disparities in insulin access, disease management, and technology exist. 
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Prognosis and Complications 

While T1D has been associated historically with increased risk of early 

mortality,23,24 survival has improved over the last 80 years, especially in high-income 

countries. Successes in insulin availability and treatment have led to increased life-

expectancy and decreased mortality among those diagnosed in childhood. The 

Pittsburgh Epidemiology of Diabetes Complications study found that children 

diagnosed with T1D from 1965 to 1980 were expected to live 68.8 years at birth, almost 

15 years longer than those diagnosed between 1950 and 1964, and only 3.6 years less 

than the general population.25 From 2008-2009 to 1968-1969, the CDC diabetes death 

rate decreased 68% among US children less than 20 years of age (to 1.05 per million 

persons), and 78% among US children less than 10 years old.26 In contrast, life-

expectancy is seen as low as 0.6 years among children under 15 years of age diagnosed 

with T1D in low- and middle-income countries.27  Limited access to trained healthcare 

professionals, diagnostic tools, and insulin likely contribute to these disparities.28,29 

T1D often leads to kidney and cardiovascular complications, which are the 

primary causes of early mortality.30 The observational follow-up study of 90% of DCCT 

participants, called the Epidemiology of Diabetes Interventions and Complications, 

showed that the intensive treatment received during the trial had long-term benefits, 

reducing the development of renal disease,22,31 cardiovascular disease,32 and all-cause 

mortality33 among T1D patients. In the absence of renal disease, the 20-year mortality 

risk for T1D patients diagnosed in childhood is now comparable to the nondiabetic 

population.34 While these improvements in T1D management, treatment and care have 
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led to successes in life-expectancy and mortality in those living with T1D, effective 

primary and secondary prevention strategies remain unclear. 

Primary and Secondary Prevention 

 Given the likely role of environmental factors in disease pathogenesis, the early 

age at IA onset, and the high likelihood that children with IA will progress on to T1D, 

the few primary prevention trials have focused on early life dietary modifications to 

prevent IA. The Trial to Reduce IDDM in the Genetically at Risk showed that hydrolyzed 

infant formula was not associated with IA or T1D compared to cow’s milk formula, 
among genetically at risk children who did not have breast milk available.35,36 While 

dietary interventions for primary prevention have not yet been successful, participation 

and compliance in the trial indicates that a large-scale dietary intervention in young 

children is feasible.  

Secondary prevention trials to prevent or delay the progression to T1D among 

those with IA have been largely unsuccessful. Neither oral insulin,37 nicotinamide,38 nor 

intranasal insulin39 have been very effective at preventing or delaying diabetes onset. 

Reversal or halting of beta-cell destruction after T1D onset is not yet possible, though 

alternative treatments to exogenous insulin therapy, such as islet-cell transplantation, 

show promise.40 Development of successful prevention strategies have been hindered 

by the inability to identify environmental risk factors unequivocally associated with 

disease, but are important to develop given the increasing presence of T1D worldwide.  

Population-based screening for the high-risk multiple autoantibody positive 

children, whose lifetime risk of symptomatic (Stage 3) T1D approaches 100%,14  has 

been initiated by the Fr1da Study in Germany41 and the Autoimmunity Screening in 
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Kids (ASK) in the United States.42  Earlier detection of Stage 1 T1D may reduce costly 

morbidities at symptom onset and improve longer-term diabetic control.43–45 The 

identification of these high-risk populations also enhances the ability to conduct trials, 

and will allow for faster implementation of effective interventions to prevent or delay 

the progression from Stage 1 to Stage 3 T1D.  

Epidemiology of Type 1 Diabetes 

T1D affects approximately 40 million people worldwide,28 including 1.4 million 

Americans.46 Over 542,000 children are affected, making it the most common chronic 

disease in children.28 The WHO DIAMOND project estimated T1D incidence in the 1990s 

to range from over 40 per 100,000 persons per year (in Finland) to less than 1 per 

100,000 persons per year (in Venezuela) using in-country diabetes registries. Since 

then, global incidence of T1D has been increasing, especially in central and eastern 

European countries and among children less than 5 years of age.47 The rate of increase 

in incidence is estimated between 3-4% annually in European children less than 15 

years of age,48 and 2.7% annually in the US among children less than 20 years of age.49 

Recent reports from Finland,50 which has the highest incidence rate of T1D in the world 

at more than 60 per 100,000 persons per year,51 and Sweden52 indicate that the rate of 

increase among children is beginning to plateau, though some question the validity of 

those conclusions due to short periods of categorization used in time trend analyses.53 

Furthermore, T1D is often misclassified as type 2 diabetes, particularly in adults, likely 

leading to a gross underestimate of the true incidence of T1D.54  

Age at T1D onset and sex differences in incidence vary geographically. Incidence 

rates tend to be higher in higher income countries and lower in African and other 
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developing nations, though incidence data are sparse in many low income countries.47 

While T1D can develop at any age, the incidence in European countries is higher in 

children aged 0-14 years than in young adults aged 15 to 29 years.55 T1D diagnoses 

tend to peak between 5-7 years of age and again near puberty in these populations.56 In 

contrast, peak incidence in the few African nations with available data occurs in young 

adults aged 15 to 29 years.57–59 Differences in T1D incidence by sex are slight, unlike 

most other autoimmune diseases. Males tends to have a slight excess in high-incidence 

countries, whereas females tend to have a slight excess in low-incidence countries.60 

These geographic differences in the epidemiology of T1D may be explained by 

differences in detection or heterogeneity in exposure to environmental disease triggers. 

T1D incidence also displays seasonal patterns. More cases of T1D are diagnosed 

in the autumn and winter months, and fewer in the summer, regardless of age, sex, 

hours of sunshine, and average temperature.61,62 Being born in the spring is also 

associated with an increased risk of T1D among U.S. youth, which may relate to sunlight 

exposure in either the prenatal or postnatal environment.63 Heterogeneity in T1D 

incidence over time, geography, age, and season all support a theoretical role for 

environmental factors in driving its development. Furthermore, by age 60 years, only 

65% of monozygotic twins are concordant for T1D status,64–66 implicating 

environmental factors in disease etiology. 

Though genetics explain the majority of risk for T1D, genetic changes cannot 

account for the rapid increases in T1D incidence.67 Geographic, seasonal, and age 

differences in the incidence of T1D, combined with the lessening contribution of genetic 

factors, suggest environmental (non-genetic) influences are important.68 Given the 
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peaks in IA incidence during infancy and adolescence, diet has been implicated as an 

environmental risk factor that triggers development of T1D on top of a background of 

higher genetic risk.  

While in utero exposures69–71 and the timing of food introduction in the infant 

diet72–75 may make early contributions to the development of disease, childhood dietary 

intake is an important ongoing exposure. New results in children at high-genetic risk for 

T1D suggest that later introduction of gluten-containing cereals may increase the risk 

for IA, but the timing of introduction of other solid foods do not show a clear 

association.76 Decades of research have identified several dietary factors that are 

associated with IA or T1D (Table II-1). Cow’s milk protein77,78, omega-3 fatty acids79–81, 

glycemic index82, and sugar83 have been shown to be associated with either IA or T1D, 

while soluble fiber84 and omega-6 fatty acids79 have not been. Other dietary factors, 

such as vitamin D intake, may influence risk of IA or T1D, but only among subgroups 

with specific genotypes.85,86  However, results are inconsistent across studies,87 and no 

particular dietary agent has yet been confirmed in T1D pathogenesis.68 Difficulties with 

dietary analytical approaches and exposure assessment may explain some of the 

inconsistency in T1D nutritional epidemiology research, and can be addressed by using 

metabolomics and dietary patterns. 

Metabolomics and Dietary Intake in the Development of IA and T1D 

Small molecules present in biological fluids (blood, saliva, urine), or metabolites, 

are increasingly studied as alternative markers of nutrition or disease status. 

Metabolites are products of interactions among the genome, microbiome, and dietary 

intake,89 and are reflective of many factors related to human health.90 Biomarker 
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discovery often focuses on identifying a single marker that represents a particular food 

group; however, a combination of metabolites may be a more accurate measure of 

dietary exposure or disease status.91 Metabolites have been used in conjunction with 

dietary patterns to identify changes reflective of reported nutrition,92 new biomarkers 

of foods or nutrients,93 and biological pathways important for disease progression.94 

The few small IA and/or T1D studies that have explored metabolomics have identified 

serum methionine,95 triglycerides,95,96 antioxidant phospholipids,96,97 and amino 

acids95–97 as important predictors (Table II-2). Interpreted independently, these 

findings are inconclusive as these metabolites could reflect immune, genetic, dietary, or 

other biological changes.98 Metabolites discovered in the context of dietary intake, on 

the other hand, are more interpretable, and their combined use has been shown to 

reduce bias and increase statistical power to detect diet-disease relationships.99,100 

 

Table II-1: Previously studied dietary risk factors for IA/T1D. 

Food or nutrient 
Associated 

with IA or T1D 

Direction of 
increased 

intake on risk 

Reference Cow’s milk protein IA*; T1D ;  77,78 Omega-3 fatty acids IA  80 Fruit and berry juices IA  78 Sugar T1D  83 Soluble fiber Neither  84 Omega-6 fatty acids Neither  79,80 Vitamin D Neither  85 Gluten Neither  88 

 

 

*only for subjects with low risk HLA genotypes 
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Table II-2: Previously studied metabolomics risk factors for IA/T1D. 

Metabolite 
Associated with IA 

or T1D 

Direction of 
increased levels 

on risk 

Reference Methionine IA * 95 Amino acids T1D  96,97 Triacylglycerols (TG) IA; T1D 
*;  95,96 Phosphatidylcholines (PC) 

T1D; young T1D; IA; T1D 
; ; ;  95–97,101–103 Ether phospholipids (ether PL) 

T1D  96 Sphingomyelins (SM) T1D; not IA  101,103 Phosphatidylethanolamines (PE) 
Young T1D  102 Polar metabolites (full panel) IA None 104 

 

 

Traditional investigation of diet and disease examines the effects of individual 

nutrients or foods, and does not account for the complexity of the diet—the effects of 

single nutrients and foods are often too small to identify, or too highly correlated to 

separate.100 Newer methods that overcome the challenges of examining diet 

comprehensively are increasingly used to identify dietary patterns that integrate both 

food intake and biomarker status.105–107 Dietary patterns represent a more complete 

picture of diet and are more strongly associated with disease than single nutrients or 

food.108 For example, dietary patterns have been particularly useful in research on 

cardiovascular disease (CVD), where a Mediterranean diet pattern was consistently 

identified as protective in observational studies and intervention trials.109 Dietary 

patterns offer a solution for examining whole-diet effects in the development of disease.  

*early seroconverters (<2 years) compared to late seroconverters (>=8 years) 
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Comprehensive dietary intake measurement and analysis are paramount to 

understanding the causes of nutrition-related chronic diseases, such as T1D. Incidence 

of T1D is increasing worldwide, suggesting that an essential environmental (non-

genetic) factor is increasing (or decreasing, if protective) with time. Diet may be an 

important, modifiable risk factor in the development of IA or T1D. Decades of research 

in the role of diet in the appearance of IA and progression to T1D have identified 

several putative nutrients and food groups that are associated with risk. For example, 

omega-3 fatty acids have been shown to decrease risk, and cow’s milk protein intake 
increases risk. However, inconsistencies across studies suggest that focusing on single 

nutrients or foods may oversimplify the exposure (Figure II-1). Nutrients enter the 

body as part of foods that contain other nutrients that may have synergistic or 

antagonistic effects. These nutrient intakes are so highly correlated that their effects are 

difficult to separate using traditional analytical approaches. To better understand the 

effects of diet on IA, we will examine a more comprehensive picture of intake than 

previous studies using a summary measure of foods or nutrients eaten in combination, 

or a dietary pattern. 

In addition to dietary intake, the biological response to what is eaten may also be 

implicated in the disease process. Once in the body, the pathways by which diet affect 

IA are not known. Ingested foods are digested, absorbed, and metabolized by the body, 

resulting in small molecules (i.e., metabolites) circulating in the bloodstream. These 

metabolites are important intermediaries because they reflect both what is ingested, 

and how it is processed by the body. Metabolites are often used as independent 

markers of dietary intake, as a solution to the inaccuracies associated with self-reported 
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measures. However, metabolites can also be used to identify important biological 

pathways in disease etiology when used in conjunction with comprehensive dietary 

intake information. Previous studies have shown that changes in diet are reflected by 

changes in metabolites. Despite the important link between dietary intake and 

metabolites, no IA or T1D studies have examined them together. In order to understand 

the true effects of diet on IA, and ultimately T1D, we need new approaches to 

characterizing dietary exposure that account for complex dietary intake and 

metabolism. 

 

 

Figure II-1: Complexities in correlation of dietary intake exposures. a) Previous 
studies of dietary intake in IA/T1D oversimplify dietary exposures by considering only 
individual foods or nutrients, when in reality dietary intake is highly correlated. b) 
Nutrient and food intake effects are also highly correlated and their effects difficult to 
separate with traditional analytical approaches. 

 

The overall objective of this dissertation is to identify metabolite-related dietary 

patterns associated with IA risk. We will accomplish this objective in three distinct 

scientific aims: 1) identify metabolites associated with IA/T1D, 2) create dietary 

patterns reflective of important metabolites, and 3) test the association of dietary 

patterns with development of IA/T1D (Figure II-2). By creating dietary patterns 
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reflective of important metabolites, we will gain new insights into the mechanism by 

which diet may exert influence in the development of IA or T1D. While dietary pattern 

analyses have been increasingly utilized in nutritional epidemiologic studies, this will 

be the first application of these methods to IA or T1D etiologic research. The study will 

be conducted in two prominent ongoing T1D cohorts that both recruited children at 

high genetic risk of T1D at birth, and follow them prospectively for development of the 

disease: The Environmental Determinants of Diabetes in the Young (TEDDY) study, and 

the Diabetes Autoimmunity Study in the Young (DAISY). TEDDY is a multi-center 

consortium that began following 8,676 newborn infants at high-genetic risk for T1D in 

the US, Germany, Sweden, and Finland in 2004.110 DAISY has followed 2,547 children at 

high-genetic risk for T1D in Colorado for development of IA and further progression to 

T1D since 1993.111  

 

  

 

Figure II-2: Dissertation organization. a) This dissertation accomplished three aims 
in two prospective studies of T1D: The Environmental Determinants of Diabetes in the 
Young (TEDDY) and the Diabetes Autoimmunity Study in the Young (DAISY). b) 
Manuscripts were organized by study, including all three aims in each publishable unit.   
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APPROACH 

Overview 

To achieve our goal of elucidating more of the nutrition etiology of IA/T1D by 

identifying combinations of metabolites and foods that affect IA or T1D risk, we first 

test metabolites for risk of disease (Aim 1). Then we will identify dietary intake 

patterns that best explain the variation in those important metabolite candidates (Aim 

2). Finally, we will apply those dietary patterns longitudinally to test their association 

with the development of IA or T1D (Aim 3). All aims were conducted independently in 

the TEDDY and DAISY studies, with alterations to the methods as appropriate for each study’s design (Table III-1). This shift to combinations of dietary factors, rather than a 

reductionist one-at-a-time approach, may help clarify the inconsistencies in the role of 

diet in development of IA and T1D. Results from a dietary intake-level exploration that 

is focused by biologically meaningful metabolites are more interpretable than previous 

approaches and will highlight important biological mechanisms on the pathway from 

dietary intake to IA and T1D. Comparison of the measures available in both studies are 

described below (Table III-2). 

Table III-1: Summary of approach by Aim and study. 

Aim Study Study Design Exposure(s) 
Primary 

Outcome(s) 
Statistical Method 

Aim 1 
TEDDY Nested case-control Metabolite or lipid IA, mAb+ Conditional logistic regression 

DAISY Cohort Metabolite or lipid T1D Cox regression 

Aim 2 
TEDDY Cross-sectional Foods Metabolites Reduced rank regression 

DAISY Cross-sectional Nutrients Metabolites Reduced rank regression 

Aim 3 
TEDDY Cohort Dietary pattern mAb+ Cox regression 

DAISY Cohort Nutrient pattern T1D Cox regression 
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Table III-2: Availability of relevant measures in TEDDY and DAISY. 

 

Study Designs, Populations, and Measures 

TEDDY Study 

From 2004-2010, TEDDY screened and enrolled 8,676 newborn infants with a 

high- or moderate-risk HLA genotype at six locations around the world: 

Georgia/Florida, Colorado, and Washington (in the USA), and Finland, Sweden, and 

Germany.110 Dietary assessment is carried out by 24-hour recall at the first clinic visit at 

3 months of age, then by 3-day food record every 3 months until 12 months of age, and 

then every 6 months thereafter until follow up stops at age 15 years.112 The foods 

consumed were quantified into food groups (e.g., cereals, fruits and berries, etc.) and 

subgroups (e.g., wheat, rice, oats, citrus fruits, apple, berries, etc.). From quantities of 

foods consumed, the amount of nutrients contained therein were then quantified using 

national food composition databases unique to each country. Results of a detailed 

nutrient harmonization study documented 21 nutrients that were comparable across 

study centers, despite potential differences in food composition databases.112 Results 

 
Follow-up in Months Every 3 

months 

(24 - 48) 

Every 6 

months 

(24 - 48) 

Every 6 

months 

(> 48) 

Annually 

(> 24)  
Initial 

Screen 
3 6 9 12 15 24 

Blood Draw D T* T T D T T D T D T T  T D 

Food Frequency 

Questionnaire 
      D    D 

24-hr recall  T          

3-Day Diet 

Record 
  T T T  T  T T  

Height and 

Weight 
 D T D T D T D T D T D T T  T D 
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from food group harmonization indicated 15 main food groups, and 89 subgroups were 

comparable among TEDDY study centers.113 

Blood samples were collected on TEDDY participants every 3 months until 4 

years of age, and biannually thereafter until age 15 (Table III-2).114 A nested case-

control study was conducted in TEDDY to reduce the amount of resources needed to 

assay samples for metabolomics and other measures. A case of IA was defined as the 

presence of an autoantibody (GAD65A, IA-2A or IAA) at two or more consecutive visits. 

Risk set sampling115 was used to match 418 cases of confirmed persistent IA to 1253 

controls (matched 1:3) who were autoantibody free at the time of the case’s IA 
seroconversion visit, based on clinical center, sex, and family history of T1D.116 At the 

time of selection in May 2012, the mean age of the cases was 24 months, 23% had a first 

degree relative with T1D, and 44% were female.116 Untargeted primary metabolism and 

complex lipid panels were run at The NIH West Coast Metabolomics Center, University 

of California Davis, CA, USA on 9,394 plasma samples from every available time point 

prior to the time of IA seroconversion in cases and controls.116  

DAISY Study 

From 1993-2004 DAISY screened and enrolled 2,547 children in Colorado with 

high-risk HLA genotype or a first-degree relative with T1D, 1,886 of whom entered the 

study prior to age 15 months.73 Prospective dietary assessment was collected via a food 

frequency questionnaire (FFQ) completed by the parent beginning when the child was 2 

years old concerning the diet in the previous year, and continuing annually until age 10, 

when the subjects were asked to self-report diet using a youth adolescent questionnaire 

(YAQ). Data collected by FFQ and YAQ dietary assessment tools have been shown 
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comparable if an indicator is used designating the assessment tool.117 The FFQ has been 

validated in the DAISY population using multiple 24-hour recalls and biomarkers.118,119  

Blood samples were collected on DAISY participants at age 9, 15, and 24 months, 

and annually thereafter. A nested case-control study was conducted in DAISY using a 

similar case definition as in TEDDY, where a case of confirmed persistent IA was 

defined as the presence of one confirmed autoantibody (GAD65A, IA-2A IAA, or ZnT8) 

on two or more consecutive visits. Cases were frequency matched to controls by age, 

ethnicity, and sample availability for important time points of interest—e.g., birth, early 

visit (9 or 15 months of age), the visit prior to conversion to IA, the IA visit, and the visit 

just prior to T1D diagnosis (Figure III-1). Upon selection in 2015, the mean age of the 

cases was 12.9 years, 48% were female, and 79% were non-Hispanic white.  Like in 

TEDDY, untargeted primary metabolism and complex lipid panels were run at The NIH 

West Coast Metabolomics Center, University of California Davis, CA, USA.  

 

Figure III-1: DAISY nested case-control study design. 
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Specific Aim 1: Identify Metabolites Associated With IA/T1D 

Metabolite Quantification and Pre-Processing 

Led by dissertation committee member Dr. Oliver Fiehn at The NIH West Coast 

Metabolomics Center, University of California Davis, CA, USA, TEDDY measured 

metabolites on the 9,394 plasma samples in the nested case-control study. Two 

platforms were utilized: 1) CSH-QTOF MS platform which quantifies more than 350 

lipids covering 12 lipid classes, and 2) GC-TOF MS platform which quantifies up to 170 

primary metabolites such as amino acids, sugars, and hydroxyl acids. Initial data 

processing was completed at UC Davis and included locally estimated scatterplot 

smoothing (LOESS)120 normalization to internal standards and adjustment for batch or 

series effects. After laboratory pre-processing, TEDDY received measurements on 364 

metabolites from the GC-TOF platform and 816 lipids from the CSH-QTOF platform. 

These data became available on the TEDDY online data sharing platform in December 

2016. 

DAISY metabolomics were similarly acquired from the NIH West coast 

Metabolomics Center, using the GC-TOF platform for primary metabolites and the CSH-

QTOF for lipids. An additional panel of data was acquired in DAISY, covering biogenic 

amines using HILIC-QTOF-MS. There were 734 DAISY visits selected for the nested 

case-control study with sufficient sample available for metabolomics, resulting in 2,720 

metabolite features received from all 3 platforms.  Table III-3 summarizes the number 

of untargeted metabolites received by panel and study.  
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Table III-3: Summary of the number of untargeted metabolites received from The 

NIH West Coast Metabolomics Center by panel and study. 

 TEDDY DAISY 
GC-TOF  

(primary metabolites) 
364 363 

CSH-QTOF  
(lipids) 

816 1,181 

HILIC QTOF-MS  
(biogenic amines) 

NA 1,176 

Total Number of 
Metabolites 

1,180 2,720 

 

Statistical Analysis 

We conducted a metabolome-wide association study (MWAS) on the subset of 

children in the TEDDY cohort selected for the biomarker nested case-control study. 

Primary metabolomics analyses were conducted at the first of two consecutive clinic 

visit positive for autoantibodies (seroconversion, SV), just prior to development of IA 

(pre-seroconversion, PSV), and prior to the detection of autoantibodies at 9-months 

(infancy). Conditional logistic regression was used to examine the association between 

each metabolite (including unknowns) and being a case, controlling the false discovery 

rate (FDR) using the Benjamini-Hochberg multiple comparisons correction.121 Models 

were adjusted for matching factors (clinical center, sex, and family history of T1D), HLA 

genotypes, and age. We considered several outcomes, including: persistent confirmed 

positivity to any autoantibody (IA), or to insulin only (IAA), GAD only (GADA), or IA2 

only (IA-2A) at IA event time. IA-2A was ultimately excluded as an outcome since very 

few cases developed IA2 as their first and only persistent confirmed autoantibody at IA 

case-time. Multiple autoantibody positivity (mAb+) was defined as any subject positive 
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for more than one autoantibody at IA event time, or who developed more than one 

autoantibody during follow-up. 

To better understand the relationship between nominally significant annotated 

metabolites, and to account for the correlation between metabolites, results from the 

TEDDY MWAS were used to conduct enrichment analysis using the ChemRICH tool.122 

Key metabolites identified from significant (p<0.05) chemically similar groups were 

used for dietary pattern analyses in Aim 2.  

We also conducted a MWAS in DAISY to identify seroconversion metabolomics 

associated with progression from IA to T1D. The 213 IA cases selected for the DAISY –
omics nested case-control study were eligible to have metabolomics, which represents 

all IA and T1D cases identified in DAISY as of January 2015. All metabolites were 

included in analyses, including those quantified from the panels used in TEDDY 

(primary metabolites, complex lipids), and the new panel of biogenic amines. Primary 

analyses were conducted using Cox regression to model the hazard of metabolite level 

at seroconversion and time to T1D diagnosis event, adjusting for age at seroconversion 

and HLA genotype. Both annotated and unknown significant metabolites were retained 

for the creation of dietary patterns in DAISY.  

Expected Outcomes and Power 

We hypothesized that both annotated, nutrition-related metabolites and 

unknown metabolites would be associated with IA and T1D outcomes after FDR 

correction. Though not named, unknown metabolites were uniquely indicated in the 

Fiehn laboratory database, and could therefore be interrogated for function, identity, 

and occurrences in other studies. Significant unknown metabolites were evaluated 
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using the laboratory’s in-house BinVestigate tool. BinVestigate looks for the unknown 

compound in the Fiehn laboratory database containing 1,850 metabolomics studies 

representing 90,000 processed samples, and reports similar characteristics of the 

unknown across studies, including tissue type analyzed (stool, plasma, etc.) and 

outcome evaluated against.  

The TEDDY nested case–control study selected 418 cases and 1253 controls, but 

the number of pairs for metabolomics analyses was reduced to 1002 due to sample 

availability. The study had 80% or greater power at a significance level of 5% to detect ≥2.01 relative risk (RR) with 1002 pairs if the proportion of exposure was 5%.116 

Bonferroni adjustment for ~1,000 tests (alpha = 0.00005) will allow us to detect RR ≥ 

2.92. DAISY had 80% or greater power at a significance level of 5% to detect ≥ 2.61 RR 

with 213 pairs if the proportion of exposure was 5%. Correcting for Bonferroni 

adjustment for 1,000 tests, DAISY had power to detect ≥ 4.12 RR. All power analyses 

were conducted using SAS® software version 9.4.  

Specific Aim 2: Create Dietary Patterns Reflective of Important Metabolites 

Statistical Analysis 

Dietary patterns were identified in both studies using reduced rank regression 

(RRR). RRR is a statistical method that uses linear combinations of predictors to explain 

the maximum covariance of a set of response variables.123 For creating dietary patterns 

that are relevant for IA outcomes in TEDDY, food group intake was used as predictors to 

explain metabolites (response variables) that were identified from Aim 1 as 

significantly associated with development of IA outcomes in TEDDY. All food subgroups 

that were shown to be comparable across countries based on the TEDDY food 
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harmonization study, and survived the pre-processing pipeline were used in the 

analysis. Food groups were standardized to the full 9-month TEDDY population for RRR 

analyses. Metabolites were standardized by all metabolomics in the TEDDY nested case-

control study. 

We conducted a similar RRR analysis in DAISY to create nutrient patterns of 

intake that explained the most variation in the significant metabolites identified in Aim 

1 in DAISY. Metabolites were used as RRR response variables. Due to smaller sample 

size in DAISY, nutrients used as predictor variables in RRR were selected after a multi-

step filtering process. First, only nutrients consistently obtained from questionnaires 

over the entire course of the DAISY study were considered for inclusion in nutrient 

pattern analysis (n=38). Then, using stepwise selection, only nutrients that were 

significant predictors (p<0.1) for at least 2 of the metabolite response variables were 

included in RRR. Nutrients and metabolites were standardized to the 132 IA cases with 

both measures at seroconversion.  

All RRR analyses were conducted using SAS® software version 9.4. In RRR 

analysis, the maximum number of dietary patterns identified, or the rank of the RRR 

model, is equal to the number of response variables included. The number of dietary or 

nutrient patterns needed to best explain the variation in metabolites was chosen by the 

van der Voet T2 statistic, which indicates the least number of extracted factors whose 

residuals are not significantly greater than those of the model with minimum error.124 

Alternately, the number of dietary/nutrient patterns can be chosen by minimizing the 

predicted residual sum of squares (PRESS). The factors, or dietary/nutrient patterns, 

created as output of the RRR procedure consist of relative weights, called factor 
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loadings, given to food groups or nutrients. The factor loadings of food groups/nutrient 

on each dietary/nutrient pattern and the partial correlation with metabolite response 

variables were used to interpret each pattern. The goodness-of-fit of the 

dietary/nutrient patterns was evaluated by examining the percentage of metabolite 

variation explained overall and by each pattern. 

Expected Outcomes and Power 

This aim produced the factor structure and description of dietary patterns that 

explain variation in IA-associated metabolites (TEDDY), and nutrient patterns that 

explained variation in T1D-associated metabolites (DAISY). We hypothesized that RRR 

analyses would identify at least one metabolite-related dietary pattern in TEDDY and at 

least one metabolite-related nutrient pattern in DAISY. We expected the total amount of 

metabolite variation explained by the patterns to range from 3-8%, typical of other RRR 

analyses using biomarkers or metabolites as response variables and dietary intake as 

predictor variables.107,125,126 Factors loadings for food groups or nutrients on the 

pattern were also expected to fall within previous published ranges, generally less than 

0.4.127,128  

Power calculations for RRR depend on the degrees of freedom in the model. 

Unlike other covariance modeling strategies, such as principal components regression 

or structural equation modeling, RRR degrees of freedom depend on the response 

variable matrix, and methods to calculate them are still in development.129 However, 

compared to other studies successfully using RRR, such as European Prospective 

Investigation into Cancer and Nutrition (EPIC) (n=402 to 2,267),123,125 Western 

Australian Pregnancy (Raine) Cohort Study (n=783),130 Framingham Offspring Study 
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(n=2879),131 and UK Avon Longitudinal Study of Parents and Children (ALSPAC) 

(n=6106 to 7285),132 we have comparable sample size of 1,002 pairs in the TEDDY 

study. Though we are much less powered in the DAISY study, the filtering of predictor 

nutrients for inclusion in RRR improved our ability to identify metabolite-related 

nutrient patterns.133    

Specific Aim 3: Test the Association of Dietary Patterns with Development of 

IA/T1D 

Statistical Analysis 

Reported food group intake for each TEDDY participant was scored by the RRR 

procedure based on each pattern identified in Aim 2. The score for each pattern 

represented how similar their dietary intake was to the dietary pattern. Multiple 

dietary patterns were produced as a result of the RRR procedure, and could be 

subsequently modeled together because they were statistically independent.  

Dietary pattern scores were first tested in the nested case-control study using 

conditional logistic regression to account for matching strata, and adjusted for high-risk 

HLA genotype and age at blood draw. Then we used Cox regression to test the 

association of the dietary pattern score in infancy for the full TEDDY cohort with risk of 

mAb+ adjusting for clinical center, high-risk HLA genotype, family history of type 1 

diabetes, total energy intake, and sex. Time-to-event analyses were performed to 

evaluate whether metabolite-related dietary pattern scores were associated with mAb+. 

Cases included those selected for the nested case-control study plus any additional 

cases that developed in TEDDY by January 2018.  
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In DAISY, subjects received a score reflecting how similar their nutrient intake at 

seroconversion was to the nutrient pattern, using the RRR procedure. The association 

of the nutrient pattern score and progression to T1D was tested using Cox regression 

models adjusted for age at seroconversion and high-risk HLA genotype. 

Expected Outcomes and Power 

Given that the dietary and nutrient patterns explain variation in outcome-related 

metabolites, we hypothesized that any patterns identified in Aim 2 would be associated 

with outcomes in Aim 3. The direction of association is expected to be consistent with 

the hypothesized direction of dietary factors loading highly onto the pattern. For 

example, a dietary pattern characterized by intake high in foods containing omega-3 

fatty acids (which is thought to be protective for IA or T1D risk)80 would be inversely 

associated with IA or T1D risk.  

Using Cox proportional hazards, a two-sided log rank test in a sample size of 

8,676 TEDDY subjects with an overall IA rate of 9% in 5 years achieves 80% power at a 

0.05 significance level to detect a hazard ratio (HR) > 1.23 assuming the proportion of 

children lost to follow-up is 20% (Table III-4). In a similar Cox proportional hazards 

framework, a two-sided log rank test in a sample size of 213 DAISY IA cases with an 

overall T1D rate of 40% in 5 years achieves 80% power at a 0.05 significance level to 

detect a hazard ratio (HR) > 1.75 assuming the proportion of children lost to follow-up 

is 20%. HRs are based on a one standard deviation change in dietary or nutrient pattern 

score. We have good power to detect dietary pattern associations with IA in TEDDY, and 

less but still adequate power in DAISY.  
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Table III-4: Detectable HR with various power for Aim 3. 

 

Potential Pitfalls and Alternative Approaches 

Given the exploratory nature of our Aims, and the unique strength of having 

access to two similarly conducted prospective studies of T1D, there were many 

alternative approaches considered for identifying combination of dietary factors 

associated with IA and T1D outcomes. Ultimately, we selected the most statistically 

sound and interpretable approaches to account for the complex nature (high-

dimensional, correlated) of metabolomics and dietary intake, and the two different 

nested study designs.  

Alternative statistical frameworks commonly used for metabolomics analyses 

were considered, but ultimately deemed inappropriate due to the longitudinal, matched 

study design with multiple adjustment factors. Unsupervised models used for high-

dimensional data, such as principal components analysis (PCA)134, K-means 

clustering135, and self-organizing maps (SOM)136, are useful for exploration and 

visualization of metabolomics data that might inform further statistical analyses. 

However, they cannot account for the correlation of repeated measures on study 

subjects, do not perform hypothesis testing, and cannot incorporate an adjustment for 

confounding factors. While components identified in PCA can be applied longitudinally 

 TEDDY* (n=8,676) DAISY** (n=213) 

Power HR HR 

70% 1.2 1.65 
80% 1.23 1.75 
90% 1.26 1.90 

*Assuming 9% IA rate and 20% loss to follow-up in 5 years 
**Assuming 40% T1D rate and 20% loss to follow-up in 5 years 
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to repeated measures as a reduced, composite measure of metabolite exposure, the 

components summarizing the most variability in the data (the first ones, which are 

typically used in this manner) may not reflect disease-causing metabolites. Supervised 

learning methods, such as partial least squares (PLS, PLS-DA)137, identify metabolites 

that discriminate between outcomes (case versus control), however it is difficult to 

incorporate confounding variables and to account for the matching strata. Selecting 

cross-sections of interest in the natural history of T1D allowed us to account for 

matching strata from the matched case-control design in TEDDY and to adjust for 

confounding factors in both studies.  

Principal components analysis (PCA), partial least squares, cluster analysis, and 

RRR are all common dimension reduction methods for combining multiple food or 

nutrient exposures in a way that accounts for their complex correlation. Multiple 

studies assessing differences in the methods as applied to nutrition studies conclude 

that RRR is most appropriate for investigating disease etiology or pathophysiology, as it 

incorporates both a posteriori (food group intake) and a priori (selection of 

metabolites) information to create dietary patterns.105,123,127,138,139  

However, the RRR procedure cannot account for repeated measures or for 

confounding variables—which could cause the dietary patterns created in Aim 2 to be 

confounded by the structural differences in dietary intake by age. For example, food 

groups eaten at PSV for a child aged 1 year may be very different than for a child aged 5 

years, and this variability may have undue influence in the creation of the dietary 

pattern. The inability to look at dietary pattern structural stability longitudinally is a 

weakness shared by many data-driven dietary pattern methods, including PCA, factor 
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analysis, and RRR. Attempts to examine whether dietary pattern structures (loadings on 

the food groups) are stable with age have been limited to comparing loadings at two 

cross-sectional time points.140–143 

In a pilot study, we applied a new method called three-way PCA which created 

dietary patterns on intake collected at multiple time points in healthy DAISY subjects, 

and described how childhood dietary pattern structures may change over time. Results 

of the analysis indicate that three childhood dietary patterns (indicative of “food pyramid”, “prudent/western”, and “allergy avoidance” diets) are relatively stable from 

ages 1 to 8 years, and a fourth dietary pattern characterized by high intake of fruit, fruit 

juices, and dairy is evident in the first two years of life (unpublished data).  Given that 

cross-sections selected based on the natural history of disease (i.e., pre-seroconversion, 

seroconversion) can include many ages, we might expect dietary pattern structures to 

be confounded by age. Findings from the pilot study motivated our decision to restrict 

at least one cross-section to a single age of subjects (TEDDY, infancy cross-section). 

Availability of and access to both the TEDDY and DAISY studies was a unique 

opportunity for replication. As with the era of large-scale candidate gene studies, 

metabolomics studies are producing many candidate biomarkers that may or may not 

be able to be replicated in independent populations, though replication is universally 

recognized as important.144,145 The decision to organize manuscripts by study 

necessitated the investigation of different disease endpoints to provide novel 

contributions to the literature, precluding the ability to replicate as part of the 

dissertation.  Differences between the studies were also great enough regarding the 

storage and quantification of metabolomics and the assessment tools for dietary intake, 
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that the ability to replicate true associations (if they existed) was questionable. For 

example, assessing dietary intake with food records (TEDDY) over three 24-hour 

periods tends to capture only commonly consumed foods compared to the FFQ (DAISY), 

which may capture rarely consumed foods but tends to overestimate dietary intake. A 

comparison of food groupings available in DAISY and TEDDY highlights differences in 

the food groups available (Appendix A). Additionally, different blood collection 

anticoagulants were used in the two studies that would have contributed to replication 

failure. The TEDDY study used citrate, which has been shown to interfere with primary 

metabolite and lipid quantification,146,147 while DAISY used EDTA anticoagulant. 

Ultimately, replication did not seem feasible for discovering combinations of dietary 

intake associated with IA and T1D. However, a targeted replication could be considered 

as a next step for the dietary and nutrient patterns identified herein. 
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METABOLITE-RELATED DIETARY PATTERNS AND THE DEVELOPMENT OF ISLET 

AUTOIMMUNITY 

Abstract 

The role of diet in type 1 diabetes development is poorly understood. Metabolites, 

which reflect dietary response, may help elucidate this role. We explored metabolomics 

and lipidomics differences between 352 cases of islet autoimmunity (IA) and controls in 

the TEDDY (The Environmental Determinants of Diabetes in the Young) study. We 

created dietary patterns reflecting pre-IA metabolite differences between groups and 

examined their association with IA. Secondary outcomes included IAA or GADA as first-

appearing autoantibody, or multiple autoantibodies (mAb+). The association of 853 

plasma metabolites with outcomes was tested at seroconversion to IA, just prior to 

seroconversion, and during infancy. Key compounds in enriched metabolite sets were 

used to create dietary patterns reflecting metabolite composition, which were then 

tested for association with outcomes in the nested case-control subset and the full 

TEDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, 

phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy 

were inversely associated with mAb+ risk, while dicarboxylic acids were associated 

with an increased risk. An infancy dietary pattern representing higher levels of 

unsaturated phosphatidylcholines and phospholipid ethers, and lower sphingomyelins 

was protective for mAb+ in the nested case-control study only. The risk for mAb+ was 

associated with metabolomics factors related to differences in lipid-related food intake. 
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Introduction 

 Type 1 diabetes affects over 500,000 children globally, making it one of the most 

common metabolic illnesses in children.28 Autoimmune destruction of the insulin-

producing beta-cells in the pancreas results in hyperglycemia and lifelong insulin 

dependency. Genetic risk factors are well described and likely interact with non-genetic 

risk factors to influence disease progression, though exact pathogenesis remains 

unclear.148 The appearance of autoantibodies can be detected as early as 3 months of 

age and defines the beginning of islet autoimmunity (IA), the preclinical stage of the 

disease.10 Efforts to better characterize metabolic dysregulation around the time of 

seroconversion and prior to the detection of autoantibodies may allow earlier 

identification of at-risk children and better understanding of the processes involved. 

 Metabolites reflect the interaction of numerous biological factors, including 

many that may influence the development of autoimmune diabetes, such as genetics, 

microbiome, and dietary intake. Metabolomics differences between IA cases and 

controls mostly have been found at the time of seroconversion, but are inconsistent 

across studies conducted in country-specific populations.95,101,102,104 Previous studies 

indicated that metabolic disturbances exist prior to autoimmunity, and as early as birth, 

in Finnish children who later progressed to type 1 diabetes.96,101,103 The identification of 

generalizable metabolic profiles related to the development of early stages of the 

disease may inform dietary interventions to prevent type 1 diabetes, which have so far 

proven unsuccessful.36 

Traditional investigations of diet in the development of type 1 diabetes has 

examined effects of individual foods or food groups and nutrients such as cow’s 
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milk,36,77,78 fatty acids,79–81,149,150 or vitamin D.151,85,152,86 However, these approaches do 

not account for the complexity of the diet—the effects of single nutrients and foods are 

often too small to identify, or too highly correlated to be separated from each other.100 

Examining combinations of foods and metabolites may better elucidate the role of diet 

in IA, as it can account for synergistic or antagonistic effects of foods or nutrients 

contained in the diet, and differences in how they are processed in the body.  

 We aimed to identify metabolite-related dietary patterns associated with IA in 

the multinational The Environmental Determinants of Diabetes in the Young (TEDDY) 

study (Figure IV-1). We conducted a metabolome- and lipidome-wide association study 

to better characterize plasma metabolites and lipids distinguishing cases and controls 

both at the time of the first autoantibody detection, and prior to its development. We 

created dietary patterns summarizing candidate metabolites identified pre-IA, and 

tested the longitudinal association of those metabolite-related dietary patterns with the 

development of IA.  

 

 

Figure IV-1: Study design for identifying metabolite-related dietary patterns 

associated with the development of IA in TEDDY. 
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Research Design and Methods 

TEDDY Study Design 

TEDDY is an international consortium that enrolled 8,676 newborn infants with 

a high- or moderate-risk class II HLA genotype between 2004 and 2010.110 Participants 

are closely followed for the development of IA or type 1 diabetes, with study visits 

every three months from birth to age 48 months, and every three or six months 

thereafter depending on autoantibody status until age of 15 years. Participating study 

centers include: Georgia/Florida, Colorado, and Washington in the U.S., and Finland, 

Sweden, and Germany in Europe. IA cases are defined by confirmed autoantibody 

positivity  to either insulin (IAA), GAD (GADA), or IA-2 (IA-2A) on two consecutive study samples, the first of which defines the case’s event age. Institutional review board 
approval for the study and written informed consents were obtained for all 

participating children. 

A nested case-control biomarker study was designed using risk set sampling to 

select three controls per IA case (n=418) that had developed in TEDDY as of May 2012. 

Eligible controls were autoantibody-negative at the case’s event age, and further 

matched on clinical center, sex, and family history of type 1 diabetes as previously 

described.116 Secondary outcomes included persistent confirmed positivity to insulin 

only (IAA), GAD only (GADA), or IA2 only (IA-2A) at IA event time. IA-2A was excluded 

as an outcome since very few cases developed IA2 as their first and only persistent 

confirmed autoantibody at IA case-time. Multiple autoantibody positivity (mAb+) was 

defined as any subject positive for more than one autoantibody at IA event time, or who 

developed more than one autoantibody during follow-up.  
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Metabolomics Data Pre-Processing 

Metabolomics abundance measures (metabolites and lipids) were obtained for 

all cases and controls for each available study visit from birth until the case event time. 

Primary metabolites and complex lipids were quantified from citrate plasma using GC-

TOF MS and CSH-QTOF MS data acquisition, respectively, at the NIH West Coast 

Metabolomics Center at the University of California, Davis. GC-TOF MS data were 

acquired as previously described,153 with data processing and compound identification 

using the BinBase algorithm.154 GC-TOF data were sum normalized followed by LOESS 

(locally weighted scatterplot smoothing) normalization. For complex lipids, samples 

were extracted by methyl-tert-butyl ether/methanol/water,155 followed by 

chromatogram peak detection and alignments using Mass Profiler Professional (Agilent, 

Santa Clara, CA). Peaks detected in a minimum of 30% of samples were identified and 

quantification back-filled using the Fiehn laboratory’s LipidBlast spectral library, as 

previously described.120 LOESS followed by batch ratio (QC samples were used to adjust 

sample batch median to global study median) normalization was performed across all 

the samples to estimate and remove analytical variance. 

Prior to transformation, data quality checks included evaluation at the 

metabolite- and sample-level. Metabolites that were not detected in more than 10% of 

samples (6 metabolites), or with a coefficient of variation greater than or equal to 100% 

(286 metabolites) were excluded from further analyses. Samples with missing or zero 

values in greater than 10% of metabolomics features (n=5) or with values more 

extreme than 4 standard deviations above or below the mean in greater than 30% of 

metabolomics features (n=6) were removed from analyses. A total of 853 metabolites 
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and lipids and 11,556 samples passed the quality checks. All metabolites were 

transformed using Box-Cox transformation analysis, and scaled.156  

Dietary Intake and Food Groupings 

Dietary assessment was carried out by 24-hour recall at the first clinic visit at 3-

4.5 months of age, then by 3-day food record every 3 months until 12 months of age, 

and then every 6 months thereafter. TEDDY research staff provided detailed instruction 

and examples to families regarding completion of food records, as previously 

described.84 From quantities of foods and dishes consumed, the amounts of energy and 

single foods contained therein were computed using in-house food record processing 

programs and food composition databases unique to each country.113 The foods and 

dishes (e.g., wheat bread, apple-oat meal) consumed were quantified into main food 

groups (e.g., cereals, fruits and berries, etc.) and subgroups (e.g., wheat, rice, oats, citrus 

fruits, apple, berries, etc.) in grams per day (g/day) of intake. After quantification, the 

three food records were averaged to calculate the mean energy and food intake for each 

study subject on each study visit. Results of detailed harmonization studies of these 

country-specific food composition databases documented that the energy values, 14 

main food groups, and 85 food subgroups used in this study were comparable across 

the TEDDY countries.113  

 For any food record where a subject was indicated as breast fed, we estimated 

the amount of breastmilk consumption using an algorithm developed by the Institute of 

Medicine.157 First, we calculated the estimated energy requirement based on age and 

weight. The difference in the estimated energy requirement and the mean energy 

reported on the food record from food and formula was attributed to breastmilk. We 
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calculated the amount (grams) of breastmilk consumed to achieve that energy intake 

using a conversion factor of energy density per 100g, as follows: 65.3 kcal/100g in 

Finland, 69 kcal/100g in Germany, 68 kcal/100g in Sweden, and 70 kcal/100g in the 

U.S. 

Statistical Analyses 

 Figure IV-2 summarizes the population and data flow for all aims and analyses. 

Metabolites Associated with IA 

 Conditional logistic regression was used to calculate odds ratios (ORs) for the 

association of each transformed metabolite with the development of IA, adjusting for 

high-risk HLA genotype (DR3-DQA1*05:01-DQB1*02:01/DR4-DQA1*03:01-

DQB1*03:02 versus all other), and age at blood draw. Some TEDDY subjects follow a 

long-distance protocol, in which blood is drawn and shipped to clinical centers before 

being processed for biomarker identification. Since plasma primary GC-TOF MS 

metabolic profiles are less stable with centrifugation delay,158 we required an additional 

match for the long distance protocol between case and control samples.  

Metabolomics analyses were run in three cross-sections. First, we examined 

metabolite differences between IA cases and controls at the first detection of 

autoantibody positivity (seroconversion), defined as the first of the two consecutive 

autoantibody positive visits for cases. Then, to identify metabolites and lipids that may 

differentiate IA cases and controls prior to the detection of autoantibodies (pre-

seroconversion) we selected the most recent IA-free visit for cases. Finally, since 

autoimmunity can begin very early in life and both metabolomics and dietary factors 

are strongly related to age, we identified metabolites distinguishing IA cases and  
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controls prior to the appearance of autoantibodies in infancy. The “infancy” cross-

section was defined as an IA-free visit at 9 months of age for cases. For controls, the 

visit corresponding to the case visit was selected for all cross-sections. Children positive 

for autoantibodies at 9-months (n=48 IA cases) and their matched controls were 

excluded from the infancy cross-section (Figure IV-2). 

We tested the association of each metabolite with the secondary outcomes 

described above: IAA, GADA, and mAb+. We considered p-value<0.05 significant since 

traditional approaches for multiple comparison correction may be too strict for the 

unusually highly correlated metabolomics data or inappropriate given the exploratory 

nature of our study aims.159 SAS version 9.4 was used for these analyses. 

We also focused on pathway enrichment, given that metabolites may capture 

perturbations in many upstream biological systems thereby complicating interpretation 

of individual associations. Using the ChemRICH metabolomics set enrichment tool,122 

we tested whether groups of structurally similar metabolites were associated with any 

autoantibody outcome. ChemRICH forms non-overlapping groups of metabolites based 

on chemical similarity and ontology mapping.122 It calculated a single p-value for each 

group, and identified the most significant metabolite in each group as the “key 
compound” (http://chemrich.fiehnlab.ucdavis.edu/). Inputs for the ChemRICH analyses 

included the nominal p-value and odds ratio from the individual conditional logistic 

regression models, and chemical structure information from well-characterized 

annotated metabolites and lipids (p=315, Appendix B). Metabolite groups with p-

value<0.05 were considered significant.  
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Metabolite-Related Dietary Patterns Preceding the Appearance of Autoantibodies 

Reduced rank regression (RRR) was used to identify dietary patterns reflecting 

metabolites associated with IA. RRR creates linear combinations of foods (dietary 

patterns) that explain the maximum covariation in a second set of intermediate 

response variables (metabolites),123 thereby capturing disease-related variation in the 

diet rather than general eating behaviors identified from other dietary pattern 

methods.139 We focused dietary pattern analysis on the infancy cross-section, since it is 

prior to the beginning of the autoimmune process and all children were the same age.  

Food groups from the diet record were combined into 43 subgroups based on 

nutrient content and culinary usage.113 Many foods had a large proportion of subjects 

with no reported intake, given that food records only capture dietary intake on three 

days within each study visit window and that many foods may not be introduced yet for 

visits occurring during infancy. Therefore we applied a filtering criteria for inclusion of 

a food subgroup into the dietary pattern analysis, as is common in studies using RRR.133 

Food subgroups that were shown to be comparable across TEDDY countries, and were 

eaten by at least 40% of subjects in infancy were included in the creation of dietary 

patterns, since highly zero-inflated foods might perform sub-optimally. Food subgroups 

were standardized to the age-specific mean and standard deviation of all TEDDY food 

records for dietary pattern analyses. The key compound in each significantly enriched 

metabolite group (identified by ChemRICH) was used as RRR response variables.  

 The number of dietary patterns needed to best explain the variation in 

metabolites was selected using the van der Voet T2 statistic.124 The loadings (or relative 
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weights) of food groups on each dietary pattern and the partial correlation with 

metabolite response variables was used to interpret each dietary pattern.  

Metabolite-Related Dietary Patterns and Risk of IA 

Infancy metabolite-related dietary patterns were first tested in the nested case-

control study using conditional logistic regression as described above. Then we applied 

them to the full TEDDY cohort at 9 months of age, using the food group loadings to 

generate one score per pattern for each subject with complete food records (n=6,845). 

The score indicates how similar the reported dietary intake is to the dietary pattern. 

Multiple dietary patterns were produced as a result of the RRR procedure and could be 

subsequently modeled together because they are statistically independent. 

 Cox proportional-hazards models were used to test the association of 

metabolite-related dietary pattern scores at 9-months on risk of mAb+, adjusting for 

clinical center, high-risk HLA genotype, family history of type 1 diabetes, total energy 

intake, and sex. Time-to-event analyses were performed to evaluate whether 

metabolite-related dietary pattern scores were associated with mAb+ by the age of 6 

years. Cases included those selected for the nested case-control study plus any 

additional cases that developed by January 2018. Given that risk factors for IA may 

differ by age, we restricted follow up to 6 years in the TEDDY cohort to ensure the 

cohort analysis represented a similarly-aged case-population as the nested case-control 

study.  For consistency with the nested case-control study, the time-to-event was 

defined as the time from birth to the appearance of the first persistent confirmed 

autoantibody among IA cases who developed a second persistent confirmed 

autoantibody at any point. Subjects without complete covariate information, those 
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developing mAb+ at 9-months (n=53), or who had no follow-up after 9-months (n=243) 

were excluded from survival analysis (Figure IV-2). 

Results 

Metabolic Dysregulation Apparent at Seroconversion and Infancy 

From the nested case-control study, there were 352 matched sets with 

metabolomics measures for 1 case and at least 1 control at seroconversion (mean (SD) 

case-age=722 (446) days), 366 sets at pre-seroconversion (mean (SD)=625 (412) days), 

and 253 sets at the 9-month infancy visit (mean (SD)=283 (14) days) (Table IV-1). For 

secondary outcomes, 49% of IA cases were positive for IAA, 32% for GADA, and 60% 

for mAb+. The distribution of secondary outcomes was consistent across the 

seroconversion, pre-seroconversion, and 9-month infancy cross-sections. The majority 

of IA cases were from Sweden (32%) and Finland (28%). IA cases were 55% male, 22% 

had a first degree relative, and 12% had their seroconversion blood-draw following TEDDY’s long distance protocol (Table IV-2). The distribution of matched sets by 

matching factors (clinical center, sex, first-degree relative status, and long distance 

protocol) were similar in the secondary outcomes compared to primary IA. 

Approximately 9% of the pre-seroconversion case samples (n=34) occurred during the 

9-month infancy visit. 
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Table IV-1: Description of matched sets (1 case and 1, 2 or 3 controls) for 

metabolomics analyses by outcome and cross-section. 

  IA IAA* GADA* mAb+* 

 Cross-section 

N 

Case-

age†, 

mean 

(SD) 

n 

% of 

IA 

cases 

Case-

age, 

mean 

(SD) 

n 

% of 

IA 

cases 

Case-

age, 

mean 

(SD) 

n 

% of 

IA 

cases 

Case-

age, 

mean 

(SD) 

Seroconversion 352 
722 

(446) 
171 48.6 

586 
(370) 

113 32.1 
888 

(509) 
211 59.9 

655 
(365) 

Pre-
Seroconversion 

366 
625 

(412) 
180 49.2 

505 
(366) 

116 31.7 
786 

(445) 
224 61.2 

541 
(346) 

Infancy 9-months 253 
283 
(14) 

114 45.1 
283 
(14) 

83 32.8 
284 
(16) 

153 60.5 
282 
(14) 

*Secondary outcomes defined as IAA or GADA as first-appearing and only autoantibody at IA case-time (mutually 
exclusive), while mAb+ indicates IA case developed more than 1 persistent confirmed Ab at any point during follow-
up. 
†Age at the time of metabolomics blood draw, in days 

 

 

Table IV-2: Characteristics and outcomes of TEDDY nested case-control 1:3 

matched study at seroconversion. 

 Outcomes 

  IA IAA GADA mAb+ 

Matching Characteristic n (%) n (%) n (%) n (%) 

Clinical Center         
Colorado 51 (14.5) 22 (12.9) 17 (15.0) 30 (14.2) 
Georgia 28 (8.0) 8 (4.7) 12 (10.6) 18 (8.5) 
Washington 32 (9.1) 16 (9.4) 14 (12.4) 15 (7.1) 
Finland 100 (28.4) 59 (34.5) 23 (20.4) 72 (34.1) 
Germany 28 (8.0) 11 (6.4) 9 (8.0) 16 (7.6) 
Sweden 113 (32.1) 55 (32.2) 38 (33.6) 60 (28.4) 
Sex         
Female 158 (44.9) 71 (41.5) 56 (49.6) 91 (43.1) 
Male 194 (55.1) 100 (58.5) 57 (50.4) 120 (56.9) 
FDR/GP Status         
First Degree Relative 79 (22.4) 37 (21.6) 27 (23.9) 53 (25.1) 
General Population 273 (77.6) 134 (78.4) 86 (76.1) 158 (74.9) 
Long Distance Protocol         
Yes 43 (12.2) 17 (9.9) 16 (14.2) 24 (11.4) 
No 309 (87.8) 154 (90.1) 97 (85.8) 187 (88.6) 
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Conditional logistic regression results from the metabolome-wide association 

study indicated metabolic dysregulation in cases compared to matched controls at 

seroconversion and during infancy (Table IV-3, Figure IV-3). Over 6% (p=54) of 

metabolites and lipids were significantly different at p<0.05 among IA cases and 

matched controls at seroconversion, and 7.5% (p=64) in infancy. More metabolites and 

lipids were different by case status when restricting to the mAb+ outcome—10% 

(p=91) were different between mAb+ and controls at seroconversion, and 15% (p=130) 

in infancy. There were few metabolites associated with the secondary outcomes IAA 

first and GADA first in any cross-section (Figure IV-4). 

 

Table IV-3: Summary of individual metabolites significantly associated (p<0.05) 

with diabetes autoimmunity outcomes in three cross-sections*. 

    Outcomes 

    IA mAb+ 

    All OR>1 OR<1 All OR>1 OR<1 

Cross-section p p % p p p % p p 

Seroconversion* 853 54 6.3 21 33 91 10.7 17 74 
Pre-seroconversion 853 27 3.2 8 19 19 2.2 11 8 
Infancy 9-months 853 64 7.5 21 43 130 15.2 20 110 

Conditional logistic regression models adjusted for HLA (DR3/4) and age at blood draw date 
*Visit at which an autoantibody (or autoantibodies) was first detected 
p=number of metabolites 

 

We focused the metabolomics set enrichment analyses on the mAb+ outcome, 

which represented 60% of IA cases and had the largest signal of metabolomics 

differences between cases and controls. ChemRICH identified seven groups of 

chemically similar metabolites that were significantly different among mAb+ cases and 

controls at seroconversion, one group at pre-seroconversion, and six groups in infancy 

(Table IV-4). 
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 Of the metabolite groups identified as different among mAb+ cases, only 

unsaturated phosphatidylcholines (PC) were consistently dysregulated in all three 

analyses (p-value for group in seroconversion=2.1 x 10-5, pre-seroconversion=0.013, 

infancy=2.2 x 10-20), with the majority of the individual metabolites being lower in 

mAb+ cases compared with controls (OR<1) (Figure IV-5). Similarly, 

phosphatidylethanolamines (PE) were lower in mAb+ cases (OR<1) at both 

seroconversion (p-value=0.0047) and in infancy (p-value=2.9 x 10-6).  

Other than PCs and PEs, distinct metabolite groups distinguished mAb+ cases 

from their controls at the time of seroconversion to primary IA compared to during 

infancy prior to the appearance of any autoantibodies (Table IV-4, Figure IV-5). At 

seroconversion, mAb+ cases had lower levels of unsaturated triglycerides (p-value=3.1 

x 10-15), amino acids (p-value=0.0074), diglycerides (p-value=0.014), and aromatic 

amino acids (p-value=0.03), and higher levels of saturated fatty acids (p-value=0.0074). 

In infancy, other phospholipids were significantly protective for mAb+ (majority of 

OR<1), including sphingomyelins (SM, p-value=1.1 x 10-8) and phospholipid ethers 

(EtherPL, p-value=0.0032), along with the glucosylceramides (GlcCer, p-value=4.4 x 10-

5). Three dicarboxylic acids were significantly higher in mAb+ cases compared to 

controls in infancy (OR>1, p-group=0.0019).  
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Figure IV-3: Volcano plot of the association between 853 metabolites and islet 

autoimmunity (IA), multiple autoantibody positivity (mAb+) in the TEDDY study. 
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Figure IV-4: Volcano plot of the association between 853 metabolites and 

secondary outcomes insulin-first at IA (IAA), and GAD-first at IA (GADA) in the 

TEDDY study. 
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Table IV-4: ChemRICH summary of chemically similar metabolite groups 

significantly associated with mAb+ (nominal p-value for group<0.05). 

 

  

   

 

Name
Total 

n

n, 

p<0.05

n, 

OR<1
p-value q-value

n, 

p<0.05

n, 

OR<1
p-value q-value

n, 

p<0.05

n, 

OR<1
p-value q-value

Unsaturated 
Phosphatidyl-
cholines

76 5 3 0.000021 0.00029 2 1 0.013 0.35 29 28 2.2E-20 6.6E-19

Sphingomyelins 16 10 10 0.000000011 0.00000016

Phosphatidyl-
ethanolamines

10 3 3 0.0047 0.042 3 3 0.0000029 0.000029

Galactosyl-
ceramides

4 2 2 0.000044 0.00033

Dicarboxylic 
Acids

5 3 0 0.0019 0.012

Phospholipid 
Ethers

6 2 2 0.0032 0.016

Unsaturated 
Triglycerides

43 17 15 3.1E-15 8.7E-14

Amino Acids 6 2 2 0.0074 0.042

Saturated FA 7 3 0 0.0074 0.042

Diglycerides 11 3 3 0.014 0.064

Amino Acids, 
Aromatic

4 2 2 0.03 0.12

ChemRICH inputs: p-value and OR from conditional logistic regression models adjusted for HLA (DR34) and age at draw date

InfancyPre-seroconversionSeroconversion

Metabolite ClusterMetabolite ClusterMetabolite ClusterMetabolite Groups
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Figure IV-5: Chemically similar metabolite sets identified as significantly 

associated with mAb+ by ChemRICH. Each row is an individual metabolite, grouped 
by ChemRICH set and sorted by log(OR) within each set. Log(OR) > 0 (red) indicates a 
positive association between metabolite and mAb+, whereas log(OR) < 0 (blue) 
indicates an inverse association between metabolite and mAb+. Phosphatidylcholines 
were significantly lower in cases compared to controls in infancy (9-month), just prior 
to seroconversion, and at seroconversion to primary IA. Other phospholipids were 
significantly lower in cases only in infancy, while other metabolite groups, such as 
unsaturated triglycerides and amino acids, distinguished cases and controls at 
seroconversion. 
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Infant Metabolite-Related Dietary Patterns and Risk of mAb+ 

 From each of the six groups identified by ChemRICH in infancy, we used the key 

metabolite (most significant one) as a response variable in dietary pattern analyses, 

including: PC (34:3), SM (d41:2) A, PE (34:2), GlcCer (d41:1), adipic acid, and PC (p-

32:0) or PC (o-32:1) (EtherPL).  

 Reduced rank regression identified three dietary patterns that explained 8% of 

the variation in metabolites and 29.3% of the food variation. Food groups factor 

loadings and metabolite variable weights for each dietary pattern are shown in Figure 

IV-6. Infants scoring high on Dietary Pattern 1 ate more non-gluten containing cereals, 

onions, vegetable oils, and fat-free milk, and less breast milk. This diet corresponded to 

higher levels of PE (34:2). Whereas infants scoring high on Dietary Pattern 2 ate diets 

with higher saturated fats, fat-free milk, poultry, and infant formula, and lower in 

potatoes and vegetable oils. This diet corresponded to higher levels of SM (d41:2) A, 

GlcCer (d41:1), and PC (p-32:0) or PC (o-32:1). Finally, 9-month infants scoring high on 

Dietary Pattern 3 ate diets higher in breast milk, red meat, potatoes, and cereals, and 

lower in processed fruits, legumes, and infant formula. High scores on Dietary Pattern 3 

corresponded to higher levels of PC (34:3) and PC (p-32:0) or PC (o-32:1), and lower 

levels of SM (d41:2) A.  
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Figure IV-6: Food group loadings and metabolite weights for metabolite-related 

dietary patterns. In total, the three dietary patterns explained 8% of metabolite 
variation and 29.3% of food variation. For food, the radial axis indicates the loading on 
each dietary pattern (Range: -0.6 to 0.4), and is used to interpret which combinations of 
foods are influential in the dietary pattern. Similarly, the metabolite radial axis indicates 
the weight of each metabolite on each dietary pattern (Range: -0.6 to 0.9), indicating 
which combination of metabolites are explained by each dietary pattern. For example, 
subjects scoring high on dietary pattern 1 had diets higher in non-gluten containing 
cereals, onions, vegetable oils, and fat-free milk, and lower in breast milk. This diet 
corresponded to higher levels of PE (34:2). 

 Dietary patterns generated from metabolites and food intake in the nested case-

control study were applied to the full cohort to generate one metabolite-related dietary 

pattern score for each dietary pattern on all 9-month diet records (Table IV-5). 

Subjects developing mAb+ by age 6 years were more likely to have a first-degree 

relative (FDR) with type 1 diabetes and to have high-risk HLA-DR3/4 genotypes. No 

dietary patterns were univariately associated with becoming a case of mAb+. While 

dietary pattern 3 was significantly protectively associated with mAb+ in the nested 
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case-control study (OR=0.67, 95%CI=0.48-0.94, Table IV-6), there was no association 

seen in time-to-event analyses applied to the whole cohort and adjusted for clinical 

center, sex, HLA-DR3/4, and FDR (HR=0.98, 95%CI=0.83-1.16, Table IV-6). No other 9-

month metabolite-related dietary patterns were associated with development of mAb+ 

in the TEDDY cohort. Results did not change in a sensitivity analysis in which we 

adjusted for an additional 17 covariates that TEDDY has identified as associated with 

development of IA (race-ethnicity, maternal education, maternal age, introduction of 

probiotics before 28 days, introduction of probiotics at or after 28 days, weight for age 

z-score at 12 months, and number of minor alleles for rs2476601, rs2816316, 

rs11711054, rs10517086, rs4948088, rs1004446, rs7111341, rs2292239, rs3184504, 

rs3825932, rs12708716) (data not shown). 

Table IV-5: Cohort characteristics of TEDDY children with food records at age 9-

months. 

  mAb+ by age 6 yr mAb- at age 6 yr   
  n % N % p-value 

Total Subjects 300   6237     
Clinical Center         0.196 
Colorado 52 17.33 987 15.82   
Georgia 25 8.33 638 10.23   
Washington 29 9.67 837 13.42   
Finland 77 25.67 1406 22.54   
Germany 23 7.67 365 5.85   
Sweden 94 31.33 2004 32.13   
Female 139 46.33 3075 49.3 0.315 
First degree relative 71 23.67 613 9.83 <0.001 
HLA-DR3/4 169 56.33 2354 37.74 <0.001 
  Mean SD Mean SD p-value 

Age at first Ab (days) 990.1 517.3 --   
Dietary Pattern Scores           

1 -0.055 1.07 0.004 0.98 0.349 
2 -0.076 0.88 0.005 0.93 0.120 
3 0.082 1.06 0.008 1.04 0.238 
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Table IV-6: Dietary patterns at 9-months of age associated with risk of mAb+ in 

TEDDY. 

 

Nested Case-Control* 

n=147 mAb+ cases 
Cohort† 

n=300 mAb+ cases by 6 years 
Metabolite-related 

dietary patterns 
OR 95%CI HR 95%CI 

1 0.85 0.68 1.05 0.95 0.83 1.08 
2 0.81 0.61 1.08 0.89 0.78 1.02 
3 0.67 0.48 0.96 0.98 0.83 1.16 

*Conditional logistic regression models adjusted for age at metabolomics blood draw and total energy 
†Survival models adjusted for clinical center, sex, FDR, total energy, and HLA DR3/4 
OR=Odds Ratio, CI=confidence interval, HR=Hazard Ratio 

 

Discussion 

 We identified dysregulated metabolism at the onset of and preceding stage 1 

diabetes (mAb+) in a multi-national, prospective type 1 diabetes study. Different groups 

of metabolites distinguished cases and controls depending on whether it was directly 

after or prior to the detection of autoantibodies. Only PC and PE metabolites were 

consistently decreased in mAb+ cases compared to controls. At seroconversion, 

unsaturated triglycerides and amino acid groups were lower among mAb+ cases; 

whereas SM, GlcCer, and EtherPL lipids were lower among mAb+ cases in infancy. 

Infancy dietary patterns explaining choline- and sphingosine- containing lipids were 

not associated with the development of mAb+ in the full TEDDY cohort.  

 Dicarboxylic acids were the only metabolite group we found associated with 

increased risk of mAb+ in infancy. Adipic acid, the key compound of the dicarboxylic 

acids group, is not a substantial component of food other than as a biomarker of jello 

intake,160 and as such was poorly explained by dietary pattern analysis. Other 

dicarboxylic acids associated with increased mAb+ risk included the tricarboxylic acid 

(TCA) cycle intermediaries succinic acid and malic acid. Through their regulation of 
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demethylase activity, succinic acid and other TCA cycle intermediaries may be 

important regulators of DNA and histone methylation,161 which have been implicated in 

pathogenesis of type 1 diabetes.162 While previous metabolomics studies have similarly 

identified early life TCA cycle metabolite levels (glutamic acid, succinic acid) as 

important for future development of type 1 diabetes among Finnish children,96 the 

effects are not always consistent with the present study. Measurement of TCA cycle 

metabolites, particularly citric acid, was limited by the use of citrate tubes for plasma 

collection and storage in TEDDY. Future work should better characterize the role of 

TCA cycle metabolites in type 1 diabetes using plasma stored in a different medium.  

 Sphingolipid metabolism plays a role in diabetic pathologies, including 

regulating beta-cell apoptosis, proinsulin and insulin folding in the endoplasmic 

reticulum, and cytokine secretion.163 The evidence supporting this connection has been 

recently extended from animal models into human islet cells.164 We identified two 

sphingolipid groups as significantly lower in infancy for mAb+ cases versus controls, 

including the SM group, which were previously identified in type 1 diabetes 

metabolomics studies,96,103 and the GlcCer group. As a whole, sphingolipids have been 

characterized as both pro- and anti-inflammatory. Endogenous sphingolipids are 

metabolically involved in T-cell regulation, autoimmunity, and inflammation,165 yet 

consumption of dietary sphingolipids have been linked to anti-inflammatory 

responses.166 The protective effects may operate via changes in gut microbiota or by 

activating other cofactors such as peroxisome proliferator-activated receptor γ 
expression,167 both of which have been implicated in type 1 diabetes,168 While the 

sphingolipid metabolites were explained by Dietary Pattern 2 and trended toward 
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protective, it was only marginally significant in the full cohort analysis. Targeted 

characterization of the relationship between sphingolipid dietary intake and metabolite 

levels might help to disentangle reported contrasting effects, which likely depend on 

other factors such as specific sphingolipid structure and existing metabolic state. 

 We identified choline-containing lipid groups (PC, SM, EtherPL) as protective for 

development of mAb+ at 9 months of age, consistent with previous studies conducted at 

birth and 3 months of age.96,102,103 Choline is important for rapid growth and 

development in infancy, as a constituent of phospholipid cellular membranes. 

Additionally, it may play a role in insulin resistance or energy metabolism, perhaps 

through its role as a methyl donor for epigenetic changes.169 Breastmilk, infant formula, 

and milk are important sources of choline in the infant diet, though the amount and 

type of choline-containing compounds vary widely across dietary sources.170,171 

Correlation of choline-containing compounds with each other, and with breastmilk and 

infant formula were identified in Dietary Pattern 3, which was protective for mAb+ in 

the nested case-control study only.  

 However, no metabolite-related dietary pattern at 9-months was associated with 

the development of mAb+ by the age of six years in the full TEDDY cohort. The percent 

of metabolomics variation explained by the dietary patterns is modest, yet comparable 

to other dietary pattern studies utilizing targeted metabolomics measures.126 The 

remainder of the variability is likely related to other environmental, lifestyle, and 

genomic factors that influence metabolism. 

 There are several factors that could contribute to the lack of dietary pattern 

association found, despite overlap between the mAb+ cases on whom the patterns were 
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created and all mAb+ cases included in cohort analyses. First, untargeted metabolomics 

and 3-day food records may not be measured precisely enough to successfully identify 

disease-related dietary patterns at such a young age where variability in both is large. 

Second, using the most significant metabolite in each group may not be the best choice 

of response variable, which is the variable that determines the ability of reduced rank 

regression to capture disease-related variation in the diet.172 Metabolomics measures 

were further limited because they were quantified from non-fasting samples, which has 

been shown to differentially impact serum metabolic profiles related to dietary 

factors.173  

 Despite the large variation in untargeted metabolomics panels and diet, both of 

which vary by geography in our multi-national setting, we were able to identify 

metabolic dysregulation prior to the detection of autoantibodies that distinguished 

children whose lifetime risk for symptomatic (Stage 3) type 1 diabetes approaches 

100%.174 Our findings confirmed smaller, country-specific studies and expanded the 

knowledge base of metabolite groups in the more heterogeneous TEDDY study 

population. Though results generalize to a broader population than previous studies, 

the very young cases (<= 9-months of age) were excluded from our study. The 

discovery of only one group of metabolites (PCs) that was identified across the pre-

autoimmune period is consistent with other type 1 diabetes studies where the effect of 

non-genetic factors could be age-related or have an effect only during certain 

susceptible windows. While novel application of dietary patterns summarizing 

candidate metabolites did not successfully extend outside of the nested case-control 
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study, the approach may show promise for future work with targeted measurement of 

disease-related metabolites.   

 In summary, we identified metabolomics differences between cases and controls 

both at the time of autoantibody detection, and prior to its development. Metabolomics 

differences were more apparent when comparing the high-risk mAb+ group to controls 

than comparing all cases of IA to controls. Few differences were identified by the type of 

first-appearing autoantibody. Dietary patterns explaining candidate metabolites were 

not significantly associated with development of mAb+ in the full TEDDY cohort. The 

risk for mAb+ was associated with decreased levels of choline- and sphingolipid-related 

metabolomics factors in infancy, possibly due to changes in lipid-related dietary intake.  
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METABOLOMICS-RELATED NUTRIENT PATTERNS AT SEROCONVERSION AND 

RISK OF PROGRESSION TO TYPE 1 DIABETES 

Abstract 

Objective  

 To elucidate the role of diet in type 1 diabetes by examining combinations of 

nutrient intake in the progression from islet autoimmunity (IA) to type 1 diabetes.  

Research Design and Methods  

 We measured 2,457 metabolites and dietary intake at the time of seroconversion 

in 132 IA-positive children in the prospective DAISY study. IA was defined as the first of 

two consecutive visits positive for at least one autoantibody (insulin, GAD, IA-2, or 

ZnT8). By December 2018, 40 children progressed to type 1 diabetes. Intakes of 38 

nutrients were estimated from semi-quantitative food frequency questionnaires. We 

tested the association of each metabolite with progression to type 1 diabetes using 

multivariable Cox regression. Nutrient patterns that best explained variation in these 

significant metabolites were identified using reduced rank regression (RRR), and their 

association with progression to type 1 diabetes was tested using Cox regression 

adjusting for age at seroconversion and high-risk HLA genotype.  

Results  

 In stepwise selection, 22 nutrients significantly predicted at least two of the 13 

most significant metabolites associated with progression to type 1 diabetes, and were 

included in RRR. A nutrient pattern corresponding to intake lower in linoleic acid, 

niacin, and riboflavin, and higher in total sugars, explained 18% of metabolite 
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variability. Children scoring higher on this metabolite-related nutrient pattern at 

seroconversion had increased risk for progressing to type 1 diabetes (HR=3.31, 

95%CI=1.46-7.47).  

Conclusions 

 Combinations of nutrient intake reflecting candidate metabolites are associated 

with increased risk of type 1 diabetes, and may help focus dietary prevention efforts.  

Introduction 

 Type 1 diabetes is characterized by destruction of the insulin-producing beta-

cells in the pancreas, and affects over 100,000 children and adolescents in the U.S.175 

Clinical type 1 diabetes is preceded by a period of detectable and persistent 

autoimmunity to islet antigens, called islet autoimmunity (IA). While the incidence of 

childhood type 1 diabetes has been increasing worldwide for decades,175 the incidence 

of IA appears stable,176 suggesting that an increase in progression from IA to clinical 

diabetes may help explain these incidence trends. Therefore, it is important to identify 

factors influencing progression from IA to type 1 diabetes. 

 Non-genetic factors are involved in the development of type 1 diabetes, which 

also has a well-defined genetic risk component.16 Dietary intake in early life and 

throughout childhood has been implicated in type 1 diabetes risk, though without 

conclusive findings of a single responsible risk factor.177 Higher intake of some foods or 

nutrients at seroconversion has been associated with increased risk of progression to 

type 1 diabetes, including: glycemic load,82 total sugars and sugar-sweetened 

beverages,83 and cow’s milk protein.77 Other dietary factors, including vitamin D intake 

and status,85,178 and omega-3 fatty acid intake and status,79 were not associated with 
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progression. These traditional investigations of individual dietary risk factors may 

oversimplify true dietary exposure since multiple nutrients are contained in foods, and 

nutrients may work synergistically or antagonistically in the body. We sought to 

improve upon previous investigations into diet and progression from islet 

autoimmunity to type 1 diabetes by considering combinations of nutrient intake, or 

nutrient patterns.  

 Our aim was to identify nutrient patterns of intake at seroconversion associated 

with risk of progression to type 1 diabetes in the Diabetes Autoimmunity Study in the 

Young (DAISY), as shown in Figure V-1. To capture disease-related variation in 

nutrient intake, first we conducted a metabolome-wide association study to identify 

metabolites and lipids associated with progression from IA to type 1 diabetes. As 

markers of biological processing and response to nutrition, metabolites have been used 

together with reported dietary intake to elucidate the role of diet in the development or 

prevention of other outcomes, such as cardiovascular disease 179. Next, we used reduced 

rank regression to create nutrient patterns best explaining those candidate metabolites. 

Finally, we tested the nutrient pattern with the risk of progression from IA to type 1 

diabetes. 
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Figure V-1: Study design for identifying metabolite-related nutrient patterns 

associated with progression from islet autoimmunity (IA) to type 1 diabetes. a) 
We conducted a metabolome-wide association study to identify seroconversion 
lipidomics and metabolomics associated with progression to type 1 diabetes by 
December 2018. Significant metabolites and nutrient patterns that best summarized 
them were identified using reduced rank regression. Metabolite-related nutrient 
pattern scores were tested for the risk of type 1 diabetes. b) Of the 213 IA cases 
identified in DAISY by January 2015, 132 had untargeted metabolomics measures and 
dietary intake available at the time of seroconversion. 

 

Research Design and Methods 

Study Design 

 From 1993-2004, DAISY recruited 2,547 children in Colorado who were at high 

risk for developing type 1 diabetes.111 Prospective follow-up for the development of 
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islet autoantibodies and type 1 diabetes is ongoing, and has included clinic visits at 9, 

15, and 24 months, and annually thereafter.180 An IA case is defined by the presence of 

one or more confirmed autoantibody to insulin, GAD65, IA-2, or ZnT8 on two or more 

consecutive clinic visits. Seroconversion is defined as the first visit at which IA was 

detected.  IA cases follow an accelerated protocol with clinic visits every 3-6 months 

until type 1 diabetes is diagnosed by a physician following standardized criteria, 

including typical symptoms of polyuria and/or polydipsia and a random glucose > 11.1 mmol/l or an OGTT with a fasting plasma glucose ≥ 7.0 mmol/l or 2-h glucose > 11.1 

mmol/l.20 

 To identify seroconversion metabolomics and nutrient patterns associated with 

progression from IA to type 1 diabetes, we examined IA cases who seroconverted prior 

to January 2015 and their prospective follow-up for type 1 diabetes through December 

2018.  

Metabolomics Data Acquisition, Normalization, and Pre-Processing 

 Untargeted metabolomics measures were acquired from serum samples using 

GC-TOF MS (primary metabolism), CSH-QTOF MS (complex lipids), and HILIC-QTOF MS 

(biogenic amines), at the NIH West Coast Metabolomics Center at the University of 

California, Davis. Samples were kept at -80°C prior to analysis. Samples were allowed to 

thaw on wet-ice and kept cold during extraction, once thawed samples were inverted 

multiple times to ensure serum homogeneity. Samples were extracted by taking 30 μL 
of serum and performing a liquid-liquid extraction first previously described181 with 

modification, including addition of labeled internal standards for quality control and 

retention time correction.155 The aqueous phase, containing polar metabolites, was split 
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into two equal volumes and dried then re-suspended in 1:1 acetonitrile:water to 

precipitate any remaining lipids. One polar aliquot was then prepared for and analyzed 

by HILIC-QTOF MS/MS.182 The second polar aliquot was analyzed by GC-TOF-MS.183 The 

non-polar phase was analyzed by CSH-QTOF MS/MS for identification and relative 

quantification of complex lipids and free fatty acids.155  

 Peak picking, integration, alignment and annotation of GC-TOF-MS data was 

performed using BinBase.184 Liquid chromatography (LC) data (CSH-QTOF-MS and 

HILIC-QTOF-MS) were processed with MS-Dial,185 and complex lipids were annotated 

with LipidBlast186 and Massbank of North America 

(http://mona.fiehnlab.ucdavis.edu/). MS-FLO was used to remove erroneous peaks and 

reduce the false discovery rate in LC datasets.187  

 After data were collected, annotated and post-processed they were normalized 

to account for any instrument drift, variation, or batch effects which may have occurred. 

Data were normalized by our in-house normalization algorithm; systematic error 

removal using random forest (SERRF).188 SERRF is a QC-based normalization method 

using the random forrest algorithm.189 Briefly, SERRF was designed to be used in place 

of compound independent normalization methods such as locally weighted smoothing 

(LOESS). While LOESS normalizes compounds independently, SERRF takes the 

metabolites’ correlation into consideration and automatically assigns higher weight to 

important compounds. SERRF is nonparametric, nonlinear, less prone to overfitting, 

robust to outliers and noise, and fast to train.   

 After normalization, we performed quality control checks at the sample and 

metabolite level. Samples with a high proportion of features estimated to be zero were 
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considered low abundance (n=2) and excluded from analyses. Each metabolite was 

transformed using box-cox transformation analysis, to improve heteroscedasticity and 

normality.156 Metabolites with a coefficient of variation more than 2 absolute deviations 

from the median were excluded from analyses (p=344), as they may be unreliable or 

produce unstable estimates. Coefficient of variation median and median absolute 

deviations were calculated separately by panel. After quality checks, there were 2,457 

untargeted metabolites for statistical analyses, including 1,905 (77%) unknown 

metabolites.  

Dietary Intake Assessment 

 Dietary intake was measured annually using the Willett semi-quantitative food 

frequency questionnaire (FFQ) starting at age two years. Parents completed an FFQ representing their child’s average intake over the previous year until age 10 years, after 

which study participants self-reported using the Youth Adolescent Questionnaire 

(YAQ). The FFQ has been previously validated,118 and the FFQ and YAQ shown to be 

comparable in the DAISY study population.117 

 The average amounts of daily nutrient intakes were estimated from the FFQ and 

YAQ at the Channing Laboratory, Harvard, MA. Nutrients that were measured 

throughout the DAISY study were considered for inclusion in nutrient pattern analyses 

(p=40). Where available, nutrient variables included the intake from both foods and 

supplements. We used the residual method to calculate the energy-adjusted nutrient 

intakes.100 There were 38 energy-adjusted nutrients available for nutrient pattern 

analysis (Appendix C).  

 



69 
 

Statistical Methods 

 IA cases missing metabolomics at seroconversion (n=54), those without a FFQ at 

seroconversion (n=25), those reporting unreasonable total calories (>5,000 kcal, n=1), 

or whose seroconversion visit occurred less than 3 months prior to type 1 diabetes 

diagnosis (n=1) were excluded from all analyses (Figure V-1). All metabolites were 

standardized prior to analyses to allow for direct comparison of the magnitude of 

association with type 1 diabetes. We used Cox regression to identify seroconversion 

metabolomics associated with progression from IA to type 1 diabetes, adjusting for age 

at seroconversion and high-risk HLA (DR3/4) genotype. The time-to-event was defined 

as the time from seroconversion (the first of two consecutive positive visits) to 

diagnosis with type 1 diabetes. We adjusted for multiple comparisons using the 

Benjamini-Hochberg false discovery rate.190  

 Using the most significant metabolites identified in discovery (minimum FDR q-

value), we used reduced rank regression (RRR) to identify nutrient patterns that best 

explained metabolite variation. RRR helps summarize high-dimensional data by 

creating linear combinations of nutrients (nutrient patterns) that maximize the 

variance explained in a set of response variables (metabolites).123 We reduced the 

number of nutrients included in RRR by first applying a stepwise regression selection 

procedure for each metabolite.133 Nutrients that significantly predicted at least 2 

metabolites (p-value<0.1, Appendix C) were included in nutrient pattern analysis. 

Energy-adjusted nutrient intakes were standardized prior to the RRR. Results of RRR 

included metabolite weights, nutrient loadings, and a nutrient pattern score for each 
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participant, indicating how similar their intake was to the nutrient pattern. Weights and 

loadings more extreme than ±0.2 were used to interpret the nutrient pattern.  

 We tested the association of metabolite-related nutrient pattern scores with 

progression from IA to type 1 diabetes using Cox regression. For comparison with the 

nutrient pattern, we included an additional analysis testing individual nutrient 

associations with progression from IA to type 1 diabetes for nutrients that loaded 

strongly (more extreme than ±0.2) on the nutrient pattern. All multivariable Cox 

regression models were adjusted for age at seroconversion and high-risk HLA (DR3/4) 

genotype. SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses.  

Results 

 Of 132 IA cases with metabolomics and dietary intake measured at the time of 

seroconversion, 40 progressed to type 1 diabetes by December 2018. Characteristics of 

the study population are shown in Table V-1. Type 1 diabetes progressors were 48% 

male, mostly non-hispanic white, and 63% had a first-degree relative with type 1 

diabetes. These characteristics were similar in the non-progressor group. However, 

compared to non-progressors, those who progressed to type 1 diabetes had higher-risk 

HLA genotypes (43% versus 28%) and seroconverted to IA positivity at younger ages 

(5 years versus 7.8 years).  

From individual multivariable Cox regression models, 201 metabolites (8%) had 

nominal associations (p-value<0.05) with risk of progression to type 1 diabetes (Figure 

V-2). None of these associations reached significance after adjustment for multiple 

comparisons (q-value<0.05). The 13 metabolites that were tied at the minimum q-value 

of 0.3451, including threonine, histidine, choline, and 10 unknown compounds from the 
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biogenic amines and complex lipids panels, were used in the nutrient pattern analysis. 

Mass spectra for the compounds are included in Figure V-3. The majority of nominally 

significant metabolites were associated with increased risk of progression to T1D 

(Figure V-2). 

 

Table V-1: Characteristics of 132 IA cases at seroconversion 

  

Progressed to type 1 

diabetes (n=40) 

Non-progressors 

(n=92)   

  n % n % p-value* 

Male 19 47.50 45 48.91 0.883 

Non-Hispanic white 36 90.00 68 73.91 0.079 

High-risk HLA (DR3/4) 17 42.50 26 28.26 0.046 
First degree relative with 
type 1 diabetes 25 62.50 52 56.52 0.595 

  Mean SD Mean SD   

Age (years) 5.00 3.82 7.83 4.28 0.025 

Total calories 2146.04 492.47 2077.66 738.63 0.811 

*From Cox regression      
 

To identify nutrient patterns using RRR, we first selected nutrients that were 

significant predictors of the 13 metabolites identified in discovery. Stepwise selection 

results indicated that 22 of 39 nutrients predicted at least 2 metabolites (Appendix C). 

From RRR, one nutrient pattern was identified that explained 18% of metabolite 

variation and 5% of nutrient variation. The metabolite weights and nutrient loadings 

that define the nutrient pattern are shown in Figure V-4. A higher score on the nutrient 

pattern corresponded to a diet with higher intake of total sugars, vitamin C, and 

monounsaturated fat, and lower in linoleic acid, niacin, riboflavin, vitamin K, vitamin 

B12, and caffeine (Figure V-4a). Higher scores on the nutrient pattern also 

corresponded to higher amounts of unknown metabolites hilic_291, hilic_294, hilic_179, 
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hilic_353, hilic_1015, hilic_383, and lower amounts of hilic_243 (Figure V-4b). 

Annotated metabolites threonine, histidine, and choline were poorly explained by the 

nutrient pattern, as indicated by weights closer to 0.  

In multivariable Cox regression, nutrient pattern scores at seroconversion were 

associated with increased risk of progression from IA to type 1 diabetes (Figure V-4c, 

HR=3.31, 95%CI=1.46-7.47). In analyses of the nine nutrients that loaded high on the 

nutrient pattern, only vitamin B12, riboflavin, niacin, and total sugars had significant 

individual associations with progression from IA to type 1 diabetes. 

  

 

Figure V-2: Cox regression results showing the association of 2,457 metabolites 

with progression from IA to type 1 diabetes. 201 metabolites (8%) had nominal p-
value<0.05 (above the guideline), and none were significant at q-value<0.05. The 13 
labeled metabolites had the minimum q-value of 0.3451 and were selected for nutrient 
pattern analyses.  These included threonine, histidine, choline, and 10 unknown 
compounds. Unknown compounds were labeled by the untargeted platform on which 
they were measured (e.g., HILIC_243 was measured using HILIC-QTOF-MS) 
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Figure V-4: A seroconversion metabolite-related dietary pattern and its 

association with progression from IA to type 1 diabetes. One dietary pattern 
explained 5% of nutrient variation and 18% of metabolite variation. a) The loadings 
indicate which combinations of nutrients defined the nutrient pattern scores. b) The 
weights indicate which metabolites were best explained by the nutrient pattern. c) 
Multivariable Cox regression results showing the associations of the nutrient pattern 
score and individual nutrients in progression from IA to type 1 diabetes. 

  

Conclusions 

 We identified a nutrient pattern of intake at seroconversion that was 

significantly associated with increased risk of progression to type 1 diabetes. Higher 

nutrient pattern scores (and increased risk of progression) corresponded to higher 

intake of total sugars, vitamin C, and monounsaturated fat, and lower in linoleic acid, 

niacin, riboflavin, vitamin K, vitamin B12, and caffeine.  Accounting for combinations of 

nutrient intake in the diet using a nutrient pattern score resulted in a stronger 

association with progression to type 1 diabetes (HR=3.31) than the individual nutrients 
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highly contributing to the pattern (HR range=0.56-1.45), and the metabolites used to 

inform the pattern (HR range=0.52-1.9). 

 Several of the nutrients that highly contributed to the nutrient pattern have been 

investigated in the development of IA or type 1 diabetes for years, often resulting in 

small or inconsistent associations with disease endpoints. For example, higher intake of 

total sugars was previously associated with increased risk of progression in DAISY 83. 

Dietary intake of the omega-6 fatty acid, linoleic acid, was not associated with 

progression from IA to type 1 diabetes.79 However, linoleic acid status has been 

inconsistently identified as protective for development of IA.150 Similarly, the niacin 

derivative nicotinamide was protective for type 1 diabetes in mice, but shown to be 

ineffective in a prevention trial.38 The failure to account for the inter-relationship 

between nutrients may explain the inconsistencies surrounding the role of dietary 

intake in type 1 diabetes development.  

 Other nutrients contributing to the pattern have not been directly studied, but 

have plausible connection to type 1 diabetes. For example, riboflavin191 and vitamin K 

(K1, phylloquinone)192 have antioxidant properties that may protect islet cells from 

destruction by free radicals and oxidative stress. Through its role as a cofactor in one-

carbon metabolism, vitamin B12 affects DNA methylation, which is also implicated in 

the disease process (cite methylation). Notably, vitamin C contributes in an unexpected 

direction to the nutrient pattern. Due to its antioxidant and anti-inflammatory 

properties, vitamin C would be expected to have an inverse relationship with risk of 

progression to type 1 diabetes. We speculate that the correlation between vitamin C 

and sugars intake in foods may explain this finding. 
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 The metabolite discovery was primarily used as a means to capture meaningful, 

disease related variation in nutrient pattern intake. However, a broad conclusion of our 

metabolomics findings indicate that metabolic differences at seroconversion distinguish 

which IA cases will go on to type 1 diabetes, similar to previous studies comparing IA 

cases and type 1 diabetes cases to autoantibody negative controls.95,96 Though 

conducted in different disease stages, each study has identified various amino acids as 

dysregulated prior to the development of different disease endpoints. In our study, 

however, threonine and histidine were poorly correlated with diet and therefore less 

influential in the nutrient pattern. The other study comparing IA cases to type 1 

diabetes cases investigated the lipidome in cord blood.193 The majority of our candidate 

metabolites were unknown compounds measured on the HILIC panel, making 

comparison infeasible. 

 The thirteen candidate metabolites were mostly associated with increased risk 

of progression to type 1 diabetes. While these associations were only nominal, our 

nutrient pattern explained over 18% of metabolite variability—over three times the 

amount of variability explained in previous dietary pattern studies,128 and studies of 

individual dietary factors and targeted metabolites.126 This suggests that the 

metabolites used as response variables for identifying the nutrient pattern are related 

to nutrition. Future work should identify and annotate these unknown compounds, and 

consider the strong correlation between metabolites which makes the use of typical 

multiple comparison procedures too strict. The novel use of nutrients rather than food 

groups in pattern analysis likely contributes to the increased variability explained by 

the nutrient pattern—nutrient intakes have more continuous distributions and may 
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perform better in correlation-based analyses such as RRR. While nutrient patterns may 

be harder to interpret than dietary patterns of food, nutrients are more comparable 

across different populations and therefore may be more amenable to the development 

and cross-cultural implementation of dietary interventions to prevent type 1 diabetes.  

 As hypothesized, examining nutrient intakes in combinations, to account for 

their correlation in intake and in biological processing, resulted in a stronger magnitude 

of association than any of the individual constituent nutrients. The relationship of 

highly contributing nutrients to the nutrient pattern is consistent with existing 

literature and hypotheses, suggesting that the contents of the diet may work in 

combination to affect the development of type 1 diabetes, and should be considered 

jointly in future work.  
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DISCUSSION 

 Using newer nutritional epidemiologic methods, this dissertation explored the 

role of metabolomics and dietary patterns in the nutrition etiology of type 1 diabetes. 

First, we identified individual metabolites and chemically similar metabolite groups 

associated with the development of mAb+ and T1D in metabolome-wide association 

studies of two prospective cohorts (TEDDY and DAISY). Candidate metabolites were 

used to capture disease-related dietary and nutrient patterns, which were subsequently 

tested for association with disease endpoints. In TEDDY, a dietary pattern explaining 

metabolites in infancy was associated with decreased risk of mAb+ but was not 

generalizable when applied to similarly at-risk infants. In DAISY, a nutrient pattern 

explaining unknown metabolites at seroconversion was associated with increased risk 

of progression to T1D. 

 We made significant and novel contributions to the understanding of 

metabolomics in the natural history of T1D, though the metabolomics discovery was 

primarily used as a means for identifying disease-related variation in dietary intake. 

Our DAISY study was the first investigation of metabolomics in T1D development in a 

U.S. population, and by far had the best coverage of the metabolome—we measured 

almost 2,500 metabolites, in contrast to previous studies which detected anywhere 

from 106102 to 54095 metabolites. With participants from the U.S., Finland, Germany, 

and Sweden, the TEDDY study had a larger sample size representing more geographic 

areas than the smaller, country-specific studies of metabolomics in T1D risk previously 

conducted in Germany,95 Sweden,102 Norway,104 and Finland.96,101,103,193   
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Increased sample size, a more generalizable population (multi-national), and 

greatly expanded coverage of the metabolome allowed us to comprehensively 

characterize sphingomyelin, choline, and TCA cycle dysregulation in infancy that may 

lead to the development of mAb+ later in life. Previous studies have identified a few 

compounds in each of these classes; however, direct comparisons with them are 

complicated by the varying number of metabolites tested, the stage of disease studied, 

and the time at which metabolites were measured. For example, only two101,104 of the 

seven previous metabolomics studies conducted in prospective T1D cohorts also 

examined cases positive for multiple autoantibodies compared to controls. Of those, one 

measured only lipidomics (p=159) in cord blood, and the other measured only 

metabolomics (p=279) repeatedly over time beginning at 3 months.  

Comparison of our key metabolomics findings from the DAISY study with 

previous literature is similarly complicated. Only three of the 13 metabolites important 

for progression from IA to T1D were annotated—many metabolomics studies either 

exclude unknown compounds from analyses, or fail to provide distinguishing 

characteristics (e.g., mass spectra) for them. Of the seven previous prospective 

metabolomics T1D studies, only the most recent investigations in Finland compared 

T1D cases to IA cases who did not progress to T1D; however, this study only included 

annotated compounds in analyses.103,193 These difficulties highlight current challenges 

for the use of high-throughput metabolomics in epidemiologic research.  

 Metabolomics is one of the newer “—omics” fields to gain popularity in human 

research. The increasing technological capability and decreasing cost of 

comprehensively interrogating small molecules in a biospecimen contributes to its 
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growing use, which in turn is driving a period of rapid growth and progression in the 

field. For example, in only five years between the acquisition of TEDDY and DAISY 

metabolomics data, significant improvements were made to compound deconvolution, 

identification and normalization methods. These, and other, changes resulted in a 

different number of metabolites and proportion of annotated metabolites available for 

statistical analyses in our studies, despite using the same two metabolomics platforms.  

Differently shaped volcano plots from the MWAS discoveries in the two studies 

highlight the potential impacts of changes to platforms or analytical pipelines over time. 

In the TEDDY study, the lipids were mostly protective for the development of outcomes 

and represented the highest proportion of metabolites tested, giving the volcano plots a 

heavier left cloud (OR<1). The DAISY volcano plot has the opposite skew, with the 

majority of candidate probes in the right cloud (HR>1). Interrogation of different 

disease endpoints may explain this difference—perhaps early life metabolomics 

signatures are protective for mAb+, while seroconversion metabolomics differences 

reflect only the increased risk for progression to T1D. Similarly likely, however, the 

right-skewed volcano plot in DAISY reflects the addition of the HILIC panel, which 

doubled the total number of metabolites tested, many of which were associated with 

increased risk of outcome. Similarly, the TEDDY volcano plots showed a pattern of 

metabolites with extreme magnitudes of association that do not achieve significance, 

near the 0 limit of the OR. Further investigation revealed that those metabolites had 

little variability, which led to unstable estimates of association. Changes to the pre-

processing pipeline to filter metabolites with both extremely high and extremely low 

coefficient of variation removed that artefact, giving the DAISY volcano plot a different 
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shape. Finally, standardization (mean, standard deviation) of metabolites in the DAISY 

study also changed the shape of the volcano plot—giving it a butterfly, rather than 

cloud, shape. Changes to pre-processing and analytical pipelines complicates 

comparisons between metabolomics studies, both internal to our own two studies, and 

externally to other metabolomics studies of type 1 diabetes. 

Limitations of available statistical methods may also influence the ability to 

discover metabolites strongly, significantly, and specifically associated with disease 

endpoints using high-throughput metabolomics. The need to account for an unknown 

background of metabolites that should be detectable in biospecimens and for the 

unusually highly correlated features (compared to other –omics) are two specific 

challenges that should be addressed. Both of these attributes may have influenced our 

finding of less extreme p-values and adjusted p-values in the much larger and better-

powered TEDDY study than in the smaller DAISY study. Unlike genomics, which has 

matured over decades of research in humans, metabolomics lacks normative 

procedures for almost all parts of the pipeline from bench to publication. 

Standardizing protocols, analytical pipelines, and developing appropriate 

statistical methods will greatly improve the utility, interpretation, and reproducibility 

of metabolomics findings in epidemiologic research. Specific to our findings of 

metabolomics in T1D, immediate next steps include: 1) better characterization of the 

relationship between annotated and unknown metabolites to appropriately be able to 

adjust for multiple comparisons, 2) examination of longitudinal changes in 

metabolomics prior to disease development utilizing the rich TEDDY resource with 

measurements every 3 months since birth, and 3) identification of unknown 
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metabolites highly explained by the T1D-related nutrient pattern identified in DAISY. 

Despite the challenges of conducting research in a new and rapidly changing field, our 

metabolomics discovery was useful for capturing dietary and nutrient pattern intake 

related to T1D risk.  

With our investigation of dietary patterns, we made significant and novel 

contributions to both nutrition epidemiology and to the nutrition etiology of T1D.  Ours 

were the first two studies in the nutrition literature of T1D risk to consider dietary 

patterns—previous investigations focused solely on evaluating nutrient or food group 

risk factors individually.76,78,83  In the DAISY study, the combination of nutrient intake 

best explaining unknown metabolites was more strongly associated with T1D risk than 

any of the constituent nutrients or metabolites that defined the pattern. Higher nutrient 

pattern scores (and increased risk of progression) corresponded to higher intake of 

total sugars, vitamin C, and monounsaturated fat, and lower intake of linoleic acid, 

niacin, riboflavin, vitamin K, vitamin B12, and caffeine. Many of the constituent 

nutrients to the pattern have been inconsistently associated with T1D for decades 

(Table VI-1),87,177 providing some confidence in the validity of the pattern identified. 

Other nutrients, such as vitamin C, riboflavin, and vitamin K were novel to this 

dissertation, and provided evidence that consideration of the whole diet is important in 

T1D research, to account for possible synergism or antagonism between dietary 

components. 
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Table VI-1: Summary of previous individual findings for constituent nutrients of 

the nutrient pattern associated with increased risk of progression from IA to T1D. 

 

The infancy dietary patterns identified in TEDDY were less successful—they 

explained less metabolite variation than the nutrient patterns (8% versus 18%) and 

were less strongly associated with disease (OR=0.67 versus HR=3.31). The investigation 

of two different stages in the natural history of T1D is perhaps the largest distinction 

between our two studies, and may explain why patterns explaining mAb+ were less 

successful than patterns explaining progression to T1D. Risk factors affecting 

development of IA are often different than those affecting progression to T1D.11 

Therefore, it is possible that diet is more influential after the appearance of 

autoimmunity than in its appearance.  

 

Nutrient in 

Pattern 

Direction of Pattern 

Intake Associated with 

Increased T1D Risk   
Previous Individual Findings Hypothesis 

Total Sugars   Total sugars at IA =  T1D  

Linoleic Acid 
(LA)  

LA at IA ≠ T1D 
 LA =  IA and ≠  IA 

 

Niacin  
 Nicotinamide =   T1D (MICE) Nicotinamide ≠  T1D (HUMANS) 

 

Riboflavin   

Antioxidant, 
anti-

inflammatory 
Vitamin K   

Vitamin C   
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The dietary pattern associated with the development of mAb+ in the nested 

case-control study association did not reproduce when applied to the full TEDDY 

cohort. However, this may not indicate less success than the nutrient patterns in DAISY, 

as there were insufficient additional IA cases in DAISY to investigate replication of the 

nutrient pattern. Since replication of RRR dietary patterns in independent population is 

generally recommended,172 future investigation of both nutrient and dietary patterns in 

an independent population will lend more confidence to the generalizability of our 

findings. 

 Other reasons for the differences in our findings between studies may stem from 

differences between TEDDY and DAISY. In TEDDY, dietary intake is collected by food 

records covering three 24-hour periods, whereas DAISY collects FFQs covering average 

diet in the previous year. While both methods have limitations (the food record may not 

capture infrequently eaten foods, the FFQ overestimates intake), dietary patterns 

identified using RRR have been shown to be comparable for both assessments among 

adolescents.130 TEDDY dietary intake is also complicated by the need to harmonize 

national food composition databases between four countries.112 Dietary pattern 

procedures founded on the correlation structure between food intake may suffer from 

residual heterogeneity across countries, despite extensive harmonization efforts. The 

slightly different distribution of mAb+ cases by country in the nested case-control 

(Table IV-2) versus cohort (Table IV-5) analyses may partially explain why the 

protective association of the TEDDY dietary pattern with mAb+ did not reproduce.  

 Alternately, less successful identification of disease-related dietary patterns in 

TEDDY compared to DAISY may relate to differences in our patterns approach between 
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the studies. While RRR was used for both studies, the selection of response variables 

(and their correlation structure) heavily influences the resulting pattern.172 Indeed the 

pattern cannot be interpreted independently of the response variables. Our selection of 

response variables differed by study, as they were determined by the metabolomics 

discovery Aim conducted independently in TEDDY and DAISY. While we only 

considered annotated metabolite groups as identified by ChemRICH enrichment 

analysis in TEDDY, we allowed for the inclusion of unknown metabolites in DAISY 

where selection was based solely on significance. The difference in metabolite 

variability explained by the patterns may indicate that the unknown metabolites were 

more strongly related to diet, or it may reflect that the more continuously distributed 

nutrients perform better in pattern analysis than food groups.  The identification of 

patterns using nutrients rather than food groups was a major difference between the 

approaches, and a novel contribution of this dissertation to dietary patterns literature.  

 Much like metabolomics, the data-driven dietary patterns literature has few 

normative procedures, leaving much room for improvement in the search for 

combinations of dietary factors that may affect T1D risk. For example, by adding a 

filtering step to include only the nutrients that correlated well with metabolite response 

variables, we likely improved our ability to detect patterns associated with T1D. Similar 

filtering of the metabolites (or other response variables) to include only diet-related 

variables in RRR would likely improve the derivation of patterns associated with 

disease endpoints, if they truly exist. Prior to RRR, we adjusted our nutrient variables 

for total energy using the residual method.100 Extending this method to additional 

potential confounders of dietary intake and response variables would allow for a less 
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biased interpretation of how dietary risk factors explain response variables. Studies 

with long-term longitudinal follow-up throughout childhood and adolescence (such as 

TEDDY and DAISY), would benefit from statistical methodological improvements to 

allow for repeated measures in the creation of patterns. To enhance the ability to 

compare patterns across populations, nutrient patterns should be further explored as 

they may be easier to harmonize across dietary assessment methods and cross-

nationally.  

 While many general improvements could be made in the search for 

combinations of dietary risk factors that may influence T1D development, specific next 

steps generated from this dissertation include: 1) refinement and simplification of the 

nutrient pattern to enhance the ability to reproduce in other populations,194 2) 

replication of T1D-related nutrient patterns in the TEDDY study, and 3) investigation of 

additional systems-level biological changes (transcriptome, proteome, etc.) that might 

mediate the effects of the nutrient pattern on progression to T1D.  

Dietary patterns, foods, and nutrients are inextricably linked,195 yet their 

interconnection is insufficiently studied in etiologic research of T1D. As with many 

other nutrition-related complex diseases, multiple nutrients and foods have been 

weakly or inconsistently implicated in the disease process. Feasibility of a dietary 

intervention in young children has been established,35,36 and at-risk populations for 

intervention are being collected via population-based screening studies.41,42 

Identification of an effective intervention is the crucial next step for nutrition research 

in T1D, which could grow from the foundation built in this dissertation project.  
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We established that investigating complex dietary intake and related molecular-

level changes is an important part of the ongoing search for risk factors amenable to 

intervention in children. In addition to the future work specifically outlined above, 

advancement of the field studying the nutrition etiology of T1D might benefit from a 

framework shift from a one-at-a-time approach, to the “top down approach” that has 
successfully been used to develop dietary guidelines to prevent CVD.196 After 

establishing evidence of dietary patterns associated with disease (the Mediterranean 

Diet), the role of foods (nuts, olive oil) and action of nutrients  within those foods (fatty 

acids, polyphenols) were examined to provide context, explanation, and possible 

mechanisms.195  This project provided evidence of system-level dysregulation of lipids 

in infancy that occur prior to the appearance of autoimmunity, and that may relate to 

dietary intake. As breastmilk was the most highly contributing food to the protective 

dietary pattern (Figure IV-6), understanding its nutrient content and potential 

mechanisms in T1D development might be a logical next step. We also identified 

patterns of nutrient intake including known and novel individual factors that influence 

progression from seroconversion to T1D. Characterization of the foods providing those 

nutrients, and investigation of the novel nutrients contributing to the pattern are 

important extensions from the pattern to the food and nutrient level. Replication and 

fine-tuning of the patterns identified here is a necessary next step in this process. 

Complex, chronic diseases such as T1D are increasing worldwide. Despite  

general consensus that diet may act as an environmental (non-genetic) risk factor 

responsible for these increases and decades of investigation into putative “triggers” of 
disease processes, identification of a single causative dietary factor remains elusive in 
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T1D research. As demonstrated by this dissertation, expanding our methodological 

repertoire beyond individual risk factor epidemiology will improve our understanding 

of the disease process, and ultimately lead to more effective interventions to prevent, 

reverse, or delay development of T1D.  
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APPENDIX A 

TEDDY AND DAISY FOOD GROUPINGS 

TEDDY Food Groups and 

Subgroups 
DAISY Food Groups and Serving Size 

CEREALS   

Rice 
White rice (1 cup) 
Brown rice (1 cup) 

Wheat 
Dark bread (1 slice) 
White bread (1 slice)   
Wheat germ (1 tbs) 

Rye   
Oats Cooked breakfast cereal e.g. oatmeal (1 cup) 
Barley   
Corn   
Other gluten free flours and starches   
FRUIT AND BERRIES   

Citrus fruit 
Grapefruit (1/2)  
Oranges (1) 

Apple Fresh apples or pears (1) 

Berries 
Blueberries, fresh, frozen or canned (1/2 cup) 
Strawberries, fresh, frozen or canned (1/2 cup) 

Other fruits 

Bananas (1) 
Cantaloupe (1/4 melon) 
Watermelon (1 slice) 
Peaches, Apricots or Plums (1 fresh, or 1/2 cup 
canned) 

Canned fruits   

Dried fruits and berries 
Prunes (1/2 cup) 
Raisins (1 oz. or small pack) or grapes  

Citrus juice 
Grapefruit juice (small glass) 
Orange juice (small glass)  

Apple juice Apple juice or cider (small glass) 
Berry juices   
Other fruit juices Other fruit juices (small glass) 
Mixed Juices   
Juices, mixture of vegetable and fruit   
VEGETABLES   

Potatoes 
French fried potatoes (4 oz.) 
Potato chips (small bag or 1 oz.) 
Potatoes, baked, boiled (1) or mashed (1 cup) 
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Roots, sweet potatoes 
Carrots (1 whole or 1/2 cup cooked) 
Yams or sweet potatoes (1/2 cup) 

Leafy vegetables 

Iceberg or head lettuce (1 serving) 
Kale, mustard or chard greens (1/2 cup) 
Romaine or leaf lettuce (1 serving) 
Spinach, cooked (1/2 cup) 
Spinach, raw as in salad  

Cabbages 

Broccoli (1/2 cup) 
Brussels sprouts (1/2 cup) 
Cabbage or coleslaw (1/2 cup) 
Cauliflower (1/2 cup) 

Fruit vegetables 

Corn (1 ear or 1/2 cup frozen or canned) 
Tomatoes (1) 
Yellow (winter) squash (1/2 cup) 
Eggplant, Zucchini, or other summer squash 
(1/2 cup) 

Onions   
Mushrooms   

Legumes, beans, peas 

Beans or lentils, baked or dried (1/2 cup) 
Peas or lima beans (1/2 cup fresh, frozen, 
canned) 
String beans (1/2 cup) 

Vegetables, dried   
Vegetables, canned   
Vegetable juices Tomato juice (small glass) 
SOY   
Soy beans   
Soy products Tofu or soybeans (3-4 oz.) 
Soy milk   
Soy dessert   
Soy sausage   
Soy sauce   
NUTS, SEEDS   

Nuts, seeds 
Nuts (small packet or 1 oz.) 
Peanut butter (1 Tbs) 

FATS AND OILS   
Vegetable oils   
Solid vegetable fat   
Fish oil   
Animal fats   

Butter Butter (pat) added to food or bread, exclude use 
in cooking 
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Margarines Margarine (pat) added to food or bread, exclude 
use in cooking 

Butter-margarine mixtures   
MILK AND MILK PRODUCTS   
Breast milk   
Fat-free milk   
Low-fat milk Skim or low fat milk (8oz. Glass) 
High-fat milk Whole milk (8 oz. glass) 
Other animal milk    
Creams Cream e.g. coffee, whipped (TBS) 

Ice cream 
Milk shake or frappe (1) 
Ice cream (1/2 cup) 
Ice cream sundae 

Sour milk and sour milk products Yogurt (1cup) 

Cheese 

Other cheese, e.g., American, etc., plain or as 
part of a dish (1 slice or 1oz. Serving) 
Cream cheese (1 oz) 
Cottage or Ricotta chz (1/2 cup) 

Whey   
NON-DAIRY PRODUCTS   

Non-dairy products 
Sherbet or ice milk (1/2 cup 
Non-Dairy Coffee Whitener (tsp) 

MEAT AND MEAT PRODUCTS   
Pork   

Beef 
Hamburger (1 patty)  
Beef, pork, or lamb as a main dish (4-6oz.) 

Poultry 
Chicken or turkey, with skin (4-6 oz.) 
Chicken or turkey, without skin (4-6 oz.) 

Lamb, goat, horse   
Game   

Processed meats and sausages 
Processed meats, e.g., sausage, Salami, bologna, 
etc. (piece or slice) 
Bacon (2 slices) 

Organ meats/offals Liver (3-4 oz.) 
FISH AND FISH PRODUCTS   

Fresh and frozen fish 
Other fish (3-5 oz.) 
Dark meat fish (3-5 oz.) salmon, sardines 

Processed fish   
Canned fish Canned tuna fish (3-4 oz.) 
Shellfish, other seafood Shrimp, lobster, scallops as a main dish 
EGGS   
Eggs Eggs (1)  
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BEVERAGES   
Coffee   
Tea   

Light Beverages including cola 

Other low calorie carbonated beverage, e.g. 
Fresca, Diet 7-up, Diet Ginger Ale 
Low-calorie caffeine-free cola, e.g. pepsi free  
Low-calorie cola e.g. tab with caffeine 

Sugar sweetened beverages 
including cola 

Hawaiian punch, lemonade, or other non-
carbonated fruit drinks (1 glass, bottle, can) 
Other carbonated beverage with sugar e.g. 7-up, 
ginger-ale 
Coke, pepsi, or other cola with sugar 
Caffeine free coke, pepsi, or other cola with 
sugar 

Alcohol   
CONFECTIONARY   
Sweets Candy without chocolate (1 oz.) 
Chocolate chocolate pieces e.g. Hershey's, M&M's 
TEDDY ONLY: INFANT FORMULAS   
Regular cow’s milk based infant 
formulas   Partially hydrolyzed cow’s milk 
based infant formulas   Fully hydrolyzed cow’s milk based 
infant formulas and amino acid 
(elemental) formulas   
Soy base infant formulas   
Other non-dairy infant formulas   
Other animal (dairy) infant formulas   
TEDDY ONLY: MISC.   
Ketchup    

  DAISY ONLY: COMPLEX FOODS 

  Brownies (1) 
  Cake ready made (slice) 
  Cake homebaked (slice)  
  other Candy bars, e.g. snickers, Milky Way, mars 
  Cookies ready made (1)  
  Chowder or cream soup (1 cup) 
  Cold breakfast cereal (1 cup) 
  Cookies home baked (1)  

  

Corn chips, e.g. fritos, doritos (small bag or 1 
oz.) 
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  Crackers, triskets, wheat thins,etc. (1) 
  Doughnuts (1) 
  English muffins, Bagels, or rolls (1) 
  Hot dogs (1) 
  Jams, Jellies, preserves, syrup, or honey (1 Tbs) 
  Mayo or other creamy salad dressing (1 TBS) 
  Mixed vegetables (1/2 cup) 
  Muffins or biscuits (1) 
  Oil and vinegar dressing, e.g. italian (1 TBS) 
  Onion rings, french fried 
  Pancakes or waffles (serving) 
  Pasta, e.g. spaghetti, noodles, etc. (1 cup) 
  Pie, ready made (slice) 
  Pie, homemade (slice) 
  Pizza (2 slices) 
  Popcorn (1 cups)  
  Red chili sauce (1 TBS) 

  

Beef, pork, or lamb as a sandwich or mixed dish, 
stew casserole, lasagna 

  

Sweet roll, coffee cake or other pastry ready 
made (serving)  

  

Sweet roll, coffee cake or other pastry 
homebaked (serving)  

  Tomato sauce (1/2 cup) e.g., spaghetti sauce 
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APPENDIX B 

CHEMICALLY ANNOTATED METABOLITES USED IN CHEMRICH METABOLOMICS 

SET ENRICHMENT ANALYSIS (TEDDY) 

Variable Compound Name InChiKeys 
Pubchem 

ID 
SMILES 

t74 
3-aminoisobutyric 

acid 
QCHPKSFMDHPSN
R-UHFFFAOYSA-N 

25201103 CC(C[NH3+])C(=O)[O-] 

t147 Acylcarnitine (C10:1) 
GOOOCIIXFLVRAG
-UHFFFAOYSA-N 

53481651 C[N+](C)(C)CC(CC(=O)[O-])OC(=O)CCCCCCCC=C 

t148 Acylcarnitine (C14:2) 
HXOGMKPCIDSSKJ

-NKBLVAAJSA-N 
53481681 

CCCCCCCC/C=C/C=C/CC(=O)O[C@@H](CCC(=O)[O-
])[N+](C)(C)C 

t149 Acylcarnitine (C18:3) 
DFVGGGHKDAHYI
U-UHMZJXMFSA-N 

53477821 
CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O[C@@H](CC

C(=O)[O-])[N+](C)(C)C 

t150 Acylcarnitine (C8:0) 
CXTATJFJDMJMIY-
CYBMUJFWSA-N 

11953814 CCCCCCCC(=O)O[C@H](CC(=O)[O-])C[N+](C)(C)C 

t151 Acylcarnitine (C8:1) 
YMIVWYONPRZBE
J-LXKVQUBZSA-N 

53481667 
CCCCC/C=C/C(=O)O[C@@H](CCC(=O)[O-

])[N+](C)(C)C 

t141 Acylcarnitine C10:0 
LZOSYCMHQXPBF
U-UHFFFAOYSA-N 

10245190 CCCCCCCCCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C 

t142 Acylcarnitine C12:0 
FUJLYHJROOYKRA
-QGZVFWFLSA-N 

168381 
CCCCCCCCCCCC(=O)O[C@H](CC(=O)[O-

])C[N+](C)(C)C 

t144 Acylcarnitine C18:0 
FNPHNLNTJNMAE
E-UHFFFAOYSA-N 

6426855 
CCCCCCCCCCCCCCCCCC(=O)OC(CC(=O)[O-

])C[N+](C)(C)C 

t145 Acylcarnitine C18:1 
HITOYGLMAFIRNI
-YSESTWPTSA-N 

53477830 
CCCCCC/C=C/CCCCCCCCCC(=O)O[C@@H](CCC(=O)[

O-])[N+](C)(C)C 

t146 Acylcarnitine C18:2 
MJLXQSQYKZWZC
B-DQFWFXSYSA-N 

6450015 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)O[C@H](CC(=O)[

O-])C[N+](C)(C)C 

t73 adipic acid 
WNLRTRBMVRJNC
N-UHFFFAOYSA-N 

196 C(CCC(=O)O)CC(=O)O 

t72 alanine 
QNAYBMKLOCPYG
J-REOHCLBHSA-N 

5950 C[C@@H](C(=O)O)N 

t70 asparagine 
DCXYFEDJOCDNAF
-REOHCLBHSA-N 

6267 C([C@@H](C(=O)O)N)C(=O)N 

t69 aspartic acid 
CKLJMWTZIZZHCS
-REOHCLBHSA-N 

44367445 C([C@@H](C(=O)O)[NH3+])C(=O)[O-] 

t68 benzoic acid 
WPYMKLBDIGXBT
P-UHFFFAOYSA-N 

20144841 [H+].C1=CC=C(C=C1)C(=O)[O-] 

t67 capric acid 
GHVNFZFCNZKVN
T-UHFFFAOYSA-N 

2969 CCCCCCCCCC(=O)O 

t66 caprylic acid 
WWZKQHOCKIZL
MA-UHFFFAOYSA-

N 
379 CCCCCCCC(=O)O 

t433 CE (16:1) 
HODJWNWCVNUP
AQ-FSAOOAOSSA-

N 
22833543 

CCCCCC/C=C\CCCCCCCC(=O)OC1CC[C@@]2(C3CC[C
@@]4([C@H](CCC4C3CC=C2C1)[C@H](C)CCCC(C)C)

C)C 

t434 CE (18:1) 
RJECHNNFRHZQK
U-RMUVNZEASA-

N 
5283632 

CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H]1CC[C@@]2(
[C@H]3CC[C@]4([C@H]([C@@H]3CC=C2C1)CC[C@

@H]4[C@H](C)CCCC(C)C)C)C 

t435 CE (18:2) 
NAACPBBQTFFYQ
B-LJAITQKLSA-N 

5287939 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)O[C@H]1CC[C@

@]2([C@H]3CC[C@]4([C@H]([C@@H]3CC=C2C1)CC
[C@@H]4[C@H](C)CCCC(C)C)C)C 

t436 CE (18:3) 
FYMCIBHUFSIWCE
-WVXFKAQASA-N 

6436907 
CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O[C@H]1CC[C
@@]2([C@H]3CC[C@]4([C@H]([C@@H]3CC=C2C1)

CC[C@@H]4[C@H](C)CCCC(C)C)C)C 

t152 CE (20:3) 
MLPRJPSMAFZPLA

-PJSAOELNSA-N 
53477892 

CCCCC/C=C\C/C=C\C/C=C\CCCCCCC(=O)O[C@H]1C
C[C@@]2(C3CC[C@]4(C(C3CC=C2C1)CCC4[C@H](C)

CCCC(C)C)C)C 

t437 CE (20:4) 
IMXSFYNMSOULQ
S-BEDFLICRSA-N 

6479222 
CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O[C@H
]1CC[C@@]2([C@H]3CC[C@]4([C@H]([C@@H]3CC=

C2C1)CC[C@@H]4[C@H](C)CCCC(C)C)C)C 
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t438 CE (20:5) 
XZFUGMCJZFRBKF

-JIKDAPOUSA-N 
53477889 

CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O[C
@H]1CC[C@@]2(C3CC[C@]4(C(C3CC=C2C1)CCC4[C

@H](C)CCCC(C)C)C)C 

t439 CE (22:6) 
VOEVEGPMRIYYK
C-HNJOWPRISA-N 

14274978 
CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC(=
O)O[C@H]1CC[C@@]2([C@H]3CC[C@]4([C@H]([C@
@H]3CC=C2C1)CC[C@@H]4[C@H](C)CCCC(C)C)C)C 

t848 Ceramide (d33:1) 
QBFXCLDNTKBAP
Q-STSAHMJASA-N 

52931112 
CCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](/

C=C/CCCCCCCCCCC)O 

t849 Ceramide (d34:0) 
GCGTXOVNNFGTP
Q-JHOUSYSJSA-N 

5283572 
CCCCCCCCCCCCCCC[C@H]([C@H](CO)NC(=O)CCCCC

CCCCCCCCCC)O 

t850 Ceramide (d34:1) 
YDNKGFDKKRUKP
Y-TURZORIXSA-N 

5283564 
CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](/C

=C/CCCCCCCCCCCCC)O 

t851 Ceramide (d34:2) 
XXWRZIYYFPIQHE

-XPAOSYCESA-N 
52931118 

CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](/C
=C/CCCCCCCC/C=C\CCC)O 

t852 Ceramide (d36:1) 
MJQIARGPQMNBG
T-WWUCIAQXSA-

N 
6442676 

CCCCCCCCCCCCCCC[C@H]([C@H](CO)NC(=O)CCCCC
CC/C=C\CCCCCCCC)O 

t853 Ceramide (d38:1) 
XWBWIAOWSABH
FI-NUKVNZTCSA-

N 
5283566 

CCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@
H](/C=C/CCCCCCCCCCCCC)O 

t854 Ceramide (d39:1) 
WYSRACVJQVNCR
W-PQPBPFPMSA-

N 
11273482 

CCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C
@@H](/C=C/CCCCCCCCCCC)O 

t855 Ceramide (d40:0) 
SXPRAKSDHOEHI
G-ZESVVUHVSA-N 

5283575 
CCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@

@H](CCCCCCCCCCCCCCC)O 

t856 Ceramide (d40:1) 
KEPQASGDXIEOIL-

GLQCRSEXSA-N 
5283567 

CCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@
@H](/C=C/CCCCCCCCCCCCC)O 

t857 Ceramide (d40:2) 
HILTUFAERVOALR

-MQXYEJFFSA-N 
52931123 

CCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@
@H](/C=C/CCCCCCCC/C=C\CCC)O 

t859 Ceramide (d42:0) 
BPLYVSYSBPLDOA

-WVILEFPPSA-N 
5283577 

CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C
@@H](CCCCCCCCCCCCCCC)O 

t860 Ceramide (d42:1) 
ZJVVOYPTFQEGPH

-AUTSUKAISA-N 
5283571 

CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C
@@H](/C=C/CCCCCCCCCCCCC)O 

t861 Ceramide (d42:2) 
VJSBNBBOSZJDKB-

KPEYJIHVSA-N 
5283568 

CCCCCCCCCCCCC/C=C/[C@H]([C@H](CO)NC(=O)CC
CCCCCCCCCCC/C=C\CCCCCCCC)O 

t863 Ceramide (d43:1) 
QHPYSHVSWAOLH
S-PVNBSDFKSA-N 

9547202 
CCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[

C@@H](/C=C/CCCCCCCCCCCCC)O 

t864 Ceramide (d44:1) 
CJROVRTUSFQVM
R-GVOPMEMSSA-

N 
5283570 

CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO
)[C@@H](/C=C/CCCCCCCCCCCCC)O 

t64 citramalic acid 
XFTRTWQBIOMVP
K-UHFFFAOYSA-N 

1081 CC(CC(=O)O)(C(=O)O)O 

t63 creatinine 
DDRJAANPRJIHGJ-

UHFFFAOYSA-N 
588 CN1CC(=O)N=C1N 

t62 cystine 
LEVWYRKDKASID
U-UHFFFAOYSA-N 

24798687 C(C(C(=O)[O-])[NH3+])SSCC(C(=O)[O-])[NH3+] 

t61 deoxypentitol 
FJGNTEKSQVNVTJ
-UHFFFAOYSA-N 

270738 CC(C(C(CO)O)O)O 

t444 DG (32:1) 
XEQQGHISHUGMI
P-ASUORMEESA-N 

14275341 
CCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CCCCCC

C/C=C\CCCCCCCC 

t445 DG (34:1) 
YEJYLHKQOBOSCP

-OZKTZCCCSA-N 
5282283 

CCCCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CCCC
CCC/C=C\CCCCCCCC 

t156 DG (36:1) 
SAEPUUXWQQNLG
N-LVVMQYBKSA-N 

6443547 
CCCCCCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CC

CCCCC/C=C\CCCCCCCC 

t447 DG (36:2) 
AFSHUZFNMVJNK
X-LLWMBOQKSA-

N 
9543716 

CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](CO)OC(=O
)CCCCCCC/C=C\CCCCCCCC 

t448 DG (36:3) 
BLZVZPYMHLXLH
G-JOBMVARSSA-N 

9543722 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](CO)OC(=O

)CCCCCCC/C=C\C/C=C\CCCCC 

t157 DG (36:4) 
MQGBAQLIFKSME
M-ZHARMHCNSA-

N 
9543729 

CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](CO)OC(
=O)CCCCCCC/C=C\C/C=C\CCCCC 

t159 DG (36:5) 
PGXBELQFNRPKB
C-WBVIKXMWSA-

N 
9543737 

CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](CO)OC(
=O)CCCCCCC/C=C\C/C=C\C/C=C\CC 

t160 DG (38:0) 
IQNYOCFHHRCMK
Y-KDXMTYKHSA-N 

53478362 
CCCCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=

O)CCCCCCCCCCCCCCC 
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t161 DG (38:3) 
ADXAWIIUCSQOAS

-SMJOZILHSA-N 
9543766 

CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](CO)OC(=O
)CCCCCCCCC/C=C\C/C=C\CCCCC 

t449 DG (38:5) 
GRGDLDNREYVILP
-CNWVQWJYSA-N 

9543784 
CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)O[C@@H](CO)

COC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC 

t450 DG (38:6) 
YDVDXUYJFQLPEG

-CTHJWPIASA-N 
9543795 

CCCCC/C=C\C/C=C\C/C=C\CCCCCCC(=O)O[C@@H](
CO)COC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC 

t60 
erythronic acid 

lactone 

SGMJBNSHAZVGM
C-PWNYCUMCSA-

N 
5325915 C1[C@H]([C@H](C(=O)O1)O)O 

t514 FA (16:0) 
IPCSVZSSVZVIGE-
UHFFFAOYSA-N 

985 CCCCCCCCCCCCCCCC(=O)O 

t515 FA (16:1) 
SECPZKHBENQXJG
-FPLPWBNLSA-N 

445638 CCCCCC/C=C\CCCCCCCC(=O)O 

t516 FA (18:0) 
QIQXTHQIDYTFRH
-UHFFFAOYSA-N 

5281 CCCCCCCCCCCCCCCCCC(=O)O 

t517 FA (18:1) 
ZQPPMHVWECSIR
J-KTKRTIGZSA-N 

445639 CCCCCCCC/C=C\CCCCCCCC(=O)O 

t518 FA (18:2) 
JBYXPOFIGCOSSB-

XBLVEGMJSA-N 
5282796 CCCCCC/C=C/C=C/CCCCCCCC(=O)O 

t519 FA (20:4) 
YZXBAPSDXZZRGB

-DOFZRALJSA-N 
444899 CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O 

t520 FA (22:4) 
TWSWSIQAPQLDB
P-DOFZRALJSA-N 

5497181 CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCCC(=O)O 

t59 fucose 
SHZGCJCMOBCMK
K-FPRJBGLDSA-N 

439650 
C[C@@H]1[C@@H]([C@@H]([C@H]([C@@H](O1)O

)O)O)O 

t58 galactonic acid 
RGHNJXZEOKUKB
D-MGCNEYSASA-N 

128869 
C([C@H]([C@@H]([C@@H]([C@H](C(=O)O)O)O)O)

O)O 

t451 

Gal-Gal-
Cer(d18:1/16:0) or 

Lactosylceramide(d1
8:1/16:0) 

HLIJNIKSBCIDGO-
QKLMXXKVSA-N 

53477895 

CCCCCCCCCCCCCCCC(=O)N[C@@H](CO[C@H]1[C@
@H]([C@H]([C@@H]([C@H](O1)CO)O[C@H]2[C@@
H]([C@H]([C@H]([C@H](O2)CO)O)O)O)O)O)[C@@H

](/C=C/CCCCCCCCCCCCC)O 

t865 GlcCer (d38:1) 
DFELABABMXOKT
D-IYFIADHGSA-N 

20057356 
CCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO[C@H]1
[C@@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O)[C@

@H](/C=C/CCCCCCCCCCCCC)O 

t452 GlcCer (d40:1) 
QMYGQSYNQBLKG
Y-YAEABVQUSA-N 

70699232 
CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO[C
@H]1C(C([C@@H]([C@H](O1)CO)O)O)O)[C@@H](/

C=C/CCCCCCCCCCC)O 

t867 GlcCer (d41:1) 
SJGWLQDELUWRD
A-MUYAOIFFSA-N 

52931253 
CCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO[C@
H]1C(C([C@@H]([C@H](O1)CO)O)O)O)[C@@H](/C=

C/CCCCCCCCCCCCC)O 

t453 GlcCer (d42:1) 
SNVYJLGKALMFOP
-MOLROICHSA-N 

6321367 
CCCCCCCCCCCCCCC[C@H]([C@H](CO[C@H]1C(C([C
@@H]([C@H](O1)CO)O)O)O)NC(=O)CCCCCCCCCCCC

C/C=C\CCCCCCCC)O 

t454 GlcCer (d42:2) 
WBOZIXHPUPAOI
A-RBELZSLISA-N 

6321360 
CCCCCCCCCCCCC/C=C/[C@H]([C@H](CO[C@H]1C(C
([C@@H]([C@H](O1)CO)O)O)O)NC(=O)CCCCCCCCC

CCCC/C=C\CCCCCCCC)O 

t870 
GlcCer(d14:1(4E)/20

:0(2OH)) 
YYILQTLJZBSOCA-

IMJQGFQJSA-N 
70699246 

CCCCCCCCCCCCCCCCCCC(C(=O)N[C@@H](CO[C@H]
1C(C([C@@H]([C@H](O1)CO)O)O)O)[C@@H](/C=C

/CCCCCCCCC)O)O 

t57 gluconic acid 
RGHNJXZEOKUKB
D-QTBDOELSSA-N 

6857417 
C([C@@H]([C@H]([C@@H]([C@@H](C(=O)O)O)O)O

)O)O 

t56 glucose 
WQZGKKKJIJFFOK
-VFUOTHLCSA-N 

64689 
C([C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)

O)O)O)O 

t55 glutamine 
ZDXPYRJPNDTMR
X-VKHMYHEASA-

N 
5961 C(CC(=O)N)[C@@H](C(=O)O)N 

t54 glutaric acid 
JFCQEDHGNNZCL
N-UHFFFAOYSA-N 

23322899 [H+].[H+].C(CC(=O)[O-])CC(=O)[O-] 

t53 glycerol 
PEDCQBHIVMGVH
V-UHFFFAOYSA-N 

753 C(C(CO)O)O 

t52 glycine 
DHMQDGOQFOQN
FH-UHFFFAOYSA-

N 
5257127 C(C(=O)[O-])[NH3+] 

t51 heptadecanoic acid 
KEMQGTRYUADP
NZ-UHFFFAOYSA-

N 
10465 CCCCCCCCCCCCCCCCC(=O)O 
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t50 hexitol 
FBPFZTCFMRRES
A-UHFFFAOYSA-N 

453 C(C(C(C(C(CO)O)O)O)O)O 

t49 histidine 
HNDVDQJCIGZPNO

-YFKPBYRVSA-N 
6274 C1=C(NC=N1)C[C@@H](C(=O)O)N 

t47 hydroxylamine 
AVXURJPOCDRRF
D-UHFFFAOYSA-N 

787 NO 

t46 indole-3-acetate 
SEOVTRFCIGRIMH
-UHFFFAOYSA-N 

802 C1=CC=C2C(=C1)C(=CN2)CC(=O)O 

t45 indoxyl sulfate 
BXFFHSIDQOFMLE

-UHFFFAOYSA-N 
10258 C1=CC=C2C(=C1)C(=CN2)OS(=O)(=O)O 

t44 isoleucine 
AGPKZVBTJJNPAG
-WHFBIAKZSA-N 

6306 CC[C@H](C)[C@@H](C(=O)O)N 

t43 isothreonic acid 
JPIJQSOTBSSVTP-

GBXIJSLDSA-N 
151152 C([C@H]([C@@H](C(=O)O)O)O)O 

t42 lactic acid 
JVTAAEKCZFNVCJ-

UHFFFAOYSA-N 
19789253 [H+].CC(C(=O)[O-])O 

t455 
Lactosylceramide 

(d18:1/24:1(15Z)) 
MKOKWBRPIBQYJ
J-LWQSSKHKSA-N 

20057309 

CCCCCCCCCCCCC/C=C/[C@H]([C@H](CO[C@H]1C([
C@H]([C@@H]([C@H](O1)CO)O[C@H]2[C@@H]([C
@H]([C@H]([C@H](O2)CO)O)O)O)O)O)NC(=O)CCCC

CCCCCCCCC/C=C\CCCCCCCC)O 

t41 lauric acid 
POULHZVOKOAJM
A-UHFFFAOYSA-N 

3893 CCCCCCCCCCCC(=O)O 

t40 leucine 
ROHFNLRQFUQHC
H-YFKPBYRVSA-N 

6106 CC(C)C[C@@H](C(=O)O)N 

t39 linoleic acid 
OYHQOLUKZRVUR
Q-HZJYTTRNSA-N 

5280450 CCCCC/C=C\C/C=C\CCCCCCCC(=O)O 

t521 LPC (14:0) 
VXUOFDJKYGDUJI-

OAQYLSRUSA-N 
460604 

CCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)O 

t163 LPC (15:0) 
RJZVWDTYEWCUA

R-JOCHJYFZSA-N 
24779458 

CCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)O 

t871 LPC (16:0) 
ASWBNKHCZGQVJ
V-HSZRJFAPSA-N 

460602 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)O 

t522 LPC (16:1) 
LFUDDCMNKWEO
RN-ZXEGGCGDSA-

N 
24779461 

CCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)O 

t166 LPC (17:1) 
LPMGFNAQZPADD
Z-FJIRUFBNSA-N 

24779451 
CCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([O

-])OCC[N+](C)(C)C)O 

t523 LPC (18:0) 
IHNKQIMGVNPMT
C-RUZDIDTESA-N 

497299 
CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)O 

t525 LPC (18:1) 
YAMUFBLWGFFIC
M-PTGWMXDISA-

N 
16081932 

CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([
O-])OCC[N+](C)(C)C)O 

t872 LPC (18:2) 
SPJFYYJXNPEZDW
-FTJOPAKQSA-N 

11005824 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COP(=

O)([O-])OCC[N+](C)(C)C)O 

t170 LPC (18:3) 
WKQNRCYKYCKES
D-YVHLTTHBSA-N 

24779469 
CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](CO

P(=O)([O-])OCC[N+](C)(C)C)O 

t171 LPC (20:0) 
UATOAILWGVYRQ
S-HHHXNRCGSA-N 

24779473 
CCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O

-])OCC[N+](C)(C)C)O 

t526 LPC (20:1) 
GJTDRNFWIDPAR
Y-GTPZACKGSA-N 

24779475 
CCCCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O

)([O-])OCC[N+](C)(C)C)O 

t527 LPC (20:2) 
YYQVCMMXPIJVH
Y-ZOIJLGJPSA-N 

52924053 
CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)OC[C@H](COP

(=O)([O-])OCC[N+](C)(C)C)O 

t528 LPC (20:3) 
BBNHCUBQEQJHI
G-FZZJNMCHSA-N 

52924055 
CCCCC/C=C\C/C=C\C/C=C\CCCCCCC(=O)OC[C@H](

COP(=O)([O-])OCC[N+](C)(C)C)O 

t175 LPC (20:4) 
GOMVPVRDBLLHQ
C-VEJNOCSESA-N 

53480469 
CC/C=C\C/C=C\C/C=C\C/C=C\CCCCCCC(=O)OC[C@

H](COP(=O)([O-])OCC[N+](C)(C)C)O 

t176 LPC (20:5) 
PDIGSOAOQOXRD
U-WJPZTBRDSA-N 

11757087 
CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OC[

C@H](COP(=O)([O-])OCC[N+](C)(C)C)O 

t177 LPC (22:4) 
ZOJBSSVHFSBHMP

-JJJSWPRASA-N 
52924039 

CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCCC(=O)OC[C
@H](COP(=O)([O-])OCC[N+](C)(C)C)O 

t529 LPC (22:5) 
YBUXFQUGNPBZP
S-YNBHEIDWSA-N 

53480473 
CCCCC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC(=O)O

C[C@H](COP(=O)([O-])OCC[N+](C)(C)C)O 

t179 LPC (22:6) 
LSOWKZULVQWM
LY-APPDJCNMSA-

N 
10415542 

CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC(=
O)OC[C@H](COP(=O)([O-])OCC[N+](C)(C)C)O 

t180 LPC (o-16:0) 
VLBPIWYTPAXCFJ
-DEOSSOPVSA-N 

10480367 
CCCCCCCCCCCCCCCCOC[C@@H](COP(=O)([O-

])OCC[N+](C)(C)C)O 
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t181 
LPC (p-16:0) or LPC 

(o-16:1) 
HTZINLFNXLXRBC

-CQLBIITFSA-N 
10917802 

CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)O 

t530 LPE (16:0) 
CKPBBEOJHAPPBT
-HXUWFJFHSA-N 

53480922 
CCCCCCCCCCCCCCCC(=O)O[C@H](CO)COP(=O)(O)O

CCN 

t531 LPE (18:2) 
DBHKHNGBVGWQ
JE-USWSLJGRSA-N 

52925130 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COP(=

O)(O)OCCN)O 

t532 LPE (20:4) 
JPNPIRVRGLGTRE-

YSKCIPFOSA-N 
53480952 

CC/C=C\C/C=C\C/C=C\C/C=C\CCCCCCC(=O)OC[C@
H](COP(=O)(O)OCCN)O 

t533 LPE (22:6) 
XEVRBOQZSXWGQ
O-PAUXXPOVSA-N 

52925132 
CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC(=

O)OC[C@H](COP(=O)(O)OCCN)O 

t38 lysine 
KDXKERNSBIXSRK

-YFKPBYRVSA-N 
5962 C(CCN)C[C@@H](C(=O)O)N 

t37 lyxitol 
HEBKCHPVOIAQT
A-IMJSIDKUSA-N 

439255 C([C@@H](C([C@H](CO)O)O)O)O 

t36 malic acid 
BJEPYKJPYRNKO

W-UHFFFAOYSA-N 
20130941 [H+].[H+].C(C(C(=O)[O-])O)C(=O)[O-] 

t35 methanolphosphate 
CAAULPUQFIIOTL-

UHFFFAOYSA-N 
13130 COP(=O)(O)O 

t34 methionine 
FFEARJCKVFRZRR
-BYPYZUCNSA-N 

6137 CSCC[C@@H](C(=O)O)N 

t32 myo-inositol 
CDAISMWEOUEBR
E-UHFFFAOYSA-N 

892 C1(C(C(C(C(C1O)O)O)O)O)O 

t31 N-methylalanine 
GDFAOVXKHJXLEI
-VKHMYHEASA-N 

5288725 C[C@@H](C(=O)O)NC 

t30 nornicotine 
MYKUKUCHPMAS
KF-UHFFFAOYSA-

N 
412 C1CC(NC1)C2=CN=CC=C2 

t28 ornithine 
AHLPHDHHMVZT
ML-BYPYZUCNSA-

N 
6262 C(C[C@@H](C(=O)O)N)CN 

t27 oxoproline 
ODHCTXKNWHHX
JC-VKHMYHEASA-

N 
7405 C1CC(=O)N[C@@H]1C(=O)O 

t184 PC (16:0/9:0(CHO)) 
PPTNNIINSOQWC
E-WJOKGBTCSA-N 

46907874 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCC=O 

t185 PC (28:0) 
CITHEXJVPOWHK
C-UUWRZZSWSA-

N 
5459377 

CCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC 

t186 PC (30:0) 
RFVFQQWKPSOBE
D-PSXMRANNSA-N 

129657 
CCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCCCC

CCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t187 PC (30:1) 
ANKCYRKQDLQXG
L-MRDDHZETSA-N 

52922250 
CCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCCCC

/C=C\CCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t188 PC (31:0) 
NPGWXTIWUUFY
AB-DIPNUNPCSA-

N 
24778680 

CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCC 

t189 PC (31:1) 
QFVHCMLUKNHDS
H-WTWBAFHPSA-

N 
24778657 

CCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCC 

t873 PC (32:0) 
KILNVBDSWZSGLL
-KXQOOQHDSA-N 

452110 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC 

t534 PC (32:1) 
QIBZFHLFHCIUOT
-NPBIGWJUSA-N 

6443788 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCC 

t192 PC (32:2) 
GPWHCUUIQMGEL
X-VHQDNGOZSA-N 

24778764 
CCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCC 

t193 PC (32:3) 
UXEFXNOSLOCOL
X-ZCHSEWAGSA-N 

52922763 
CCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCC/C=C\
C/C=C\C/C=C\CCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t194 PC (33:0) 
FHENRYRLCPXON
H-LDLOPFEMSA-N 

52922645 
CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCC 

t196 PC (33:2) 
SBNDHGBVMZMS
NL-UESLNCBNSA-

N 
52922715 

CCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCCCC/
C=C\C/C=C\CCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t197 PC (34:0) 
PZNPLUBHRSSFH
T-RRHRGVEJSA-N 

24778686 
CCCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCC

CCCCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t874 PC (34:1) 
WTJKGGKOPKCXL
L-VYOBOKEXSA-N 

5497103 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCCCC 
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t875 PC (34:2) 
JLPULHDHAOZNQI
-ZTIMHPMXSA-N 

5287971 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\C/C=C\CCC
CC 

t539 PC (34:3) 
CNNSEHUKQJCGT
E-UPPWDXJYSA-N 

24778699 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCC/C=C\C/C=C\C/C=C\
CCCCC 

t200 PC (34:4) 
YWDDIWXKFJEMK
F-JTZVLWBESA-N 

52922891 
CCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCC/C=

C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-
])OCC[N+](C)(C)C 

t201 PC (35:1) 
MFHIZGSSDZJFKD-

IYEJTHTFSA-N 
52922679 

CCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCCC
C/C=C\CCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t541 PC (35:2) 
ZSKWZJYUVZYDQ
U-WESJWMGVSA-

N 
52922491 

CCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\C/C=C\CCC

CC 

t203 PC (35:2) B 
LNGBVAOHJZCRIL
-GPDPEMMZSA-N 

52923157 
CCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCCCCC
C/C=C\C/C=C\CCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t204 PC (35:3) 
AYXGHIQPMDYMJ
C-AHMBLZLYSA-N 

52924614 
CCCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCC

C/C=C\C/C=C\C/C=C\CCCCC)COP(=O)(O)OCCN 

t205 PC (35:4) 
OROZWUJCDDCYA
U-IPUAOQJZSA-N 

52922204 
CCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCC/C=C\C/C=C\C/C=C
\C/C=C\CCCCC 

t543 PC (36:1) 
ATHVAWFAEPLPP
Q-VRDBWYNSSA-

N 
24778825 

CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCCCC 

t876 PC (36:2) 
SNKAWJBJQDLSFF
-NVKMUCNASA-N 

10350317 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([

O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCCCC 

t545 PC (36:3) 
YPAZQMWFRMHB
BM-CLKMJQEKSA-

N 
53478785 

CCCCCC/C=C\CCCCCCCCCC(=O)O[C@H](COC(=O)CC
CCCCC/C=C\C/C=C\CCCCC)COP(=O)([O-

])OCC[N+](C)(C)C 

t208 PC (36:3) A 
BXRLDROZWDUSG
M-ZRYFCQOPSA-N 

24778937 

CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([
O-

])OCC[N+](C)(C)C)OC(=O)CCCC/C=C\C/C=C\CCCCCC
CC 

t211 PC (36:4) A 
NKQPOVROGSWL

TO-
NVPMBMBWSA-N 

52922783 
CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CC

CC/C=C\C/C=C\C/C=C\CCCCC)COP(=O)([O-
])OCC[N+](C)(C)C 

t212 PC (36:4) C 
IIZPXYDJLKNOIY-

JXPKJXOSSA-N 
10747814 

CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C

/C=C\CCCCC 

t548 PC (36:5) 
DYDDZDMJSQYFG
N-OIVUZXIWSA-N 

24778771 
CCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C

/C=C\CCCCC 

t214 PC (36:5) B 
SUZYROYNFNQALJ

-MHEIZRSESA-N 
52923341 

CCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCC/C=C
\C/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-

])OCC[N+](C)(C)C 

t215 PC (36:6) 
SPWBDEZMKCRQS
X-NGPPOSSDSA-N 

52922847 
CCCCC/C=C\C/C=C\C/C=C\CCCCC(=O)O[C@H](COC(

=O)CCCCCCC/C=C\C/C=C\C/C=C\CC)COP(=O)([O-
])OCC[N+](C)(C)C 

t550 PC (37:2) 
MCZUABDVGPPW
PM-HJTCUGKVSA-

N 
52922735 

CCCCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCC
CCC/C=C\C/C=C\CCCCC)COP(=O)([O-

])OCC[N+](C)(C)C 

t217 PC (37:3) 
OOYQEEUUQRMQ
KL-JUUDQZDJSA-N 

52922851 
CCCCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCC

CCC/C=C\C/C=C\C/C=C\CC)COP(=O)([O-
])OCC[N+](C)(C)C 

t218 PC (37:4) 
QRPUCJXFPYFTMB

-FBFLODOBSA-N 
52922853 

CCCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)C
CCCCCC/C=C\C/C=C\C/C=C\CC)COP(=O)([O-

])OCC[N+](C)(C)C 

t219 PC (37:5) 
URYYGMVXBWUJF
P-LQYSTYLLSA-N 

53478655 
CCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCC/C=C\C/C=C\C/C=C
\C/C=C\C/C=C\CC 

t220 PC (37:6) 
GEINPYKZLFHHIL-

HEXXMCQTSA-N 
52922342 

CCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CC/C=C\C/C=C\C/C=C\C/

C=C\C/C=C\C/C=C\CC 

t552 PC (38:2) 
KXXLFCAPKGRXB
T-FMJYHZMHSA-N 

24779263 
CCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O

-
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])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\C/C=C\CCC
CC 

t877 PC (38:3) 
OJHJKEBRZSDTTL-
VHWCKNCUSA-N 

52922741 
CCCCCCCC/C=C\CCCCCCCCCC(=O)O[C@H](COC(=O)

CCCCCCC/C=C\C/C=C\CCCCC)COP(=O)([O-
])OCC[N+](C)(C)C 

t223 PC (38:4) A 
PSVRFUPOQYJOOZ
-QNPWAGBNSA-N 

16219824 
CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C
/C=C\CCCCC 

t224 PC (38:4) B 
DNYKSJQVBCVGOF

-LCKGXUDJSA-N 
52923291 

CCCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCC/C
=C\C/C=C\C/C=C\C/C=C\CCCCC)COP(=O)([O-

])OCC[N+](C)(C)C 

t553 PC (38:5) 
YLWBKBDNHWQE
FU-YJXJLLHLSA-N 

53479033 
CCCCCC/C=C\CCCCCCCCCC(=O)O[C@H](COC(=O)CC
C/C=C\C/C=C\C/C=C\C/C=C\CCCCC)COP(=O)([O-

])OCC[N+](C)(C)C 

t225 PC (38:5) A 
SUACBSWYGWBPF
C-GPUJSUHJSA-N 

52923235 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)O[C@H](COC(=O)

CCCCCC/C=C\C/C=C\C/C=C\CCCCC)COP(=O)([O-
])OCC[N+](C)(C)C 

t555 PC (38:6) 
PLZBTDKJYHXIEW
-DZUXOTHRSA-N 

52923295 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)O[C@H](COC(=O)
CCC/C=C\C/C=C\C/C=C\C/C=C\CCCCC)COP(=O)([O-

])OCC[N+](C)(C)C 

t229 PC (38:7) 
BNNUJTATKJXKJP-

XCDHYEIISA-N 
53479075 

CCCCC/C=C\C/C=C\C/C=C\CCCCC(=O)O[C@H](COC(
=O)CCCCCC/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)

([O-])OCC[N+](C)(C)C 

t230 PC (39:6) 
QMCWOGICYCFNB
F-BWHZRABLSA-N 

52922637 
CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCCC(=O)O[C

@H](COC(=O)CCCCCCC/C=C\C/C=C\CCCC)COP(=O)(
[O-])OCC[N+](C)(C)C 

t556 PC (40:4) 
QQIYXJBHMDYXH
H-NMUBDWGHSA-

N 
52923573 

CCCCC/C=C\C/C=C\CCCCCCCCCCCC(=O)OC[C@H](C
OP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\C/C=C\CCC
CC 

t558 PC (40:5) 
LJFKFKIYUJNFPZ-

ZLFSCUDPSA-N 
52923133 

CCCCCCCC/C=C\CCCCCCCCCC(=O)OC[C@H](COP(=O
)([O-

])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C
/C=C\CCCCC 

t232 PC (40:5) A 
IJTJDJOOHZVSAC-
NDRUHXFFSA-N 

53479083 
CCCCCCCC/C=C\CCCCCCCCCC(=O)O[C@H](COC(=O)
CCCCCC/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-

])OCC[N+](C)(C)C 

t233 PC (40:5) B 
SFESOYFQZQJCOY-

FXYWPAEZSA-N 
52923365 

CCCCCCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCC
/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-

])OCC[N+](C)(C)C 

t879 PC (40:6) 
FYVNIFOYDIIODX-

KNKJIUSSSA-N 
24778900 

CCCCCC/C=C\CCCCCCCCCC(=O)OC[C@H](COP(=O)([
O-

])OCC[N+](C)(C)C)OC(=O)CCCCC/C=C\C/C=C\C/C=C
\C/C=C\C/C=C\CC 

t234 PC (40:6) B 
TYRTWVKQVGNGS
Z-RGBTVBCDSA-N 

52923195 

CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)OC[C@H](COP
(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C
/C=C\CCCCC 

t560 PC (40:7) 
BPUROMFCPFGBO
T-ZEGPSQTJSA-N 

24778982 

CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COP(=
O)([O-

])OCC[N+](C)(C)C)OC(=O)CC/C=C\C/C=C\C/C=C\C/
C=C\C/C=C\CCCCC 

t561 PC (40:8) 
BFCSBEFTXQRIOJ-

IMYLGOOQSA-N 
53479093 

CC/C=C\C/C=C\C/C=C\C/C=C\CCCCCCC(=O)OC[C@
H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCC/C=C\C/C=C\C/C=
C\C/C=C\CC 

t237 PC (42:10) 
GILJCAGAMFVHNE

-QEOOLSSISA-N 
53479133 

CCCCC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC(=O)O
[C@H](COC(=O)CCC/C=C\C/C=C\C/C=C\C/C=C\C/C

=C\CC)COP(=O)([O-])OCC[N+](C)(C)C 

t238 PC (42:5) 
APYSSUSAYQRESE
-VZWUYPTESA-N 

52923591 

CCCCC/C=C\C/C=C\CCCCCCCCCCCC(=O)OC[C@H](C
OP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCC/C=C\C/C=C\C/C=
C\CCCCC 

t239 PC (42:6) 
DSVRMAGYENFTL
Y-GDDYDVMSSA-N 

52923651 
CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)O[C@H](COC(
=O)CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCC)COP(=

O)([O-])OCC[N+](C)(C)C 
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t562 PC (o-32:0) 
SVWBXNAUENUO
NE-LDLOPFEMSA-

N 
173570 

CCCCCCCCCCCCCCCCO[C@H](COC(=O)CCCCCCCCCCC
CCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t241 PC (o-34:0) 
ZKTXOJMFIAILJG-

VQJSHJPSSA-N 
24779361 

CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OCCCCCCCCCCCCCCCC 

t563 
PC (p-32:0) or PC (o-

32:1) 

KEVGQWGZKKFG
DC-JCUPVDEDSA-

N 
53478671 

CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-
])OCC[N+](C)(C)C)O/C=C\CCCCCCCCCCCCCC 

t243 
PC (p-32:1) or PC (o-

32:2) 
FZMYLOBGNYZPQ
O-QLSONYGBSA-N 

52923882 
CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCC 

t564 
PC (p-34:0) or PC (o-

34:1) 
QCGUXAIDEOWPB
V-SNKLRXETSA-N 

53481719 
CCCCCCCCCCCCCCCC(=O)O[C@H](COCCCCCCCCCC/C

=C\CCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t566 
PC (p-34:1) or PC (o-

34:2) 

MBRHHFWRXQYY
AN-RTVLTNFHSA-

N 
53480735 

CCCCCCCCCCCCCCCC(=O)OC(CO/C=C\CCCCCCCC/C=
C\CCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t245 
PC (p-34:1) or PC (o-

34:2) A 
MBRHHFWRXQYY
AN-JEPFLRBFSA-N 

70698781 
CCCCCCCCCCCCCCCC(=O)O[C@H](CO/C=C\CCCCCCC

C/C=C\CCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t246 
PC (p-34:1) or PC (o-

34:2) B 

KMNVIRCHUMQG
HD-RCINKDPXSA-

N 
52923934 

CCCCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCC 

t567 
PC (p-34:2) or PC (o-

34:3) 
QLEHHUPUHJPURI
-PWYDUFMYSA-N 

24779386 
CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\C/C=C\CCC
CC 

t568 
PC (p-36:1) or PC (o-

36:2) 
ZOTYCHIFTCFAHC
-KOUVQCMKSA-N 

53480797 
CCCCCCCCCCCCCCCCCC(=O)O[C@H](CO/C=C\CCCCC

C/C=C\CCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C 

t249 
PC (p-36:1) or PC (o-

36:2) B 
ZYLPVUZBZNMVM
R-ZBBHDILGSA-N 

52923754 
CCCCCCCCCCCCCCCCOC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCCC/C=C\C/C=C\C
CCCC 

t250 
PC (p-36:2) or PC (o-

36:3) 

DIHWZUCEXWUH
OD-IIVNATNGSA-

N 
53480801 

CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](CO/C=C\CC
CCCC/C=C\CCCCCCCC)COP(=O)([O-

])OCC[N+](C)(C)C 

t570 
PC (p-36:3) or PC (o-

36:4) 
SOUZQPFUXRVDG
K-KCTKZSJBSA-N 

53481701 
CCCCCCCCCCCCCCCCOC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCC/C=C\C/C=C\C/C=
C\C/C=C\CC 

t880 
PC (p-36:4) or PC (o-

36:5) 
IOYKZPNDXIIXLN-
LOQSCQKMSA-N 

24779388 
CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C
/C=C\CCCCC 

t571 
PC (p-38:3) or PC (o-

38:4) 

GWBOVQHRCURS
PU-QMFAPAEZSA-

N 
53480815 

CCCCCCCC/C=C\CCCCCC/C=C\OC[C@H](COP(=O)([O
-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCCC/C=C\C/C=C\C
CCCC 

t572 
PC (p-38:4) or PC (o-

38:5) 

DBQMOXDLWKVK
KG-REWQMPQJSA-

N 
53480761 

CCCCCC/C=C\CCCCCCCC/C=C\OC[C@H](COP(=O)([O
-

])OCC[N+](C)(C)C)OC(=O)CCCCCC/C=C\C/C=C\C/C=
C\CCCCC 

t255 
PC (p-38:4) or PC (o-

38:5) A 
YPAPIRJFGNBODV
-AMFPDOHCSA-N 

53480715 
CCCCCCCCCCCCCCCC/C=C\OCC(COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCC/C=C\C/C=C\C/C=
C\C/C=C\CC 

t256 
PC (p-38:4) or PC (o-

38:5) B 
DYFGXBAIDOATA
E-DSLLYOFSSA-N 

53480759 
CCCCCCCC/C=C\C/C=C\C/C=C\CCCC(=O)OC(CO/C=C

\CCCCCCCC/C=C\CCCCCC)COP(=O)([O-
])OCC[N+](C)(C)C 

t573 
PC (p-38:5) or PC (o-

38:6) 
ATTCDOPAYPGSL
E-LQULQHAGSA-N 

53479121 
CCCCCCCC/C=C\CCCCCC/C=C\OC(COC(=O)CCCCCC/

C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-
])OCC[N+](C)(C)C 

t257 
PC (p-38:5) or PC (o-

38:6) A 
FAKYQMLQEAQOL
K-LHZZQLRFSA-N 

53480695 
CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CC/C=C\C/C=C\C/C=C\C/
C=C\C/C=C\CCCCC 

t574 
PC (p-40:1) or PC (o-

40:2) 
KYEGAYPFBCAHD
L-SPACVREBSA-N 

53480827 
CCCCCCCCCCCCCCCCCCCCCC(=O)O[C@H](CO/C=C\C

CCCCC/C=C\CCCCCCCC)COP(=O)([O-
])OCC[N+](C)(C)C 

t261 
PC (p-40:3) or PC (o-

40:4) 
RDNHPNJCALITSY
-MBZSPAKGSA-N 

52923852 
CCCCCCCCCCCCCCCCCCCCOC[C@H](COP(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C
/C=C\CCCCC 

t262 
PC (p-40:4) or PC (o-

40:5) 
UWNFEVACEPZILS
-RNNLSGHUSA-N 

52924022 
CCCCCCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCC/C=C\C/C=C\C/C=C\C

/C=C\CCCCC 
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t263 
PC (p-40:5) or PC (o-

40:6) 

KUHMJRMPHBRA
MY-

DDURNVNNSA-N 
53480775 

CCCCCC/C=C\CCCCCCCC/C=C\OCC(COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCC/C=C\C/C=C\C/C=C

\C/C=C\CCCCC 

t264 
PC (p-40:6) or PC (o-

40:7) A 
XUVCLJCZWPTAIO
-OAKHYACESA-N 

53479405 
CCCCCCCC/C=C\CCCCCC/C=C\OC(COC(=O)CCCCC/C

=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-
])OCC[N+](C)(C)C 

t265 
PC (p-40:6) or PC (o-

40:7) B 
FMBYBTSZVHUJM
V-DIVFMYBRSA-N 

53479425 
CCCCCCCCCCCCCCCC/C=C\OC(COC(=O)CC/C=C\C/C

=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)([O-
])OCC[N+](C)(C)C 

t267 
PC (p-42:2) or PC (o-

42:3) 
ZLQCRABYIDJNLT-

AZPQEANBSA-N 
53479549 

CCCCCCCC/C=C\CCCCCCCCCCCCCC(=O)OCC(COP(=O
)([O-

])OCC[N+](C)(C)C)O/C=C\CCCCCC/C=C\CCCCCCCC 

t269 
PC (p-42:4) or PC (o-

42:5) 
NLEDXBSUDVLSE
N-UFFJXODHSA-N 

52924034 
CCCCCCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CCCCC/C=C\C/C=C\C/C=C

\C/C=C\CCCCC 

t270 
PC (p-42:5) or PC (o-

42:6) A 
QZMFOSCFDWPIS
C-KQHSIIGPSA-N 

53481769 

CCCCC/C=C\C/C=C\C/C=C\CCCCCCCCCOC[C@H](CO
P(=O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCC/C=C\C/C=C\C/
C=C\CCCCC 

t271 
PC (p-42:5) or PC (o-

42:6) B 
CMUBJJYJAQLOOD

-XSOFIKLRSA-N 
52923864 

CCCCCCCCCCCCCCCCCCCCOC[C@H](COP(=O)([O-
])OCC[N+](C)(C)C)OC(=O)CC/C=C\C/C=C\C/C=C\C/

C=C\C/C=C\C/C=C\CC 

t272 
PC (p-44:4) or PC (o-

44:5) 
CEZAZXUWDFPTT
E-FHIJIHMSSA-N 

53481767 

CCCCC/C=C\C/C=C\CCCCCCCCCCCCOC[C@H](COP(=
O)([O-

])OCC[N+](C)(C)C)OC(=O)CCCCCCCC/C=C\C/C=C\C/
C=C\CCCCC 

t274 PE (34:2) 
HBZNVZIRJWODIB
-NHCUFCNUSA-N 

46891780 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-

])OCC[NH3+])OC(=O)CCCCCCC/C=C\C/C=C\CCCCC 

t275 PE (36:1) 
JQKOHRZNEOQNJ
E-ZZEZOPTASA-N 

25244969 
CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-

])OCC[NH3+])OC(=O)CCCCCCC/C=C\CCCCCCCC 

t276 PE (36:4) 
KZLUVTCXBFEIFJ-

XGLJQOENSA-N 
52924904 

CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)(O)O
CCN)OC(=O)CCCC/C=C\C/C=C\C/C=C\C/C=C\CC 

t277 PE (38:4) 
ANRKEHNWXKCX
DB-BHFWLYLHSA-

N 
46891781 

CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-
])OCC[NH3+])OC(=O)CCC/C=C\C/C=C\C/C=C\C/C=C

\CCCCC 

t278 PE (38:6) 
LFGBKOUQHCWB
QI-BZGLIJSBSA-N 

52924893 
CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COP(=
O)(O)OCCN)OC(=O)CCC/C=C\C/C=C\C/C=C\C/C=C\

CCCCC 

t279 
PE (p-34:1) or PE (o-

34:2) 
SMPXBIVJXNXOAL
-PRWZWGSOSA-N 

53479657 
CCCCCCCCCCCCCC/C=C\O[C@H](COC(=O)CCCCCCC/

C=C\CCCCCCCC)COP(=O)(O)OCCN 

t281 
PE (p-36:2) or PE (o-

36:3) 
CFANDHZPOSNKN
O-UDHSZFGOSA-N 

53480897 
CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](CO/C=C\CC

CCCC/C=C\CCCCCCCC)COP(=O)(O)OCCN 

t282 
PE (p-36:4) or PE (o-

36:5) 
ADWDFBQPQIEGR
Z-XBICFDGKSA-N 

53480870 
CCCCCC/C=C\CCCCCCCC/C=C\OC[C@H](COP(=O)(O)

OCCN)OC(=O)CCCC/C=C\C/C=C\C/C=C\CCCCC 

t283 
PE (p-38:4) or PE (o-

38:5) 
ZTZQZGHJLWFLFQ
-VZBWJDOASA-N 

53480855 
CCCCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)OC
CN)OC(=O)CCCCCC/C=C\C/C=C\C/C=C\C/C=C\CC 

t284 
PE (p-38:5) or PE (o-

38:6) 
IQSPCSIULMCRPM

-ZAJUHDLGSA-N 
53479831 

CCCCCCCC/C=C\CCCCCC/C=C\O[C@H](COC(=O)CCC
CCC/C=C\C/C=C\C/C=C\C/C=C\CC)COP(=O)(O)OCC

N 

t286 
PE (p-40:5) or PE (o-

40:6) 
HHQFKPJXVYWLLJ
-ABYSKWQHSA-N 

53480857 
CCCCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)OC
CN)OC(=O)CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC

CCC 

t25 pelargonic acid 
FBUKVWPVBMHYJ
Y-UHFFFAOYSA-N 

8158 CCCCCCCCC(=O)O 

t24 phenylalanine 
COLNVLDHVKWL

RT-
QMMMGPOBSA-N 

6140 C1=CC=C(C=C1)C[C@@H](C(=O)O)N 

t23 phosphate 
NBIIXXVUZAFLBC-

UHFFFAOYSA-N 
1004 OP(=O)(O)O 

t22 proline 
ONIBWKKTOPOVI
A-BYPYZUCNSA-N 

145742 C1C[C@H](NC1)C(=O)O 

t21 pseudo-uridine 
PTJWIQPHWPFNB
W-GBNDHIKLSA-N 

15047 
C1=C(C(=O)NC(=O)N1)[C@H]2[C@@H]([C@@H]([C

@H](O2)CO)O)O 

t19 salicylaldehyde 
SMQUZDBALVYZA
C-UHFFFAOYSA-N 

6998 C1=CC=C(C(=C1)C=O)O 

t18 serine 
MTCFGRXMJLQNB
G-REOHCLBHSA-N 

5951 C([C@@H](C(=O)O)N)O 
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t287 SM (d30:1) 
HZCLJRFPXMKWH
R-FEBLJDHQSA-N 

44260123 
CCCCCCCCCCCCC/C=C/[C@H]([C@H](COP(=O)([O-

])OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCC)O 

t288 SM (d32:0) 
MJAFYELZQYPMQ
G-MPQUPPDSSA-N 

44260138 
CCCCCCCCCCCCCCC[C@H]([C@H](COP(=O)([O-
])OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCCCC)O 

t289 SM (d32:1) 
KYICBZWZQPCUM
O-PSALXKTOSA-N 

11433862 
CCCCCCCCCCCCC/C=C/[C@H]([C@H](COP(=O)([O-

])OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCCCC)O 

t291 SM (d33:1) 
LQINJRUGTUOHGS

-YPDYIYJKSA-N 
52931139 

CCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O)([O-
])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCCCCCCC)

O 

t292 SM (d34:0) 
QHZIGNLCLJPLCU-

QPPIDDCLSA-N 
9939965 

CCCCCCCCCCCCCCC[C@H]([C@H](COP(=O)([O-
])OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCCCCCC)O 

t293 SM (d34:1) 
RWKUXQNLWDTS
LO-GWQJGLRPSA-

N 
9939941 

CCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O)([O-
])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCCCCCCC)

O 

t294 SM (d34:2) 
YLWSJLLZUHSIEA-

CKSUKHGVSA-N 
52931235 

CCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O)([O-
])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCC/C=C\C

CC)O 

t295 SM (d36:0) 
JCELSEVNSMXGKA

-IOLBBIBUSA-N 
44260130 

CCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O)([O-
])OCC[N+](C)(C)C)[C@@H](CCCCCCCCCCCCCCC)O 

t296 SM (d36:1) 
LKQLRGMMMAHR
EN-YJFXYUILSA-N 

6453725 
CCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O)([O-
])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCCCCCCC)

O 

t297 SM (d36:2) 
NBEADXWAAWCC

DG-
QDDWGVBQSA-N 

6443882 
CCCCCCCCCCCCC/C=C/[C@H]([C@H](COP(=O)([O-

])OCC[N+](C)(C)C)NC(=O)CCCCCCC/C=C\CCCCCCCC)
O 

t298 SM (d36:3) 
YMTVMVYOUDDT
QJ-UOMMIRHQSA-

N 
52931155 

CCCCCCCC/C=C\CCCCCCCC(=O)N[C@@H](COP(=O)(
[O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCC/C=C\C
CC)O 

t301 SM (d38:1) 
AADLTHQNYQJHQ
V-SVLGDMRNSA-N 

44260124 

CCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O)([
O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCCCCCCC)
O 

t302 SM (d38:2) 
MDRFMTLYKHBJT
F-NQYLGBTJSA-N 

52931179 
CCCCCCCCCCCCC/C=C/[C@H]([C@H](COP(=O)([O-

])OCC[N+](C)(C)C)NC(=O)CCCCCCCCC/C=C\CCCCCC
CC)O 

t305 SM (d40:0) 
FONAXCRWZQFJH
Y-JCGOJSMZSA-N 

44260132 
CCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=O

)([O-
])OCC[N+](C)(C)C)[C@@H](CCCCCCCCCCCCCCC)O 

t307 SM (d40:2) 
FOULCGVQZYQEQ
M-DNXGLLHMSA-

N 
52931201 

CCCCCCCCCCC/C=C/[C@H]([C@H](COP(=O)([O-
])OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCCCC/C=C\CC

CCCCCC)O 

t309 SM (d41:1) 
SXZWBNWTCVLZJ
N-NMIJJABPSA-N 

46891684 

CCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=
O)([O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCCCCCCC)
O 

t310 SM (d41:2) A 
JBDGKEXQKCCQFK
-JWQIMADESA-N 

52931209 

CCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(=
O)([O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCC/C=C\C
CC)O 

t312 SM (d42:1) 
QEDPUVGSSDPBM
D-XTAIVQBESA-N 

44260127 

CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(
=O)([O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCCCCCCC)
O 

t314 SM (d42:2) 
DACOGJMBYLZYD
H-GXJPFUDISA-N 

52931217 

CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP(
=O)([O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCC/C=C\C
CC)O 

t315 SM (d42:3) 
TXFLWJQVQCDUD
Z-BRUGZULGSA-N 

52931215 

CCCCCCCC/C=C\CCCCCCCCCCCCCC(=O)N[C@@H](C
OP(=O)([O-

])OCC[N+](C)(C)C)[C@@H](/C=C/CCCCCCCC/C=C\C
CC)O 

t316 SM (d43:1) 
LXMARZYBSFYVSY
-KUQVZNNZSA-N 

52931225 
CCCCCCCCCCCCCCCC[C@H]([C@H](COP(=O)([O-

])OCC[N+](C)(C)C)NC(=O)CCCCCCCCCCCCC/C=C\CC
CCCCCC)O 

t16 succinic acid 
KDYFGRWQOYBRF
D-UHFFFAOYSA-N 

1110 C(CC(=O)O)C(=O)O 
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t15 taurine 
XOAAWQZATWQO
TB-UHFFFAOYSA-

N 
1123 C(CS(=O)(=O)O)N 

t457 TG (48:0) 
PVNIQBQSYATKKL

-UHFFFAOYSA-N 
11147 

CCCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCC
CCCCC)OC(=O)CCCCCCCCCCCCCCC 

t458 TG (48:1) 
FEKLSEFRUGWUO
S-DLOIZKPKSA-N 

9543986 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCCC

C/C=C\CCCCCC)OC(=O)CCCCCCCCCCCCCCC 

t459 TG (48:2) 
RUOVJPPUXXFZPC

-YZEIBMOJSA-N 
9543987 

CCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCCC
C/C=C\CCCCCC)OC(=O)CCCCCCC/C=C\CCCCCC 

t320 TG (49:0) 
TTWJTJMWHOYBP
Q-ANFMRNGASA-

N 
9543988 

CCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)CCC
CCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC 

t460 TG (49:1) 
VYYGQDOPVVYUK
W-UKFBYESTSA-N 

9543991 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCCC

C/C=C\CCCCCCC)OC(=O)CCCCCCCCCCCCCCC 

t322 TG (49:2) 
QZYSUBAQYSVFN
X-PSMULLBHSA-N 

9543993 
CCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)CCC
CCCC/C=C\CCCCCC)OC(=O)CCCCCCC/C=C\CCCCCC 

t461 TG (49:3) 
DIGMYZZFQSIQBD
-PNLKURBTSA-N 

56938088 
CCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCCCC/
C=C\C/C=C\CCCCC)OC(=O)CCCCCCC/C=C\CCCCCCC 

t462 TG (50:0) 
MARPCPMDFOPPJ
X-UHFFFAOYSA-N 

545588 
CCCCCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCC

CCCCCCCCC)OC(=O)CCCCCCCCCCCCC 

t463 TG (50:1) 
YHMDGPZOSGBQR
H-YYSBDVFPSA-N 

25240460 
CCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCCC

C/C=C\CCCCCCCC)OC(=O)CCCCCCCCCCCCCCC 

t464 TG (50:2) 
QEZWFCZNHWUA

RW-
XQCAQTCHSA-N 

9544010 
CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)CC
CCCCC/C=C\CCCCCC)OC(=O)CCCCCCC/C=C\CCCCCC 

t465 TG (50:3) 
UFHNZOACKFBCO
M-YXKNDSBASA-N 

25240357 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCC/C=C\CCCCCC)OC(=O)CCCCCCC/C=C\CCCC

CC 

t466 TG (50:4) 
PVMBAGXWHHZK
FP-JMPJWMFJSA-N 

25240359 
CCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COC(=O)CCC
CCCC/C=C\C/C=C\CCCCC)OC(=O)CCCCCCC/C=C\CCC

CCC 

t467 TG (50:5) 
AFTBPUXZTDLRSP

-UDQIKIEDSA-N 
9544045 

CCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COC(=O)CCC
CCCC/C=C\C/C=C\C/C=C\CC)OC(=O)CCCCCCC/C=C\

CCCCCC 

t468 TG (51:1) 
OZAXLAGNPZMZA
D-BOEMPQCLSA-N 

9544006 
CCCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCC

CC/C=C\CCCCCCC)OC(=O)CCCCCCCCCCCCCCCC 

t469 TG (51:2) 
NSNSZGBCOIKUBU

-SZOKBDNISA-N 
9544013 

CCCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCC
CC/C=C\CCCCCCC)OC(=O)CCCCCCC/C=C\CCCCCCC 

t470 TG (51:3) 
ISSGPXMQOMAFM
J-DMGKHJLRSA-N 

9544023 
CCCCCCC/C=C\CCCCCCCC(=O)OCC(OC(=O)CCCCCCC

/C=C\CCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCC 

t471 TG (51:4) 
IIRQXNVLAXQEKB
-KBEZCZBDSA-N 

9544052 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCC/C=C\CCCCCC)OC(=O)CCCCCCC/C=C\C/C=

C\CCCC 

t472 TG (52:0) 
SDNYRTVJOFMYI
W-OIVUAWODSA-

N 
545690 

CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)CC
CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCCCC 

t473 TG (52:1) 
NPCZZYKITFKRQZ
-RFBIWTDZSA-N 

5365005 
CCCCCCCCCCCCCCCCCC(=O)OC(COC(=O)CCCCCCCCC

CCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC 

t474 TG (52:2) 
TXMWKTABZBAJC
W-QLHBUVOUSA-

N 
56938176 

CCCCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCC

CC 

t475 TG (52:3) 
DQXQIWIQYYEGL
G-MMWLGPPDSA-

N 
56938177 

CCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCCCCCC
C/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCC

CC 

t476 TG (52:4) 
WHSWXEYWNPTU
PW-HNJDVRDNSA-

N 
25240364 

CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CC
CCCCC/C=C\CCCCCC)COC(=O)CCCCCCC/C=C\C/C=C\

CCCCC 

t477 TG (52:5) 
CQZAAIKPSLHIBC-

KDJOUNIJSA-N 
25240366 

CCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COC(=O)CCC
CCCC/C=C\C/C=C\CCCCC)OC(=O)CCCCCCC/C=C\C/C

=C\CCCCC 

t478 TG (52:6) 
SSOSFUDNINFYLJ-

KIYGNKBKSA-N 
56938180 

CCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCC/C=C\
C/C=C\C/C=C\C/C=C\CCCCC)OC(=O)CCCCCCC/C=C\

C/C=C\CCCCC 

t479 TG (53:2) 
RSINITWKVQRWS
Z-RFVLVDBCSA-N 

9544102 
CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)CC
CCCCC/C=C\C/C=C\CCCC)OC(=O)CCCCCCCCCCCCCC

CCC 
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t480 TG (53:3) 
ZNQBEJJYVJSZLM-
LEDQTTRKSA-N 

9544126 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCC/C=C\CCCCCCC)OC(=O)CCCCCCC/C=C\CCC

CCCCC 

t324 TG (53:4) 
BMSDHYZLQWTK
SQ-LSJAAEOESA-N 

9544152 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCC/C=C\C/C=C\CCCC)OC(=O)CCCCCCC/C=C\C

CCCCCCC 

t481 TG (53:5) 
QHYAATSKYBYSL
G-BXDFBOBBSA-N 

9544183 
CCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COC(=O)CC
CCCCC/C=C\C/C=C\CCCCC)OC(=O)CCCCCCC/C=C\C/

C=C\CCCCC 

t483 TG (54:1) 
YFFIQXNTTVSKJC-

NZEOUKRFSA-N 
16058371 

CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCC
CCC/C=C\CCCCCCCC)OC(=O)CCCCCCCCCCCCCCCCC 

t484 TG (54:2) 
WUUWGORPQFKF
QN-XDVOZUNOSA-

N 
56938183 

CCCCCCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=
O)CCCCCCCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\C

CCCC 

t326 TG (54:3) 
PHYFQTYBJUILEZ-

IUPFWZBJSA-N 
5497163 

CCCCCCCC/C=C\CCCCCCCC(=O)OCC(OC(=O)CCCCCC
C/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCC

C 

t329 TG (54:4) 
BRLGHZXETDWAB
O-NOFIOOQLSA-N 

9544255 
CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCCC
CCC/C=C\C/C=C\C/C=C\CC)OC(=O)CCCCCCC/C=C\C

CCCCCCC 

t486 TG (54:5) 
OEJXMJPFOHYSIU-

GRLFFVHSSA-N 
9544294 

CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COC(=O)C
CCCCCC/C=C\C/C=C\C/C=C\CC)OC(=O)CCCCCCC/C=

C\CCCCCCCC 

t488 TG (54:6) 
CDNDFDKFZBPPF
W-AXJGXPKFSA-N 

9544363 
CCCCCCCC/C=C\CCCCCCCC(=O)O[C@H](COC(=O)CC
CCCCC/C=C\CCCCCC)COC(=O)CCC/C=C\C/C=C\C/C=

C\C/C=C\CCCCC 

t489 TG (54:8) 
BMPVTDWOWBN
PJU-NYRSPQLFSA-

N 
9544413 

CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OC[C@
@H](COC(=O)CCCCCCC/C=C\C/C=C\CCCC)OC(=O)C

CCCCCC/C=C\C/C=C\CCCC 

t490 TG (56:2) 
PDEQUPGHMOMB
FC-FYEHETCMSA-

N 
9544390 

CCCCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCCCCCCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C

\CCCCC 

t491 TG (56:3) 
QXMHHXQBBKDSS
L-BAQZNRHJSA-N 

9544447 
CCCCCCCC/C=C\CCCCCCCCCC(=O)OC[C@@H](COC(=
O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\

CCCCCCCC 

t330 TG (56:4) 
YONCDTJKIZDSKQ

-IYASBODOSA-N 
25240379 

CCCCCCCC/C=C\CCCCCCCCCC(=O)OC[C@@H](COC(=
O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\

C/C=C\CCCCC 

t493 TG (56:5) A 
UHEJWASONFIRO
S-YPSHDQQVSA-N 

25240380 
CCCCCCCC/C=C\CCCCCCCCCC(=O)OC[C@@H](COC(=
O)CCCCCCC/C=C\C/C=C\CCCCC)OC(=O)CCCCCCC/C=

C\C/C=C\CCCCC 

t494 TG (56:6) 
ZTNDRFCABXFVM
Y-WJTCTALZSA-N 

9544625 
CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)OC[C@@H](C

OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)OC(=O)CCCCCC
C/C=C\C/C=C\CCCCC 

t332 TG (56:7)  B 
DODZUDCYRVWE
OJ-GKZBLMSTSA-

N 
9544695 

CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COC(=
O)CCCCCC/C=C\C/C=C\C/C=C\CCCCC)OC(=O)CCCCC

CC/C=C\C/C=C\CCCCC 

t496 TG (56:8) 
UBGUHMDKBGQU
ND-VPFWBQFRSA-

N 
9544762 

CCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCC/C=
C\C/C=C\C/C=C\C/C=C\CCCCC)OC(=O)CCC/C=C\C/

C=C\C/C=C\C/C=C\CCCCC 

t498 TG (58:1) 
OWZMHFAFGQCC
NI-FBXRAONGSA-

N 
25240381 

CCCCCCCCCCCCCCCCCCCC(=O)OC[C@@H](COC(=O)
CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCCCCCCCCC

CCCCC 

t497 TG (58:10) 
GXWBCAVCOMAO
HT-VMCJOIRWSA-

N 
9545277 

CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COC(=
O)CCC/C=C\C/C=C\C/C=C\C/C=C\CCCCC)OC(=O)CC

C/C=C\C/C=C\C/C=C\C/C=C\CCCCC 

t499 TG (58:6) 
GSNFRUMSEHHPS
Y-LCXCSEBNSA-N 

9544977 
CCCCCCCC/C=C\CCCCCCCCCC(=O)O[C@H](COC(=O)
CCCCCCC/C=C\CCCCCCCC)COC(=O)CCC/C=C\C/C=C\

C/C=C\C/C=C\CCCCC 

t336 TG (58:8) 
KWIGMCRWEINBI
R-HUPVKWKYSA-

N 
9545124 

CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COC(=O)CCC/
C=C\C/C=C\C/C=C\C/C=C\CCCCC)OC(=O)CCC/C=C\

C/C=C\C/C=C\C/C=C\CCCCC 

t500 TG (58:9) 
RVXFSLZMZOFGE
Q-SWIIBWKZSA-N 

9545200 
CCCCCCCC/C=C\CCCCCCCC(=O)OC[C@H](COC(=O)C
CC/C=C\C/C=C\C/C=C\C/C=C\CCCCC)OC(=O)CCC/C

=C\C/C=C\C/C=C\C/C=C\CCCCC 
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t14 threitol 
UNXHWFMMPAW

VPI-
QWWZWVQMSA-N 

169019 C([C@H]([C@@H](CO)O)O)O 

t13 threonic acid 
JPIJQSOTBSSVTP-

STHAYSLISA-N 
5460407 C([C@@H]([C@H](C(=O)O)O)O)O 

t12 threonine 
AYFVYJQAPQTCCC

-GBXIJSLDSA-N 
6288 C[C@H]([C@@H](C(=O)O)N)O 

t11 tocopherol alpha- 
NCYCYZXNIZJOKI-

OVSJKPMPSA-N 
638015 

CC1=C(C(CCC1)(C)C)/C=C/C(=C/C=C/C(=C/C=O)/C)
/C 

t10 tocopherol gamma- 
QUEDXNHFTDJVIY
-DQCZWYHMSA-N 

92729 
CC1=C(C=C2CC[C@@](OC2=C1C)(C)CCC[C@H](C)CC

C[C@H](C)CCCC(C)C)O 

t9 
trans-4-

hydroxyproline 

PMMYEEVYMWAS
QN-DMTCNVIQSA-

N 
5810 C1[C@H](CN[C@@H]1C(=O)O)O 

t8 tryptophan 
QIVBCDIJIAJPQS-
VIFPVBQESA-N 

6305 C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)N 

t7 tyrosine 
OUYCCCASQSFEM
E-QMMMGPOBSA-

N 
6057 C1=CC(=CC=C1C[C@@H](C(=O)O)N)O 

t6 urea 
XSQUKJJJFZCRTK-
UHFFFAOYSA-N 

1176 C(=O)(N)N 

t5 uric acid 
LEHOTFFKMJEON
L-UHFFFAOYSA-N 

1175 C12=C(NC(=O)N1)NC(=O)NC2=O 

t4 uridine 
DRTQHJPVMGBUC
F-XVFCMESISA-N 

6029 
C1=CN(C(=O)NC1=O)[C@H]2[C@@H]([C@@H]([C@

H](O2)CO)O)O 

t3 valine 
KZSNJWFQEVHDM
F-BYPYZUCNSA-N 

6287 CC(C)[C@@H](C(=O)O)N 

t2 xanthine 
LRFVTYWOQMYA
LW-UHFFFAOYSA-

N 
1188 C1=NC2=C(N1)C(=O)NC(=O)N2 

t1 xylulose 
LQXVFWRQNMED
EE-PYHARJCCSA-N 

439205 C1[C@@H]([C@H](C(O1)(CO)O)O)O 
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APPENDIX C 

DAISY NUTRIENTS EVALUATED FOR SIGNIFICANTLY PREDICTING CANDIDATE 

METABOLITES USING STEPWISE SELECTION 

Nutrient 
hilic_
1015 

Thre
onine 

Histi
dine 

hilic
_243 

hilic
_996 

lipid
_278 

hilic
_291 

Cho
line 

hilic
_294 

hilic
_153 

hilic
_179 

hilic
_353 

hilic
_383 

Alpha 
Carotene 
mcg 

 1 1    1       

AOAC fiber 
gm 

 1  1          

Vitamin B12 
mcg 

1   1    1     1 

Vitamin B1 
mg 

1             

Vitamin B2 
mg 

1      1  1     

Vitamin B6 
mg 

     1   1     

Beta 
Carotene 
mcg 

   1    1      

Beta 
Cryptoxanth
in mcg 

1  1   1 1  1  1  1 

Caffeine mg 
 1  1     1     

Calcium mg 1       1 1     

Copper mg 
             

Linoleic gm 
  1  1    1 1 1  1 

Linolenic 
fatty acid gm 

    1         

Arachadonic 
fatty acid gm 

             

Eicosapenta
enoic fatty 
acid (EPA) 
gm 

        1     

Docosapenta
enoic fatty 
acid (DPA) 
gm 

1    1  1 1   1  1 

Docosahexae
noic fatty 
acid (DHA) 
gm 

    1         

Free 
Choline, 
choline-
contributing 
metabolite 
mg 

1             

Choline from 
Glycerophos

       1      
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phocholine, 
mg 

Iron mg 
          1   

Potassium 
mg 

1      1 1      

Lutein and 
Zeaxanthin 
mcg 

             

Lycopene 
mcg 

1  1    1 1   1   

Magnesium 
mg 

          1  1 

Manganese 
mg 

     1        

Monounsatu
rated fat gm 

   1    1    1  

Vitamin B3 
mg 

        1    1 

Choline from 
Phosphochol
ine, mg 

1       1      

Phospherou
s mg 

       1     1 

Choline from 
Phosphatidy
lcholine, mg 

1   1 1    1    1 

Saturated fat 
gm 

             

Choline from 
Sphingomyel
in, mg 

    1         

Total Sugars 
gm 

 1  1 1 1  1    1  

Protein gm 1             

Vitamin E 
         1    

Vitamin C 
mg 

1      1   1 1  1 

Vitamin D IU 
   1          

Phylloquino
ne Vitamin 
K1, mcg 

1 1     1  1    1 

Zinc mg 
     1        

1 = nutrient was selected as a predictor of the metabolite in stepwise regression 

 


