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Thesis directed by Associate Professor Jay R. Hesselberth 

ABSTRACT 

Recent development of high throughput single cell methods has expanded our 

understanding of tissue heterogeneity, cell states, and developmental biology. Current single cell 

methods aim to understand cell function and phenotype by measuring a variety of cell features, 

like DNA sequence, mRNA abundance, chromatin accessibility, cell surface proteins, and histone 

modifications. However, cell phenotypes are regulated by a number of factors that escape the 

abundance measurements of current single cell methods.  

To directly measure cell phenotypes, I developed a method to measure enzyme activities 

in single cells. To this end, I designed DNA repair substrates that can be used to measure strand 

incision events catalyzed by endogenous DNA repair enzymes and called the method “Haircut”. 

Haircut semi-quantitatively measures base excision repair and ribonucleotide excision repair and 

has been adapted to work simultaneously in a single cell mRNA sequencing experiment.  

Using Haircut, I measured mRNA expression and DNA repair activities in primary human 

immune cells and found differences in several DNA repair enzyme activities between immune cell 

types. Some of the repair activity measurements were supported by mRNA abundance 

measurements in those cell types. While other activities, especially those catalyzed by multimeric 

proteins, did not correlate with gene expression measurements. Additionally, I used Haircut to 

measure mRNA expression and DNA repair heterogeneity in immune cells from a preliminary 

cohort of individuals with trisomy 21 and found no differences in DNA repair between individuals 

with trisomy 21 and individuals with disomy 21.  



 iv 

In summary, I developed a platform to measure enzymatic activities in single cells. I used 

Haircut to measure known and previously unknown differences in DNA repair across immune cell 

types. The platform I developed can be modified to measure other enzymatic activities and mRNA 

expression in thousands of single cells and can be expanded further to measure many enzymatic 

activities in millions of cells. Cell phenotypes are regulated by many complex mechanisms and 

are difficult to predict using DNA sequence or gene expression alone. Single cell analysis of 

biochemical phenotypes has the potential to bridge the gap between gene expression and cell 

function and provide direct functional readouts where other single cell methods cannot.  

 

The form and content of this abstract are approved. I recommend its publication.  

Approved: Jay R. Hesselberth 
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CHATPER I 

INTRODUCTION 

Each day cells incur hundreds to millions of DNA damage events that are efficiently and 

accurately repaired by an elegant set of DNA repair enzymes. Cell metabolism, cell division, and 

environmental exposures can cause identical alterations to DNA bases that can lead to strand 

distortions, mismatches, stalled replications forks, and DNA strand breaks. Given the mutagenic 

potential of many DNA damage events, it is only through highly efficient DNA repair mechanisms 

that cells are still able to maintain a stable genome with >99.99% accuracy (Nishant, Singh, and 

Alani 2009). However, this nearly perfect DNA repair system is not static; as it can differ between 

individuals, cell types, cell cycle phases, and can change with age and upon the onset of disease. 

Methods that stem from classical biochemical assays to high-throughput sequencing have been 

used to characterize, in detail, the key enzymatic factors that regulate DNA repair in live cells and 

in cell extracts. These methods have contributed to a wide body of literature describing the 

importance of DNA repair in cancer development, treatment and the heterogeneous nature of DNA 

repair in tumors and healthy individuals. In the following dissertation, I will describe my 

contribution to the DNA repair field in the development of a multiplexed, high throughput method 

to measure the activity of DNA repair enzymes in single cells.  

Heterogeneity is a cornerstone of biological diversity. New methods to examine cells and 

tissues at single-cell resolution can measure mRNA, DNA, chromatin accessibility, and proteins  

at unprecedented resolution and throughput (Stuart and Satija 2019a). These methods have greatly 

expanded our understanding of cell heterogeneity in complex tissues, cell responses, development, 

and diseases; however, their reliance on measuring the abundance of molecules makes it difficult 

to fully understand biochemical phenotypic heterogeneity. Our understanding of phenotypic 
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heterogeneity through these methods often relies on one key assumption: RNA abundance is 

directly correlated to protein abundance that is directly correlated to protein activity. While this 

assumption may be generally true, it ignores several known cellular mechanisms for post 

transcriptional and post translational regulations that ultimately change protein activity 

independently of RNA and protein abundance. Directly measuring biochemical activities in single 

cells is a new modality in which we can measure phenotypic heterogeneity in complex cell 

populations. In this dissertation I will describe my contribution to the single-cell field in the 

development of a single-cell method to measure DNA repair enzyme activities within the context 

of a single-cell mRNA sequencing method. 

DNA damage 

DNA damage is ubiquitous and common in all cells. Hundreds to millions of DNA damage 

events can occur each day in human cells from endogenous and exogenous sources (Figure 1.1). 

Deoxyuracil, ribonucleotides, and mismatches can be incorporated by all replicative DNA 

polymerases into nascent DNA (Goulian, Bleile, and Tseng 1980a; Nick McElhinny et al. 2010; 

Kunkel, Roberts, and Sugino 1991). Products of cellular metabolism can create oxidative and 

alkylative lesions and deamination events. Spontaneous decay of DNA bases can lead to many of 

the DNA damage events that arise in cells (Lindahl 1993). Environmental exposure can also lead 

to single-base oxidation and alkylation events, bulky adducts, and accelerate the decay of DNA 

bases. To maintain a stable genome and cellular homeostasis, cells have multiple, and often 

redundant, DNA repair pathways. The efficiency of these DNA repair pathways leads to only 

~50,000 steady-state DNA damage events (Swenberg et al. 2011) and 2-10 mutations per genome 

per cell division (Nishant, Singh, and Alani 2009). 
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Figure 1.1: DNA damage and repair are diverse and essential for maintaining a stable 
genome 
 
DNA damage events occur on the order of hundreds to one million events per day and can arise 
from environmental exposure and metabolic and cellular processes. DNA damage events are 
removed in a relatively error-free manner by one of several, somewhat overlapping, DNA repair 
pathways. DNA repair pathways are important to maintain a stable genome and preventing many 
human disorders and cancers. 
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Not surprisingly, if DNA repair factors expression or functions are altered, it can lead to a 

number of human diseases and cancers (Nagel, Chaim, and Samson 2014). When DNA repair 

factors are less effective it can lead to the development of cancer, however, given that many 

chemotherapies induce DNA damage, if DNA repair factors are overactive it can lead to 

chemotherapy resistance in many cancers. In fact, the expression or activity level of DNA repair 

factors can predict cellular sensitivity to DNA damaging chemotherapies (Nagel et al. 2017; 

Kitange et al. 2009). Given this double-edge role of DNA repair, it is not surprising that DNA 

repair is an important biomarker in cancer predisposition and chemotherapy response (Torgovnick 

and Schumacher 2015). 

Heterogeneity in DNA repair capacity 

While DNA repair remains an important cellular process, there is a lot of evidence that not 

all cell types or individuals repair DNA at the same rate. DNA repair capacity, or a cell’s ability 

to repair its DNA from the numerous sources of DNA damage, can change with the cell cycle 

(Branzei and Foiani 2008), differ between tissue types, and change with age (Pons et al. 2010a), 

change upon the onset of disease (Nagel, Chaim, and Samson 2014), and differ between 

individuals (Andersson, Stenqvist, and Hellman 2007; Chaim et al. 2017a).  

For example, many DNA repair factors are regulated by the cell cycle in order to couple 

some DNA repair activities with DNA replication and to prevent other DNA repair activities 

during DNA replication or mitosis (Orthwein et al. 2014; Mjelle et al. 2015). The expression of 

several DNA glycosylases is regulated by the cell cycle in addition to replicative DNA 

polymerases and the flap endonuclease Fen1 that play a role in long-patch base excision repair 

(BER). These cell cycle expression differences can partially explain why post-replicative cells 

have lower DNA repair capacity compared to dividing cells (Mansour Akbari et al. 2009). 
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In addition to cell cycle regulation, DNA repair genes have tissue-specific expression 

patterns (Uhlén et al. 2015). For example, there are cell type specific differences in DNA repair 

activities in peripheral blood mononuclear cells in healthy individuals (Amanda L. Richer et al. 

2020a).  Mutations in DNA repair genes often have tissue-specific phenotypes. For example, 

inactivating mutations in nucleotide excision repair genes lead to the disorder xeroderma 

pigmentosum. People with xeroderma pigmentosum have a 2000 fold greater risk of developing 

skin cancer (Kraemer, Lee, and Scotto 1984). Additionally, mutations in the BER factor MYTH1 

cause a predisposition MUTYH-associated polyposis and colorectal cancer (Al-Tassan et al. 

2002). Knockout mouse models have found that inactivation of DNA repair factors can lead to 

tissue-specific tumorigenesis. Other mutations in DNA repair factors can lead to neurological 

disorders, immunological disorders, and premature aging indicating that there are tissue-specific 

differences in DNA repair factor activity (Dion 2014).  

Numerous studies have found significant inter-individual differences in DNA repair 

capacity. Some of these differences can be explained by genetic differences, either through single 

nucleotide polymorphisms or other mutations (Jalal, Earley, and Turchi 2011). Some differences 

in DNA damage between individuals can be explained by differences in diets, although there is 

little decisive evidence to support that diet influences DNA repair capacity (Caple et al. 2010; 

Chang et al. 2010; Slyskova, Lorenzo, et al. 2014). Additionally, normal tissue damage after 

radiation therapy differs greatly between patients, in part due to differences in DNA repair of 

radiation-induced DNA damage (Barnett et al. 2015). Sensitive measurement of DNA glycosylase 

and Ape1 activity in human cells from healthy donors indicate that interindividual variation in 

DNA repair capacity can be useful in predicting the cell’s sensitivity to several DNA damage 

agents (Chaim et al. 2017a).  
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There is also evidence that DNA repair capacity is not stable. An imbalance of DNA repair 

can be a predictor for diseases (Sevilya et al. 2014; Leitner-Dagan et al. 2014; Obtulowicz et al. 

2010; S. C. Lee and Chan 2015). DNA repair capacity can also change with age and disease (Pons 

et al. 2010a; S. Sauvaigo et al. 2007; Forestier, Douki, et al. 2012a). DNA repair is a constant and 

dynamic process in cells that is important to their homeostasis and function.   

Base excision repair 

Single-base lesions that do not distort the DNA backbone are repaired by base excision 

repair (BER) enzymes. BER occurs in four distinct repair steps: (1) The damaged base is excised 

from the DNA backbone by one of eleven DNA glycosylases. (2) The resulting abasic site is 

removed by strand incision. (3) The resulting nick is processed by repair synthesis and end-repair, 

and (4) ligation of the DNA backbone results in a complete repair (Krokan and Bjørås 2013) 

(Figure 1.2).  

DNA glycosylases  

BER is initiated by one of eleven DNA glycosylases in humans that recognize damaged 

DNA bases and cleave them from the DNA backbone. DNA glycosylases recognize one or 

multiple, often chemically similar, damaged bases (Table 1) and hydrolyze the bond between the 

base and the deoxyribose sugar creating an abasic site. DNA glycosylases can initiate repair on 

single- or double-stranded DNA, however, they will only cleave bases that are in an extra helical 

position from double-stranded DNA. DNA glycosylases scan the genome for damaged bases either 

by actively flipping damaged bases out of the major groove (Slupphaug et al. 1996) or by capturing 

damaged bases as they are transiently expelled from the helix (C. Cao et al. 2004). In addition to 

their glycosylase activity, bifunctional glycosylases also have AP lyase activity (described below). 
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Figure 1.2: The steps of base excision repair 
 
Base excision repair occurs in several steps. First, DNA damage is recognized by one of eleven 
human DNA glycosylases and excised from the DNA duplex creating an abasic site. The abasic 
site is then removed either by the lyase activity of bifunctional glycosylases or by the AP 
endonuclease, Ape1. For short-patch BER, the resulting strand incision event can be further 
processed by end-repair enzymes and the single-base gap is filled by the BER DNA polymerase, 
Polβ. The remaining nick is sealed by DNA ligase 1 or 3. For long-patch BER, following strand 
incision and removal of the abasic site, Polβ or the replicative DNA polymerase delta will extend 
several bases and create a single-strand flap. This flap is removed by the flap endonuclease, Fen1, 
and the resulting nick is sealed by DNA ligase 1.  
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Table 1.1: Human glycosylases, their subcellular localization, and their substrates 

Enzyme Subcellular 
localization 

Mono/Bifunctional Substrates 

UNG1,2  Mitochondria, 
Nucleus 

Monofunctional U:A, U:G, 5-FU 

SMUG1 Nucleus Monofunctional U:G, 5-hmU, 5-FU 
MBD4 Nucleus Monofunctional U:G, humU in CpG, T:G 
TDG Nucleus Monofunctional T:G, U:G 
OOG1 Nucleus Bifunctional 8-oxoG:C, Fapy:C 
MUTYH Nucleus Monofunctional A:8-oxoG/C/G 
NTH1 Nucleus Bifunctional Tg, FapyG, 5-hC, 5-hU 
NEIL1 Nucleus Bifunctional Tg, FapyG, FapyA, 8-oxoG, 5-hU 
NEIL2 Nucleus Bifunctional Tg, FapyG, FapyA, 8-oxoG, 5-hU 
NEIL3 Nucleus Monofunctional 

(slow lyase activity) 
FapyG, FapyA 

MPG Nucleus Monofunctional 3-mA, 7-mG, 3-mG, inosine, ethenoA 
 
(Krokan and Bjørås 2013) 
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 DNA glycosylases are important for error-free repair of damaged bases, but many of them 

are not essential. Mice with homozygous knockout of most DNA glycosylases are viable and have 

only a mild accumulation of genomic mutations. This is possibly due to the redundant activity of 

DNA glycosylases, where several glycosylases recognize a single lesion. Moreover, other DNA 

repair pathways like nucleotide excision repair and mismatch repair can repair BER substrates; 

and translesion DNA polymerases can bypass DNA lesions allowing them to persist in the genome 

with relatively error-free consequences (Yoon et al. 2010a; Yoon, Prakash, and Prakash 2009).     

Strand incision 

Following the creation of an abasic site by DNA glycosylases or by spontaneous 

depurination/depyrimidination events, the DNA backbone is cleaved by an AP endonuclease. 

Ape1 is the major AP endonuclease in humans (discussed in detail below), however, bifunctional 

DNA glycosylases also have AP lyase activity. Ape1 activity cleaves on the 5´ side of the abasic 

site creating a 3´-hydroxyl and a 5´-deoxyribose phosphate (5´-dRP). Bifunctional glycosylases 

can remove abasic sites in one of two ways: β-elimination (like NTHL1) or β-δ-elimination (like 

Neil1). β-elimination cleaves on the 3´ side of the abasic site leaving a 3´-unsaturated aldehyde 

and a 5´-phosophate. Bifunctional glycosylases with  δ-elimination activity will remove the 3´-

unsaturated aldehyde leaving a 3´-phosphate (Krokan and Bjørås 2013). In any of these cases, the 

ends need to be processed in order to complete repair.  

End-repair, base filling, and ligation 

The 3´-unsaturated aldehyde product of β-elimination is removed by Ape1 leaving a one-

base gap with 3´-OH and 5´-phosphate ends. The 3´-phosphate product of β-δ-elimination is 

removed by the polynucleotide kinase 3'-phosphatase (PNKP) also leaving a one-base gap with 

3´-OH and 5´-phosphate ends. This one base gap is filled by the DNA repair polymerase Polβ. 
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Polβ also fills the one base gap and removes the 5´-dRP produced by Ape1 endonuclease activity. 

Polβ activity leaves a nick in the DNA backbone and a 3´-OH and 5´-phosphate. DNA ligase I or 

III will ligate the nick leaving an undamaged strand (Krokan and Bjørås 2013) (Figure 1.2). While 

both DNA ligase I and III ligate nicks during BER, DNA ligase I is the main nuclear ligase 

involved in BER (Gao et al. 2011). 

To coordinate enzyme activity during BER, many repair factors are present in complex 

with the globular protein XRCC1. XRCC1 is a structural protein with no enzymatic activity, 

however, it coordinates the localization of the BER factors, Polβ, DNA ligase III, PARP1, REV1, 

and PNKP. XRCC1 has high affinity for nicked or gapped DNA and interacts with many DNA 

glycosylases and may help coordinate the steps of BER (London 2015).    

Long-patch base excision repair  

In contrast to the single-base synthesis BER mechanism described above, also known as 

short-patch BER, some damage events or cell cycle states favor the incorporation of 2-20 

nucleotides in a process known as long-patch BER (Sattler et al. 2003; Mansour Akbari et al. 

2009). The products of bifunctional glycosylase β- or β-δ-elimination are almost exclusively 

repaired by short-patch BER because the presence of an unmodified 5´ nucleoside makes strand-

displacement unlikely (Fortini et al. 1999). However, the presence of the 5´-dRP as a product of 

Ape1 activity can be repaired by either pathway (Figure 1.2). Following the strand incision events 

catalyzed mainly by Ape1, Polβ or another DNA polymerase will incorporate one base and then a 

replicative DNA polymerase will add several bases creating a small flap. The single-strand flap is 

the removed by flap endonuclease 1 (Fen1), leaving a nick that is sealed by DNA ligase 1 (Krokan 

and Bjørås 2013; Sattler et al. 2003).  
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Determination of whether lesions are repaired by short-patch or long-patch BER is 

dependent on a number of factors. First, is the type of DNA damage. Lesions repaired by 

bifunctional glycosylases (like thymine glycol and other oxidative damage events) are almost 

exclusively repaired by short-patch BER, while lesions like ethenoA or abasic sites can be repaired 

by either pathway (Fortini et al. 1999). Second, the abundance of DNA polymerases can change 

the pathway selection. Pre-replicative cells undergo almost exclusively short-patch or two-base 

long-patch BER (Mansour Akbari et al. 2009). Additionally, cell cycle regulation of replicative 

DNA polymerases may lead to an increase in long-patch BER during some cell cycle phases. 

Finally, the abundance of the other cell cycle-regulated factors, like PCNA, promote long-patch 

BER when those factors are present in high abundance (Dogliotti et al. 2001).  

Uracil in the genome 

Sources of deoxyuracil in DNA 

Deamination of cytosine 

Deoxyuracil (dUMP) is one of the most commonly occurring DNA lesions and there are 

several mechanisms in which dUMP arises in the genome. Spontaneous and enzymatic 

deamination of cytosine is a major contributor of dUMP in genomic DNA and approximately 50-

500 deamination events occur per genome per day (Lindahl 1993). Deamination of cytosine is 

inherently mutagenic as it leads to a U:G mismatch, and if not repaired, U:G mismatches will lead 

to C:T transitions during DNA replication. Alkaline hydrolysis of cytosine releasing ammonia 

results in deamination and conversion of cytosine to uracil. While deamination events are a 

common source of dUMP in the genome, the half-life of an individual cytosine is about 30,000 

years in physiological conditions in double-stranded DNA (Lindahl 1993). Conversely, 

deamination rates occur ~100 times faster in single-stranded DNA compared to double-stranded 
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DNA (Lindahl 1993; Krokan, Drabløs, and Slupphaug 2002). This difference in stability in double-

stranded vs single-strand DNA accounts for some of the differences in uracil accumulation 

between cell types. For example, cytosine deamination occurs on the order of 40 times more 

frequently in S. cerevisiae than E. coli, potentially due to slower rates of transcription in eukaryotes 

that results in more single stranded DNA being present in eukaryotic cells compared to E. coli 

(Lindahl 1993).  

In addition to spontaneous deamination, activation-induced cytosine deaminase (AID) 

activity catalyzes the deamination of cytosines in a CpG context and is a major contributor to 

somatic hypermutation and recombination in immunoglobulin genes (Krokan, Drabløs, and 

Slupphaug 2002). AID activity is critical for antibody diversification and class switch 

recombination in B cells. AID catalyzes the deamination of cytosine in the immunoglobulin locus 

leading to an accumulation of C to T transitions after DNA replication (Di Noia and Neuberger 

2007). Error-prone repair of U:G mismatches in immunoglobulin genes can lead to additional 

mutations. Base excision repair of U:G in class switching regions leads to the formation of double 

stranded breaks that are crucial for recombination events in the immunoglobulin locus. In fact, 

individuals with mutations in AID develop immunodeficiencies (Revy et al. 2000).  

Some evidence also suggests that RNA editing enzyme, APOBEC, can also deaminate 

cytosine in DNA. Specifically, APOBEC3 family of enzymes have been characterized by their 

role in deamination of viral genomes (Willems and Gillet 2015). However, recent evidence 

suggests that some APOBEC3 enzymes act upon genome DNA (Landry et al. 2011). Mutations in 

APOBEC3 family members are associated with many cancers and result in APOBEC-specific 

mutational patterns in these cancers (Rebhandl et al. 2015). APOBEC3 also inhibits transposition 

of LINE-1 elements in deamination dependent and independent mechanisms by deaminating the 



 13 

LINE-1 cDNA and promoting its degradation  (Feng et al. 2017). It is still unknown how 

APOBEC3 activity is regulated in the nucleus and whether its activity on genomic DNA is 

regulated or an off-target effect of innate immune response (Narvaiza, Landry, and Weitzman 

2012).  

Incorporation of dUTP 

Incorporation of dUTP during DNA replication can lead to additional dUMP accumulation 

throughout the genome. dUTP is a naturally occurring intermediate in dTTP biogenesis and unlike 

deamination of cytosine, incorporation of dUTP is not inherently mutagenic. In proliferating cells, 

it is estimated that one dUTP is incorporated for every 104 dTTPs (Goulian, Bleile, and Tseng 

1980c, 1980a), meaning that on the order of 80,000 uracil bases are incorporated each cell division. 

Mammalian DNA polymerases do not discriminate between dUTP and dTTP and will incorporated 

both with equal affinity (Wardle et al. 2008). To limit the amount of uracil incorporated into 

healthy cells, the intracellular levels of dUTP are maintained at a low abundance compared to 

dTTP (0.2 and 37 uM respectively) (Traut 1994). There are three pathways in cells that help 

maintain the dTTP:dUTP ratios: dUTP degradation by dUTPase, de novo dTMP biosynthesis, and 

salvage dTMP biosynthesis. 

dUTP regulation by dUTPase 

dUTPase is a ubiquitous enzyme that converts dUTP to dUMP. dUTPase plays an 

important role in maintaining low cellular levels of dUTP to reduce the rate of dUTP incorporation 

into DNA. The product of dUTPase activity, dUMP, feeds into the de novo dTTP biosynthesis 

pathway (Hirmondo et al. 2017).  When dUTPase is knocked down in human cells, intracellular 

dUTP levels increase and cell proliferation rates decrease (Studebaker et al. 2005). High nuclear 

dUTPase activity can counteract the cytotoxicity of inhibiting the de novo dTTP biosynthesis 
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pathway, indicating that high dUTP level may be toxic to cells (Ladner et al. 2000; Tinkelenberg, 

Hansbury, and Ladner 2002).  

De novo dTMP biosynthesis 

De novo dTMP biosynthesis generates dTMP from dUMP through a multistep process 

involving several enzymes and a cofactor tetrahydrofolate (THF). Reduction of cellular folate 

pools by antifolates or by limiting dietary folate, results in more dUTP in cells and in the genome 

through reduction in de novo dTMP biosynthesis (Blount et al. 1997; Duthie et al. 2010; Goulian, 

Bleile, and Tseng 1980a). Direct inhibition of de novo dTMP biosynthesis enzymes also result in 

more dUTP in cells and in the genome (J. Chon, Field, and Stover 2019; Paone et al. 2014; 

MacFarlane et al. 2011; Blount et al. 1997). For example, heterozygous knockout of the de novo 

dTMP biosynthesis enzyme SHMT1 in mice leads to accumulation of uracil in some cell types and 

a neural tube developmental defect. This phenotype is exacerbated in mice fed a low-folate diet 

(MacFarlane et al. 2011). Mandy common chemotherapies (like 5-fluorouracil and pemetrexed) 

can inhibit de novo dTTP biosynthesis by sequestering or inhibiting thymidylate synthetase (J. 

Chon, Field, and Stover 2019). Thymidylate synthetase catalyzes the conversion of dUMP to 

dTMP and plays an important role in maintaining the ratio of dTTP to UTP. De novo dTMP 

biosynthesis helps maintain the dTTP:dUTP ratios by actively converting dUMP to dTMP and any 

disruption in this pathway can lead to increased dUTP accumulation and incorporation into DNA 

(J. Chon, Field, and Stover 2019). 

Salvage dTMP biosynthesis 

In addition to de novo dTMP biosynthesis, the salvage dTMP biosynthesis pathway also 

helps maintain cellular dTMP levels. Phosphorylation the thymidine nucleoside by thymidine 

kinase (TK1in the cytoplasm and nucleus and TK2 in mitochondria) replenishes cellular dTMP 
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pools. Cytotoxicity of antifolates in cancer cells increases upon knockdown of TK1 because 

antifolates and TK1 knockdown inhibit redundant de novo and salvage dTMP biosynthesis 

pathways (Di Cresce et al. 2011). Thymidine kinase also plays a role in recovering from DNA 

damage. Cells deficient in thymidine kinase are more sensitive to UV and gamma radiation 

(McKenna and Hickey 1981; McKenna, McKelvey, and Frew 1988).  Genotoxic stress also leads 

to an increase in nuclear localization of TK1 and better survival of cancer cells (Y.-L. Chen, 

Eriksson, and Chang 2010).  

Repair of deoxyuracil in DNA 

Uracil-DNA glycosylase - UNG 

The uracil DNA glycosylase, UNG, is responsible for removing most of the uracil 

throughout the genome (Figure 1.3a). This monofunctional glycosylase recognizes uracil though 

a conserved leucine residue. UNG scans the genome through stochastic movements (Friedman, 

Majumdar, and Stivers 2009). When UNG is bound to a uracil base in a DNA chain, it hydrolyzes 

the N-glycosidic bond through the conical pinch–push–plug–pull mechanism, creating an abasic 

(AP) site (Jiang and Stivers 2002). The repair process is continued by the AP endonuclease, Ape1, 

that cleaves the 5´ side of the AP site leaving a 3´-OH and a 5´-dRP. DNA polymerase beta (PolB) 

continues the processes by synthesizing a new base and removes the 5´-dRP flap, and thus filling 

in the 1 nucleotide gap and leaving a 3´-OH and a 5´-phosphate nick in the DNA backbone. The 

process is completed by DNA ligase 1, which seals the DNA backbone (Figure 1.3a). The above 

steps are canonical base excision repair steps that are explained in further detail above in the base 

excision repair section. 
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Figure 1.3: Repair of single-base DNA lesions by BER and RER pathways 
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a.  Deoxyuracil is incorporated into the genome during DNA replication by DNA polymerases or 
created by deamination of cytosine residues. Uracil is removed by one of four glycosylases 
depending on the base-pairing and other factors. Repair is completed by BER enzymes resulting 
in clean DNA. Opaque yellow circles represent 5´-phosphates that can be captured in our single-
cell DNA repair method, Haircut.  
 
b.  Ribonucleotides are incorporated into the genome during DNA replication by DNA 
polymerases. Ribonucleotide excision repair is initiated by RNaseH2, which cleaves on the 5´ side 
of the ribonucleotide. The resulting danglingly 5´-rNP is processed by Ape1, Polδ, and DNA ligase 
1 or 3 for error-free repair. Top1 can also remove ribonucleotides through error-free and error-
prone mechanisms.   
 
c.  Abasic sites created by depurination, depyrimidination, or DNA glycosylase activity are 
removed by Ape1 and subsequence BER enzymes.  
 
d.  The oxidative lesion 8-oxoG (left) is removed by the bifunctional DNA glycosylase OGG1 
leaving a 3´-unsaturated aldehyde (UA) and a 5´-phosphate. The 3´-UA is removed by Ape1 and 
subsequence BER steps lead to complete repair. If 8-oxoG is mispaired with an adenine, the 
monofunctional DNA glycosylase MUTYH will remove the adenine and Ape1 will remove the 
abasic site (middle). Polβ or Polλ will incorporate a cytosine across from the 8-oxoG and OGG1 
can remove the OGG1 in an error-free manner. The oxidative lesion thymine glycol (Tg) is 
removed by bifunctional DNA glycosylases Nth1, NEIL1, NEIL2, or NEIL3. Nth1 leaves a 3´-
UA and 5´-phosphate that is further processed by Ape1, Polβ, and DNA ligase 1 or 3. NEIL1, 2, 
and 3 have β,δ-lyase activity that leaves a 3´-phosphate, 5´-phosphate, and a single-base gap. The 
3´-end is dephosphorylated by PNKP and Polβ and DNA ligase 1 or 3 will completely repair the 
strand break. 
 
e.  Oxidative removal of methylated cytosine residues at CpG sites is carried out by sequential 
oxidation of 5mC to 5hmC to 5fC to 5caC. 5fC and 5caC are removed by the monofunctional 
glycosylase TDG and repaired completely by BER enzymes. 
 
f.  Alkylative lesions like N3mA and deaminated adenines are removed by the monofunctional 
glycosylase MPG and other BER enzymes for complete repair. The alkylative lesion O6mG is 
removed by the single-use methyltransferase, MGMT, which removes the methyl group and leaves 
an undamaged guanine residue.  
 
Symbols: Transparent yellow circles are sites of DNA damage. Opaque yellow circles indicate 5´-
phosphates that can be captured in our single-cell DNA repair assay, Haircut. Ø is an abasic site. 
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UNG is the primary glycosylase that removes dUMP that is incorporated during DNA 

replication. UNG is differentially transcribed from the Ung gene locus to make two isoforms - 

UNG1 and UNG2 (Slupphaug et al. 1995). UNG1 and UNG2 have the same catalytic domain, but 

different N-terminal sequences lead to differential localization. The N-terminus of UNG1 contains 

a mitochondrial localization sequence and the N-terminus of UNG2 contains a nuclear localization 

sequence (Nilsen et al. 1997). UNG2 localizes to the nuclease and colocalizes with the DNA 

replication complex. Specifically, the N-terminus of UNG2 contains binding motifs for the DNA 

replication factors PCNA and RPA (Otterlei et al. 1999). UNG2 is also located diffusely 

throughout the nucleoplasm, indicating it plays a role in the removal of deaminated cytosines 

outside of DNA replication (Kavli et al. 2002). UNG2 transcription is cell-cycle regulated and 

peaks during S-phase, indicating its importance in removing dUMP incorporated during DNA 

replication (Olinski, Jurgowiak, and Zaremba 2010). UNG1, however, is not cell cycle regulated 

and is also lacking PCNA and RPA binding domains. However, UNG1 expression increases after 

oxidative stress, indicating mitochondrial BER may be important in responding to oxidative 

damage (M. Akbari et al. 2007). 

UNG1 and UNG2 have identical catalytic domains and their activity will be described 

under the umbrella name, UNG. UNG will remove uracil from single-stranded or double-stranded 

DNA and has a high turnover rate that is compatible with repairing uracil simultaneously with 

DNA replication as it travels with the rapidity moving replication fork (Krokan, Drabløs, and 

Slupphaug 2002). Additionally, UNG will remove uracil from a U:A base pair or U:G mismatch 

with similar affinity, although the sequence of surrounding bases can effect UNG cleavage rates 

(Nilsen et al. 1995; Slupphaug et al. 1995). Cells with inactivating mutations in UNG (UNG -/-) 

accumulate approximately 10 fold more uracil compared to wild-type cells (Nilsen et al. 2000). 
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Conversely, the spontaneous mutation rates in UNG-/- mice are only modestly increased 1.3-1.5 

fold, most likely due to the compensating activity of other uracil-DNA glycosylases (SMUG1, 

MBD4, and TDG). In contrast, ung𝛥 S. cerevisiae and UNG-/- immortalized cell lines accumulate 

3-20 times more mutations than wildtype cells, possibly due to the increased growth rate (Radany 

et al. 2000; Impellizzeri, Anderson, and Burgers 1991). Since most dUMP is incorporated during 

DNA replication, it is likely that as cells undergo more cell divisions, they accumulate more and 

more uracil that can lead to increased mutation rates with each cell division. 

Other uracil glycosylases - SMUG1, MBD4, and TDG 

In addition to UNG, there are three other uracil DNA glycosylases (Figure 1.3a). Single-

strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is the main enzyme 

responsible for removing the oxidation lesion, 5´-hydroxymethyluracil (5hmU), from single-

stranded or double-stranded DNA (An et al. 2005). SMUG1 will also remove uracil from U:G 

mismatches but will not recognize U:A base pairs (Kavli et al. 2007). In the absence of UNG, there 

is a significant increase in uracil in the genome, however, the cells are not inherently mutagenic 

due to the removal of mutagenic U:G mismatches by SMUG1. When both UNG and SMUG1 are 

knocked out or knocked down in cells, the number of mutations increases and cells are more 

sensitive to gamma radiation (An et al. 2005). While SMUG1 and UNG have similar substrates, 

they still have nonredundant functions in cells. 

Two additional glycosylases recognize uracil in double-stranded DNA, thymine-DNA 

glycosylase (TDG) and methyl-CpG binding domain 4, DNA glycosylase (MBD4). TDG removes 

T and U from T:G and U:G mismatches. TDG will also remove 5hmU from double-stranded DNA 

(Jacobs and Schär 2012). Like SMUG1, TDG is a very low turnover enzyme because it binds 

tightly to the AP site product (Visnes et al. 2009). Its activity is enhanced with the addition of 
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Ape1 because Ape1 will displace TDG from the AP site (Waters et al. 1999). MBD4 will recognize 

the same substrates as TDG, however it binds much stronger to T:G mismatched in methylated 

CpG sites indicating its role in repairing deaminated 5´-meC in methylated CpG sites (Hendrich 

et al. 1999). MBD4 also interacts with mismatch repair (MMR) machinery, indicating it may play 

a distinct role in repair (Bellacosa et al. 1999).    

Uracil repair and genome stability and cancer 

While U:A base pairs are not inherently mutagenic, the removal of uracil from DNA by 

base excision repair enzymes creates single-stranded breaks. An accumulation of single-stranded 

DNA breaks throughout the genome can lead to regions that have double-stranded breaks that are 

inherently mutagenic and cytotoxic. UNG-/- mice only have ~1.5 fold increase in spontaneous 

mutational rates compared to wildtype mice, indicating that the majority of uracil accumulation in 

the genome is non-mutagenic or removed by other uracil DNA glycosylases (SMUG1, MBD4, 

and TDG) (Nilsen et al. 2000). However, yeast with a deletion in dUTPase have a mutator 

phenotype that is exacerbated by inactivation AP endonucleases (Guillet, Van Der Kemp, and 

Boiteux 2006). Additionally, the mutator phenotype in dUTPase null yeast is alleviated by 

codeletion in the uracil DNA glycosylase UNG (Guillet, Van Der Kemp, and Boiteux 2006). This 

indicates that U:A base pairs are not mutagenic, but their repair by UNG can lead to genotoxic 

stress and mutagenesis.  

U:A base pairs can also alter cell homeostasis when uracil in present within the coding 

regions of the genome. Using ectopic EGFP plasmids that contain or do not contain uracil in the 

coding region of EGFP, Lühnsdorf, et. al (2014), found that EGFP expression was reduced in the 

uracil-containing plasmid, but the expression levels recovered in UNG knockdown cells. The 

authors concluded that RNA polymerases do not stall at uracil in the template, but repair of the 
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uracil and creation of transient abasic sites and strand breaks does impair transcription rates 

(Lühnsdorf, Epe, and Khobta 2014).  

Genomic uracil may also impair the affinity of DNA binding proteins. In vitro evidence 

indicates that some transcription factors have lower affinity for U:A base pairs present in 

transcription factor binding sites (Verri et al. 1990). U:A base pairs may also change secondary 

DNA structures that could alter DNA binding protein affinity (N. Yan et al. 2011; Marathe and 

Bansal 2010). However, there has not been significant in vivo data to suggest that genomic uracil 

significantly changes the functions of DNA binding proteins (J. Chon, Field, and Stover 2019).  

Uracil and cancer 

Intracellular dUTP levels are altered with several classes of chemotherapies, including 

thymidine synthetase inhibitors and antifolates. Alterations in dUTP levels either through 

inhibition of dTTP synthesis or alterations in folate metabolism leads to DNA damage and cell 

death mostly through a P53 and PARP1 dependent manner (J. Chon, Field, and Stover 2019).  

TS inhibitors 

5-fluorouracil (5-FU) is a common chemotherapy. 5-FU is cytotoxic through multiple 

mechanisms. One mechanism is that 5-FU will bind and inhibit thymidine synthetase, which 

converts dUMP to dTMP. This leads to an accumulation of dUMP that can be phosphorylated to 

dUTP and incorporated into the genome (Wyatt and Wilson 2009). 5-FU toxicity can be partially 

mitigated by overexpressing dUTPase, which will keep cellular dUTP levels lower by 

dephosphorylating dUTP to dUMP (Canman et al. 1994; Parsels et al. 1998). For a long time, the 

pervasive theory was that removal of uracil from the genome resulted in an accumulation of single-

strand and double-strand breaks that overwhelm cellular DNA repair pathways and lead to cell 

death (Dianov et al. 1991). However, the toxicity of 5-FU is only mildly dependent on UNG 
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expression (Andersen et al. 2005) and 5-FU toxicity is higher in combination with UNG inhibition 

(Y. Yan et al. 2016) indicating that 5-FU toxicity is not solely due to increased genomic uracil nor 

is it dependent on UNG-induced single-strand breaks.  

In addition to altering nucleotide pools, 5-FU and its deoxynucleotide metabolite, 5-

fluorodeoxyuridine (5-dFU) can be incorporated into DNA (Wyatt and Wilson 2009). The 

literature behind the removal of 5-FU from genomic DNA is long and complicated, however, all 

uracil glycosylases have also been shown to remove 5-FU from DNA (Wyatt and Wilson 2009). 

Regardless of which glycosylase is the most important, if not repaired, 5-FU causes DNA 

polymerases to stall, leading to stalled or collapsed DNA replication forks. These 5-FU induced 

stalled replication forks are one of the main modes of 5-FU toxicity in cells (Y. Yan et al. 2016; 

Huehls et al. 2016). 

Antifolates 

Antifolates, like methotrexate and pemetrexed, generally inhibit folate metabolism, purine 

synthesis, and pyrimidine synthesis in cells. Methotrexate binds to dihydrofolate reductase 

(DHFR). DHFR catalyzes the conversion of dihydrofolate to tetrahydrofolate, which is a cofactor 

in de novo thymidine synthesis (Gonen and Assaraf 2012). Folate is also involved in other purine 

and pyrimidine metabolism pathways, and therefore methotrexate will broadly alter nucleotide 

pools. Antifolates also lead to oxidative DNA damage and an accumulation of 8-oxoG lesions. 

These lesions are lethal in cells that are null for the mismatch repair protein MSH2 (Martin et al. 

2009). Pemetrexed inhibits thymidine synthetase, which leads to a depletion in dTTP and an 

accumulation of dUMP (Berger, Pittman, and Wyatt 2008). An imbalance of dTTP:dUTP levels 

leads to accumulation of uracil in the genome that can result in cytotoxic and mutagenic events 

discussed above. 
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Toxicity of methotrexate may depend on the accumulation of uracil in the genome and 

DNA repair mechanisms may play a role in reducing methotrexate toxicity. UNG expression, but 

not protein abundance or activity, increased in developing rats upon exposure to methotrexate 

(Vinson and Hales 2002). Folate deficiency (induced by a folate-deficient diet) in UNG-/- mice, 

but not UNG+/+ mice, leads to neurodegeneration (Kronenberg et al. 2008). Folate deficiency 

induced by methotrexate treatment increased cell death in UNG-/- cell lines (Kronenberg et al. 

2008). Treatment with methotrexate leads to uracil being incorporated in the genome (Goulian, 

Bleile, and Tseng 1980a). Together, these data indicate that methotrexate-induced genomic uracil 

is toxic and removal of genomic uracil by UNG mitigates some of the toxic effects of methotrexate. 

Pemetrexed toxicity is also increased in UNG-/- cells (L. D. Weeks et al. 2014) and UNG 

expression determines pemetrexed sensitivity in lung cancer (Lachelle D. Weeks, Fu, and Gerson 

2013). These are just a few examples that highlight the unique interplay between DNA damage 

and DNA repair in cancer treatments. 

Heterogeneity in uracil repair 

There are several examples that highlight the heterogeneity of uracil repair. First, uracil 

repair is not the same across individuals. Chaim, IA, et. al. (2017) found that uracil repair capacity 

(on a U:G substrate) differed between a panel of cell lines and between individual donors. The 

differences in repair capacity was also used to predict cell line sensitivity to pemetrexed (Chaim 

et al. 2017a). Second, UNG expression alone can be used to determine sensitivity to pemetrexed 

(L. D. Weeks et al. 2014), indicating that UNG expression differences may be a source of inter- or 

intratumoral heterogeneity. Third, UNG expression and activity can vary across human PBMC 

cell types (Uhlén et al. 2015; Amanda L. Richer et al. 2020a). Finally, in addition to UNG 

heterogeneity, the other uracil DNA glycosylases also have tissue and cell cycle regulation that 



 24 

can contribute to heterogeneity in uracil repair (Uhlén et al. 2015; Di Noia, Rada, and Neuberger 

2006).  

Ribonucleotides in the genome 

Sources of ribonucleotides in DNA 

The concentration of intracellular ribonucleotides (rNTPs) are much higher than dNTPs by 

~ 30-200 fold in budding yeast (Nick McElhinny et al. 2010) and 10-130 fold in human cells (Traut 

1994). To prevent the incorporation of rNTPs into DNA, DNA replicative polymerases exclude 

the 2´-hydroxyl (2´-OH) moiety of rNTPs with a conserved tyrosine residue (Brown and Suo 

2011). The tyrosine residue acts as a ‘steric gate’ and inhibits rNTPs from entering the active site 

of DNA polymerases. While this exclusion favors the binding and incorporation of dNTPs into 

nascent DNA chains, all DNA polymerases can accommodate and incorporate rNTPs into DNA 

(Nick McElhinny et al. 2010). In budding yeast, in vitro evidence suggests that at least 13,000 

ribonucleotides are embedded into DNA during DNA replication (Nick McElhinny et al. 2010), 

and in vivo evidence suggests that one ribonucleotide is incorporated every 6,500 bases (Lujan et 

al. 2013). In human cells, on the order of one million ribonucleotides are incorporated in DNA 

during each cell division (Clausen et al. 2013a), including ~5% of the lagging strand in the form 

of RNA primers called Okazaki fragments (L. Zheng and Shen 2011). These measurements make 

ribonucleotides the single most common lesion in the DNA duplex in cells (Kellner and Luke 

2020).  

While DNA polymerases generally incorporate single rNMPs into nascent DNA chains, 

short RNA-DNA hybrids occur naturally during DNA replication in the form of RNA primers 

(Okazaki fragments) that are essential for lagging strand DNA synthesis. Okazaki fragments are 

efficiently removed by the DNA replication machinery by short- or long-flap pathways where 
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DNA polymerase δ displaces the RNA primer and flap endonuclease 1 (Fen1) cleaves the resulting 

flap (L. Zheng and Shen 2011) . RNA-DNA hybrids also transiently occur during transcription; 

however, the nascent RNA chain does not stably interact with the DNA duplex due to the presence 

of RNA binding proteins and topoisomerase 1 (Top1) at the site of transcription (Santos-Pereira 

and Aguilera 2015). In some cases, the stable interaction between nascent (or other) RNA chains 

and DNA create RNA-DNA hybrids that are stable. These hybrids create a displaced ssDNA 

section and are called R-loops. R-loops play an essential role in mitochondrial DNA replication 

and class-switch recombination in immunoglobulin genes (Aguilera and García-Muse 2012; 

Santos-Pereira and Aguilera 2015). However, R-loops are also a source of genome instability 

(Castellano-Pozo, García-Muse, and Aguilera 2012).  

The presence of single ribonucleotides in DNA are also a source of genome instability. 

First, the presence of the 2´-OH on RNA makes it more unstable than DNA and prone to strand 

cleavage via hydrolysis of the phosphodiester bond (Y. Li and Breaker 1999). Second, DNA 

polymerases are inhibited by a ribonucleotide in the template DNA, which can lead stalled DNA 

replication forks (Nick McElhinny et al. 2010; McElhinny et al. 2010). To maintain a stable 

genome, it is important for cells to have an efficient mechanism to remove ribonucleotides from 

DNA. 

Repair of ribonucleotides in DNA 

RNaseH removal of rNMPs 

Cells have two ribonuclease (RNase) enzymes, RNaseH1 (RNaseHI in prokaryotes) and 

RNaseH2 (RNaseHII in prokaryotes), that are responsible for removing rNMPs from the DNA 

duplex. The monomeric RNaseH1 is responsible for the removal of at least four sequential rNMPs 

in a DNA duplex (Cerritelli and Crouch 2009). Human RNaseH1 interacts with 11 bases of the 
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RNA/DNA substrate (Nowotny et al. 2007) and recognizes both strands of the complex (Lima, 

Rose, Nichols, Wu, Migawa, Wyrzykiewicz, Vasquez, et al. 2007; Lima, Rose, Nichols, Wu, 

Migawa, Wyrzykiewicz, Siwkowski, et al. 2007). RNaseH1 interacts with four 2´-OH molecules 

of the RNA strand, indicating that RNaseH1 does not have sequence preference for cleavage 

(Lima, Rose, Nichols, Wu, Migawa, Wyrzykiewicz, Vasquez, et al. 2007; Lima, Rose, Nichols, 

Wu, Migawa, Wyrzykiewicz, Siwkowski, et al. 2007). RNaseH1 is the only enzyme responsible 

for removal of rNPMs in mitochondria (Cerritelli et al. 2003), and plays a role, along with 

RNaseH2, in removal of R-loops in the nucleus (Cerritelli and Crouch 2016).  

In contrast to the monomeric RNaseH1, the heterotrimeric RNaseH2 cleaves single rNMPs 

from DNA (Figure 1.3b). Each subunit of the heterotrimeric RNaseH2 enzyme is necessary for 

RNase activity (Jeong et al. 2004). While RNaseH2 activity is conserved from yeast to humans, 

the sequences of each subunit have diverged significantly, indicating the subunits have coevolved 

(Cerritelli and Crouch 2009). RNaseH2 is composed of three subunits: the catalytic RNaseHA, 

and two structural subunits RNaseH2B and RNaseH2C. RNaseH2B interacts with PCNA in 

proliferating cells, however, disruption of the RNaseH2B - PCNA interaction does not affect 

RNaseH2 activity or processivity (H. Chon et al. 2009), and only mildly disrupts RNaseH2 

localization to the replication fork or PCNA during DNA replication (Bubeck et al. 2011). Taken 

together, these data indicate that RNaseH2 may help regulate removal of rNMPs during DNA 

replication. RNaseH2C is also a scaffolding subunit, and it may coordinate the orientation of the 

catalytic RNaseH2A and PCNA-interacting RNaseH2B subunits, however there is little direct 

evidence supporting this hypothesis. The roles of RNaseH2B and RNaseH2C are not completely 

understood, but their presence is essential for RNaseH2 activity and mutations in any subunit can 

affect RNaseH2 activity (Crow et al. 2006).  
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Much of our understanding of human RNaseH2 comes from studying mutations found in 

patients with the genetic disorder Aicardi-Goutières syndrome (AGS) that affects the brain, spinal 

cord, and immune system. Several mutations in all RNaseH2 subunits have been identified in AGS 

patients; however, there have been no reported complete loss-of-function mutations, indicating 

that RNaseH2 activity is essential in humans (Crow et al. 2006). Substitutions of G37 of the 

RNaseH2A subunit reduce the activity of RNaseH2 because this mutation limits the accessibility 

of the catalytic aspartic acid residue (Rohman et al. 2008). AGS mutations in RNaseH2A (G37S), 

RNaseH2B (K162T, A177T, V185) and RNaseH2C (K143I) all reduce the enzymes activity and 

processivity. Deletion of RNaseH2 subunits in mice is embryonic lethal in a P53 DNA damage 

response dependent mechanism (Reijns et al. 2012). Some evidence suggests that organisms have 

a ribonucleotide tolerance, where the abundance of rNMPs in the genome below the threshold 

activates the innate immune activation and above the threshold results in cell death (Uehara et al. 

2018). However, S. cerevisiae and human cells lines can tolerate deletion of individual RNaseH2 

subunits or in combination and the result is only a minor sensitivity to genotoxic stress (Cerritelli 

and Crouch 2009).  

RNaseH2 has a wide variety of substrates that it can process, including removing single 

rNMPs from a DNA duplex, Okazaki fragments that were improperly removed leaving a residual 

ribonucleotide attached to the DNA strand (Murante, Henricksen, and Bambara 1998), stretches 

of four or more rNMPs in DNA (Jeong et al. 2004), and removal of R-loops (Lockhart et al. 2019). 

RNaseH2 has ribonucleotide excision repair (RER) activity that is responsible for removing most 

of the single rNMPs in the genome (Sparks et al. 2012). The RER mechanism has been 

reconstituted in vitro. RNaseH2 recognizes the 5´ -rNMP - 3´dNMP junction, positioning the 5´-

phosphate of the rNMP and the 2´-hydroxyl of the ribonucleotide in the active site of RNaseH2A 
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(Rychlik et al. 2010). The coordinated metal-ion dependent hydrolysis of the phosphate bond on 

the 5´ side of the rNMP results in a single-strand DNA break with a 3´-hydroxyl and 5´-rNMP 

(Rychlik et al. 2010; Sparks et al. 2012). Pol𝛿 (or Pol𝜀) will displace the 5´-rNMP by one base 

synthesis creating a rNMP flap. The single nucleotide flap is removed by the flap endonuclease 

(Fen1) or the exonuclease, Exo1. Finally, the remaining nick in the DNA is sealed by DNA ligase 

III (Sparks et al. 2012) (Figure 1.3b). 

Top1 removal of rNMPs 

In addition to RNaseH2 RER, topoisomerase 1 (Top1) can remove single rNMPs from 

DNA in vitro (Sekiguchi and Shuman 1997) and in vivo (Williams et al. 2013) (Figure 1.3b). Top1 

removes ribonucleotides incorporated by the leading strand polymerase Pol𝜀 (Williams et al. 

2015). To remove rNMPs, Top1 can catalyze the transesterification of the 3´ phosphate of the 

rNMP, however, instead of re-ligation (as Top1 does on the canonical supercoiled DNA substrate), 

the Top1-phosphate bond will often attack the 2´-OH group of the ribose resulting in Top1 release 

and a 2´-3´ cyclic phosphate ribonucleotide (Kellner and Luke 2020). Top1 cannot re-ligate the 

strand nick of the resulting 2´-3´ cyclic phosphate and the rNMP requires additional processing in 

order to be repaired. Namely, Top1 can cleave two bases upstream of the rNMP and with the 

addition of Tdp1 can repair the ribonucleotide error free (Sparks and Burgers 2015). However, the 

2-5 nucleotide gap created by Top1 can also be realigned and ligated by Top1 that results in a 2-5 

base deletion (Sparks and Burgers 2015) (Figure 1.3b). These 2-5 base deletions are characteristic 

of Top1 mediated slippage mutations (McElhinny et al. 2010; N. Kim et al. 2011). Top1 is the 

main source of genome instability in the absence of RNaseH2 (Kellner and Luke 2020). It is still 

unknown how Top1 recognizes ribonucleotides in DNA. It may be a byproduct of its canonical 

function of relieving supercoiling stress, or it could be a targeted mechanism.  
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Genomic ribonucleotide repair and genome instability and cancer 

While rNMPs in the genome are not inherently mutagenic, rNPMs are subject to 

spontaneous hydrolysis due to the 2-OH group on the ribose that results in single-strand breaks 

(Y. Li and Breaker 1999). However, much of the genomic instability caused by RNaseH2 depletion 

is not due to spontaneous hydrolysis of the rNMP, but due to error-prone Top1 mediated removal 

of ribonucleotides and the lack of R-loop processing (Cornelio et al. 2017). In fact, codeletion of 

𝛥top1 and 𝛥rnh201 (RNaseH2B in mammals) in yeast ameliorates the mutator phenotype that is 

present in 𝛥rnh201 strain (Williams, Gehle, and Kunkel 2017). Codeletion of Top1 and RNaseH2 

subunits in human cell lines decreases the number of single strand breaks and inhibits S phase cell 

cycle arrest caused by RNaseH2 deletion alone (Zimmermann et al. 2018).  

RNaseH2 has two major functions: ribonucleotide excision repair activity that removes 

single rNMPs and processive RNase activity that removes stretches of rNMPs. Studies in yeast 

and mice have been used to tease out the importance of each of these functions in vivo. These 

studies have found that both activities are important for maintaining a stable genome.   

To determine if the single rNMPs are responsible for the lethality of RNaseH2 deletion in 

mice, Uehara, et al. (2018) used a mouse RNaseH2-RED mutant that cannot remove single rNMPs 

but retains its processive rNMP removal activity that removes stretches of rNMPs. The authors 

determined that mouse development in RNaseH2-RED mice halted at the same stage of 

development as the RNaseH2A homozygous deletions (E 8.5) in a P53-dependent manner (Uehara 

et al. 2018). P53 and RNaseH2A double deleted embryos had slightly longer development, 

suggesting that single rNMPs processed by TOP1 may cause strand breaks in DNA that lead to 

cell death (Uehara et al. 2018). Uehara, et al. (2018) also proposed that there is a threshold of 

ribonucleotide accumulation throughout the genome before p53 induces apoptosis during 
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development. If the level of rNMPs is below the threshold, then cells induce an innate immune 

response via type I interferon signaling. If the level of rNMPs is above this threshold, then it leads 

to p53 mediated cell death (Uehara et al. 2018). This theory is somewhat supported by the 

observation in AGS patients where the level of interferon signaling decreases with age as loss of 

mental function declines (Rice et al. 2007). These findings suggest that cell viability decreases due 

to an accumulation of rNMPs that results in cell death as opposed to activation of an innate immune 

response in AGS patients. Additionally, In the absence of RNaseH2, inefficient processing of 

single rNMPs by TOP1 can sequester PARP1, and many cancers with deletions of RNaseH2 

subunits are sensitive to PARP inhibitors (Zimmermann et al. 2018). All this evidence supports 

that RER activity of RNaseH2 plays an important role in maintaining genome integrity and cell 

viability. 

Stretches of rNMPs from nascent transcription in DNA can form R-loops. R-loops can 

promote recombination, a process important in immune cell maturation. However, the presence of 

R-loops also increases the frequency of unregulated recombination events, leading to genome 

instability. R-loop processing by RNaseH2 is not necessary in yeast, possibly due to the redundant 

activity of RNaseH1 (Lockhart et al. 2019). Studies in yeast indicate that R-loops, and not single 

rNMPs, contribute to recombination events and genome instability (Zimmer and Koshland 2016). 

Zimmer and Koshland (2016) found recombination hotspots throughout the genome in RNase 

deficient yeast at probable R-loop formation sites. Additionally, RNaseH2 is required during G2 

to remove R-loops for viability in the absence of RNase1 (Lockhart et al. 2019). These results 

indicate the removal of stretches of rNMP by RNaseH2 also contributes to genome stability.  
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RER and cancer 

Like many DNA repair pathways, mutations in the RER pathway have been linked to poor 

prognosis and aggressive disease progression. In colorectal cancer, co-occurring inactivating 

mutations in RNaseH2 and P53 is associated with poor prognosis (Aden et al. 2019). RNaseH2B 

copy number is altered in chronic lymphocytic leukemia (CCL) and prostate cancer. Additionally, 

two loci on chromosome 13q14 are frequently lost in both CCL and prostate cancer. These loci 

are coincidentally in close proximity to RNaseH2B, so deletion of these loci can often co-occur 

with deletion of RNaseH2B (Kellner and Luke 2020). Cancers deficient in RNASEH2 activity are 

sensitive to PARP1 inhibition, most likely by trapping PARP1 on intermediates caused by Top1 

removal of rNMPs (Zimmermann et al. 2018). Cells with RNaseH2 deletions are also sensitive to 

ATR inhibitors most likely due to the increased replicative stress caused by stalled replication 

forks at genomic rNMPs (Hustedt et al. 2019).  

Hydroxyurea (HU) is a common chemotherapeutic. One major target of HU is 

ribonucleotide reductase (RNR). RNR converts ribonucleotide diphosphates into their respective 

deoxyribonucleotides (Nordlund and Reichard 2006). By blocking RNR, HU significantly reduces 

the abundance of dNTPs, which causes cells to arrest in S phase (Singh and Xu 2016). By reducing 

the abundance of dNTPs in cells, HU also increases rNMP incorporation during DNA replication. 

Deletions or inactivation of RNaseH2 leads to hypersensitivity to HU (Reijns et al. 2012; 

Arudchandran et al. 2000).  

Heterogeneity in RER 

There are several examples of heterogeneity in RER. First, in cancers, which are inherently 

heterogenous, there are several polymorphisms in RNaseH2 that correlate to poor prognosis or 

metastasis risk (Aden et al. 2019; Deasy et al. 2019). Second, while RNaseH2 is expressed in all 



 32 

cells, mutations or deletions in RNaseH2 can lead to tissue-specific tumorigenesis, tissue specific 

disorders (e.g. AGS), and tissue-specific alterations in the innate immune response (Hiller et al. 

2018; Aden et al. 2019; Kellner and Luke 2020; Mackenzie et al. 2016). Third, RNase activity 

plays an important role in immune cell maturation by resolving R-loops to promote class-switch 

recombination in immunoglobulin genes (Maul et al. 2017). Finally, RNaseH2 activity may play 

different roles in repair depending on the cell cycle phase by processing R-loops during G1 and 

removing single rNMPs during S phase (Lockhart et al. 2019). All of these examples show that 

RER can vary across individuals, tissues, and cell cycle phases.  

Abasic sites 

Sources of abasic sites  

Apurinic or apyrimidinic sites (abasic sites or AP sites) are caused by the cleavage of the 

N-glycosidic bond of the deoxyribonucleoside. The N-glycosidic bond of deoxyribonucleosides 

are much more likely to undergo hydrolysis compared to ribonucleosides due to the labile N-

glycosidic bonds that is a consequence of the deoxy-2´ position of ribose (Lindahl 1993). Cellular 

DNA undergoes 3 x 10-11 depurinations per nucleotide residue per second and the rate of 

depurination is 100-500 times faster than that of depyrimidination (Lindahl and Nyberg 1972; 

Lindahl and Karlström 1973). Depurination/depyrimidination measurements in vitro would predict 

that there are approximately 10,000 spontaneous abasic sites formed each day in mammalian cells 

and one study even suggested that there up to ~50,000 steady state abasic sites in liver cells (J. 

Nakamura and Swenberg 1999). 

Depurination rates can increase with some chemical treatments. For example, exposure to 

the alkylating agent methanesulfonate (MMS) can lead to alkylation adducts on purines that 

destabilize the nucleoside leading to spontaneous depurination (Strauss and Hill 1970). Oxidized 
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DNA lesions caused by oxidizing agents also produce unstable nucleosides that decompose to 

form abasic sites (Loeb and Preston 1986). Hydroxyl radicals formed during ionizing radiation can 

also cause depurination events (Loeb and Preston 1986). In addition to spontaneous hydrolysis of 

the N-glycosidic bond of nucleosides, abasic sites are formed by DNA glycosylases that remove 

damaged bases and leave an abasic repair intermediate (Krokan and Bjørås 2013).  

If unrepaired, abasic sites are inherently mutagenic. Abasic sites can halt DNA replication 

machinery and transcription machinery. Bypassing abasic sites during DNA replication can result 

in one-base substitutions or deletions. Abasic sites are unstable and can facilitate cleavage of the 

phosphate backbone ~100 times faster than sites containing a purine or pyrimidine (Loeb and 

Preston 1986). Abasic sites are also chemically reactive and can lead to protein-DNA and DNA-

DNA crosslinks that can be highly mutagenic and toxic to cells (Sczepanski et al. 2010).  

Repair of abasic sites 

The AP endonuclease, Ape1, is the main enzyme responsible for removing AP sites from 

the genome (Figure 1.3c). Ape1 generates a 3´-hydroxyl and 5´-deoxyribose phosphate (5´-dRP). 

This strand break is fully repaired either by short-patch or long-patch BER (discussed above, 

Figure 1.2). Ape1 is an important enzyme for base excision repair, but also may act as a signaling 

protein in response to oxidative stress and as a proofreading exonuclease (Whitaker and 

Freudenthal 2018).  

Ape1 is composed of a rigid C-terminal nuclease domain and a flexible N-terminal domain. 

The C-terminal domain of Ape1 binds directly to the DNA and slides along the strand (Whitaker 

and Freudenthal 2018). Interacting with the phosphodiester backbone, Ape1 searches for abasic 

sites. Ape1 interacts with both the major and minor grooves of the abasic site and will ‘flip out’ 

the abasic site, which is then stabilized within the active site by two domain that interact with the 
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5´and 3´ ends of the abasic site (Whitaker and Freudenthal 2018). Structural studies have 

elucidated a catalytic mechanism in which the coordinated hydrolysis of the phosphate backbone 

can occur within the active site (Whitaker and Freudenthal 2018).  

Ape1 kinetics are predicted to be important for genome stability and are characterized by 

a rapid catalysis and slow product release. The rapid catalysis quickly initiates repair on potentially 

unstable and mutagenic lesions and the slow release may help facility coordination with other BER 

enzymes to shelter the strand break initiated by Ape1 and to ensure the break is fully repaired 

(Whitaker and Freudenthal 2018). Supporting this idea, Ape1 activity is stimulated by the addition 

of other BER proteins: PARP-1, XRCC1, DNA ligase III, PNKP, and Tdp1 (Prasad et al. 2015a).  

In addition to Ape1, there are other enzymes and pathways that have been shown to remove 

AP sites, such as TDP1 (Lebedeva et al. 2012a) and PARP1 (Khodyreva et al. 2010a; Prasad et al. 

2015a). Cleavage of abasic sites can also be catalyzed by bi-functional DNA glycosylases such as 

OGG1 (Dyrkheeva, Lebedeva, and Lavrik 2016). Together these enzymes contribute to error-free 

removal of abasic sites.  

Other activities of Ape1 

In addition to removing abasic sites, Ape1 has several other activities in cells. Ape1 has 3´ 

to 5´ exonuclease activity that can remove damaged bases, chain terminating drugs, blocked 

termini, and mismatched bases on the 3´ end (Whitaker and Freudenthal 2018; Wong, DeMott, 

and Demple 2003; Chou and Cheng 2002, 2003). While the exonuclease activity of Ape1 is much 

slower than its endonuclease activity, the exonuclease activity occurs at a similar rate to other end-

processing enzymes in the cell (namely Ape2, Tdp1, aprataxin, PNK, and the lyase activity of 

Polβ), indicating that the exonuclease activity of Ape1 is biologically relevant (Whitaker and 

Freudenthal 2018). The exonuclease activity of Ape1 can remove several damage events present 
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in cells. For example, bifunctional glycosylases leave a 3´ α,β-unsaturated aldehyde group that 

Ape1 removes in order for complete repair to occur (Figure 1.2). Additionally, Ape1 can enhance 

bifunctional glycosylase (e.g. OGG1) activity by facilitating the release of the glycosylase from 

the incised product (Dyrkheeva, Lebedeva, and Lavrik 2016; Sidorenko, Nevinsky, and Zharkov 

2008). Ape1 removes 3´ 8-oxoguanine that can form due to oxidative damage or as a product of 

OGG1 activity. Ape1 can also remove mismatches that are inserted by the BER Polβ, which can 

incorporate one mismatch for every 4,000 nucleotides (Osheroff et al. 1999). Polβ itself does not 

have proofreading activity, but it is predicted that Ape1 can serve as an extrinsic proofreader for 

BER since Polβ fidelity increases in the presence of other BER factors (Matsuda et al. 2003) and 

recent structural evidence has shown that the catalytic pocket of Ape1 can accommodate a 

mismatched base and can function as a BER proofreader (Whitaker and Freudenthal 2018). Ape1 

can also incise certain DNA adducts produced by ionizing radiation like 5,6-dihydrothymidine 

(Gros et al. 2004). In these cases, the reaction yields a 3´-OH and a dangling 5´ base that can be 

further removed by BER enzymes. 

In addition to its BER roles, Ape1 is also involved in stimulating the DNA binding activity 

of several transcription factors (A. R. Evans, Limp-Foster, and Kelley 2000). The N-terminal of 

Ape1 is essential for its redox activity and has been associated with redox activation of several 

transcription factors including AP-1 that regulates a number of cellular processes (Xanthoudakis 

and Curran 1992; Hirota et al. 1997). Ape1 transcription also increases in the presence of oxidative 

stress, indicating it plays a role in cellular responses to oxidative stress, in part due to endonuclease 

activity (Grösch, Fritz, and Kaina 1998; Fritz et al. 2003).  

Ape1 may also play a role in RNA processing (Antoniali, Malfatti, and Tell 2017). HeLa 

cells with Ape1 knockout express two times more c-myc mRNA (T. Barnes et al. 2009). 
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Additionally, Ape1 may also be involved in cleaving some microRNAs, other mRNAs, and part 

of the SARS-coronavirus (Antoniali, Malfatti, and Tell 2017; W.-C. Kim, King, and Lee 2010). 

Taken together, Ape1 has an essential role in mammalian cells that extends past its endonuclease 

activity. 

Heterogeneity of Ape1 activity  

While Ape1 is ubiquitously expressed in all cell types, its expression level and localization 

patterns differ between tissue types and neighboring cells (A. R. Evans, Limp-Foster, and Kelley 

2000). Expression levels of Ape1 protein and mRNA differ between cell types and tissues. For 

example, within peripheral blood mononuclear cells (PBMCs), Ape1 is most highly expressed in 

dendritic cells compared to all other cell types, including the dendritic precursors, monocytes 

(Uhlén et al. 2015). Additionally, Ape1 nuclear localization differs in normal versus malignant 

tissue (Kakolyris et al. 1998). Ape1 associates with chromatin in cerebellum tissues but not in 

epidermal cells (Duguid et al. 1995). Paradoxically, Ape1 is found almost exclusively in the 

cytoplasm in some cell types, including motor neurons and macrophages (Duguid et al. 

1995).  Cytoplasmic localization of Ape1 may indicate that Ape1 plays a role in relieving oxidative 

stress in those cell types, rather than DNA repair (Kakolyris et al. 1998). Repair of abasic sites 

also decreases with age, possibly due to changes in Ape1 expression or activity (Pons et al. 2010a). 

Taken together, the differential expression and cellular localization indicate that Ape1 may play a 

multifunctional, complex, and heterogenous role in alleviating oxidative stress and DNA repair.  

  



 37 

Oxidative DNA damage and repair 

Sources and types of oxidative DNA damage 

Endogenous sources of oxidative damage 

Endogenous or environmental sources can cause oxidative DNA damage. Identical DNA 

lesions can form regardless of the source of oxidative damage. Endogenous sources of oxidative 

stress come from cell metabolism and induction of the inflammatory response. Metabolic reactions 

can form reactive oxygen species (ROS) in the form of superoxide, hydrogen peroxide, peroxide 

radicals, and singlet oxygen (De Bont and van Larebeke 2004). Most ROS is made during 

mitochondrial oxidative phosphorylation in which 1-5% of oxygen undergoes single-electron 

transfer that generates superoxide anion radicals (Chance, Sies, and Boveris 1979). This 

superoxide is quickly converted to hydrogen peroxide and further to water by superoxide 

dismutase, catalase, and glutathione peroxidase. However, hydrogen peroxide can form a peroxide 

radical if reacted with transition metals. Peroxide radicals are highly reactive and will cause 

oxidative damage to surrounding molecules (De Bont and van Larebeke 2004). These radicals, 

when reacted with DNA, lead to the formation of damaged bases and DNA strand breaks. Some 

cells, like neutrophils and eosinophils produce radicals during an immune response to fight 

infection. Cells exposed to activated neutrophils and eosinophils incur oxidative DNA damage (Z. 

Shen, Wu, and Hazen 2000). While the cell has many mechanisms to reduce cellular ROS, 

oxidative DNA damage events are still very common (De Bont and van Larebeke 2004).  

To prevent damage caused by endogenous sources of ROS, cells are equipped with 

enzymatic and nonenzymatic antioxidants (Birben et al. 2012). In many cancers and inflammatory 

diseases, there is a disruption in the balance between cellular ROS and antioxidants that can lead 

to an increase in oxidative stress and accumulation of oxidative DNA damage (De Bont and van 
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Larebeke 2004). Additionally, oxidative DNA lesions accumulate with age, indicating that cellular 

ROS and antioxidant metabolism may change with age (Y. J. Wang et al. 1995).   

Exogenous sources of oxidative damage 

There are several exogenous sources of ROS that can lead to oxidative DNA damage. In 

addition to producing bulky DNA lesions, exposure to UV light, mainly UVA, can lead to ROS 

through excitation of cellular photosensitizers (Cadet, Douki, and Ravanat 2015). Cigarette smoke 

can also increase cellular ROS (Church and Pryor 1985).  Additionally many drugs and 

chemotherapies increase ROS through altering mitochondrial metabolism or altering antioxidant 

synthesis (H. Yang et al. 2018).   

Types of oxidative DNA damage 

Oxidative DNA damage can take many forms that are summarized below.  

Oxidized purines: 8-oxoG and 8-oxoA 

Guanine is highly susceptible to oxidative damage and one of the most common oxidative 

lesions on guanine is 7,8-dihydro8-oxoguanine (8-oxoG). 8-oxoG is inherently mutagenic and 

DNA polymerases will readily incorporate an adenine across from 8-oxoG leading to G to T 

transversions (Neeley and Essigmann 2006; Shibutani, Takeshita, and Grollman 1991). In addition 

to 8-oxoG, the free guanine nucleotide can be oxidized to 8-oxodGTP and incorporated into 

nascent DNA across from either cytosine or adenine (Tajiri, Maki, and Sekiguchi 1995). 8-

oxodGTP has also been used as a biomarker for oxidative stress in tissues and fluids (Hiroshi Kasai 

1997).  

Adenine can also be oxidized to form 7,8-dihydro-8-oxoadenine (8-oxoA). Some studies 

indicate that 8-oxoA occurs just as frequently as 8-oxoG under oxidative stress, although 8-oxoA 
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has been studied less frequently (Y. J. Wang et al. 1995). 8-oxoA can base pair with both cytosine 

and guanine leading to A to G transitions and A to C transversions (Kamiya and Kasai 1995).  

FapyG 

Other common lesions that form under oxidative stress are 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapyG)  and 4,6-diamino-5-formamidopyrimidine (FapyA). FapyG and 

FapyA are formed at equal or higher levels than 8-oxoG after oxidative stress, although are studied 

much less frequently (Cadet, Douki, and Ravanat 2008). Some measurements indicate that FapyG 

is two times more likely to form than 8-oxoG in cellular DNA exposed to gamma radiation (Pouget 

et al. 2002). FapyG and FapyA result from a hydroxy radial attack on guanine and adenine rings, 

that lead to an opening of the imidazole ring. Both FapyG and FapyA are mutagenic and adenine 

is incorporated opposite of both lesions in vitro (Delaney, Wiederholt, and Greenberg 2002; 

Wiederholt and Greenberg 2002).  

Oxidized pyrimidines 

Oxidized pyrimidines can take many forms. Some of the most commonly studied oxidative 

pyrimidine lesions are thymine glycol and hydroxyuracil (M. D. Evans, Dizdaroglu, and Cooke 

2004). Oxidation of the C5 of cytosine and thymine followed by the addition of a hydroxyl ion 

leads to the formation of cytosine glycol and thymine glycol (Tg) (M. D. Evans, Dizdaroglu, and 

Cooke 2004). Although cytosine glycol and Tg can form, Tg is much more commonly studied. Tg 

is a mutagenic (Basu et al. 1989) and DNA polymerase blocking lesion, however, translesion 

synthesis polymerases can bypass Tg adducts in an error-free manner (Yoon et al. 2010a).  

Cytosine glycol is unstable and spontaneously deaminates and dehydrates to form 

hydroxyuracil (hU), this process is sometimes called oxidative deamination of cytosine (M. D. 
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Evans, Dizdaroglu, and Cooke 2004). hU can form base pairs with any of the four nucleotides, 

giving it high mutagenic potential (Thiviyanathan et al. 2005).  

Oxidation of 5-methylcytosine 

5mC is a stable nucleotide modification that is mostly present in silenced regions of the 

genome (Arne Klungland and Robertson 2017). While most of 5mC is persistent throughout cell 

divisions, cytosine methylation status can change during development and in response to 

environmental changes (Arne Klungland and Robertson 2017). However, the mechanism 5mC 

removal is still under investigation. One mechanism in which 5mC is removed from the genome 

is through the stepwise enzymatic oxidation of 5mC. A series of oxidation reactions are catalyzed 

by the ten-eleven-translocation (Tet) enzymes and result in oxidation of 5mC to 5-

hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) (Ito et 

al. 2011). Both 5-mC and 5-hmC are stable in the genome, play a role in regulating gene 

expression, and their regulation is often mis-controlled in cancers (Y. Xu et al. 2011; Lian et al. 

2012). Further oxidation of 5-hmC leads to the sequential formation of 5-fC and 5-caC, which are 

both lowly abundant in the genome and therefore thought to be less stable (Ito et al. 2011). 

Additionally, both 5-fC and 5-caC are actively removed from the genome via base excision repair 

enzymes, however, the biological roles, if any, for 5-fC and 5-caC are still under investigation. 

Cyclopurines 

Reactions between hydroxyl radicals and purines can create cyclopruines (cyc-dG and cyc-

dG) (Becker and Sevilla 1993). Cyclopurines were originally identified as oxidation products 

induced by ionizing radiation, but have since been found in normal tissues and cells (Brooks 2017). 

Cyclopurines contain an additional 5′−8 carbon-carbon bond that causes them to block DNA 

polymerases (Kuraoka et al. 2000) and slow or halt transcription (You et al. 2012). 
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In response to ionizing radiation, cyclopurines are less likely to form than other oxidative 

lesions (Terzidis, Ferreri, and Chatgilialoglu 2015), however, they are quite stable (Theruvathu et 

al. 2007). Like other bulky lesions, cyclopurines are removed by nucleotide excision repair 

machinery (Kuraoka et al. 2000; Brooks et al. 2000).  

Repair of oxidative DNA damage  

Removal of 8-oxoG 

There are three conserved DNA repair enzymes that mitigate the mutagenic potential of 8-

oxoG lesions: MTH1, OGG1, MUTYH (MutT, MutY, MutM in bacteria) (D. E. Barnes and 

Lindahl 2004). MTH1 hydrolyzes the nucleotide, 8-oxodGTP, and reduces its abundance in the 

nucleotide pool. The DNA glycosylase OGG1 removes 8-oxoG from the 8-oxoG:C base pairs. If 

an 8-oxoG lesion undergoes DNA replication creating 8-oxoG:A base pair, MUTYH will excise 

the adenine. Upon hydrolysis of adenine from 8-oxoG:A by MUTYH, creating an abasic site. Ape1 

and Polβ or Polλ  can incorporate a cytosine across from 8-oxoG giving OGG1 another opportunity 

to repair the 8-oxoG lesion in an error-free manner (D. E. Barnes and Lindahl 2004).  

MTH1 reduces 8-oxodGTP in the nucleotide pool 

Compared to oxidized bases in the DNA duplex, oxidized nucleotides are more likely to 

form and can be incorporated into replicating DNA leading to DNA damage or mutations. 8-

oxodG is a common oxidative lesion and its nucleotide 8-oxodGTP is also formed under oxidative 

stress  (H. Kasai and Nishimura 1984). To prevent incorporation of oxidized nucleotides, mut-T 

homolog 1 (MTH1) hydrolyzes oxidized purine nucleoside triphosphates (both 8-oxodGTP and 8-

oxodATP) to monophosphates and pyrophosphates (K. Sakumi et al. 1993; Sakai et al. 2002). 8-

oxodGMP is processed further to the nucleoside 8oxodG to prevent its incorporation into DNA 

(Nakabeppu 2014). MTH1 is mitochondrial and nuclear localized indicating it is important for 
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surveying nucleotide pools throughout the cell (Kang et al. 1995). MTH1 knockout mice have an 

increase in liver and stomach cancers and an increase in spontaneous mutation rates in embryonic 

stem cells (Nakabeppu 2014).  Overexpression of MTH1 in cancer cells increases their tolerance 

to oxidative stress (Kennedy et al. 1998) and MTH1 inhibitors have been shown to increase 

sensitivity to oxidative chemotherapies in cancer cells (Gad et al. 2014).  

OGG1 removes 8-oxoG from the DNA duplex 

The bifunctional glycosylase OGG1 is responsible for the error-free removal of 8-oxoG 

from the DNA duplex (Figure 1.3d). OGG1 will also excise 8-oxoA from 8-oxoA:C base pairs 

(Jensen et al. 2003). Structural and kinetic studies have shown that OGG1 binds to the DNA helix 

and rapidly scans short sections of the genome (~400 bases) for 8-oxoG lesions by probing the 

helix for weak interactions (David, O’Shea, and Kundu 2007; Blainey et al. 2006).  Probing 

unmodified residues results in a small buckle of the base pair, however, probing 8-oxoG:C causes 

the 8-oxoG to rapidly flip from the helix and be captured by the base-binding site and processed 

by the active site in OGG1. Occasionally an unmodified guanine will flip into the base-binding 

site, but it cannot be processed by the active site and is released (A. Banerjee et al. 2005).  

OGG1, like all other glycosylases that remove oxidized bases, is a bifunctional glycosylase. 

Bifunctional glycosylases hydrolyze the N-glycosidic bond of the DNA base and the phosphate 

backbone of the DNA strand creating a single-strand break (Wallace 2013). OGG1 is a β-

elimination bifunctional glycosylase, meaning that it will first excise the 8-oxoG base and then 

cleave the phosphodiester bond on the 3´ side of the newly created abasic site. This results in a 5´-

phosphate and blocking 3´-α,β unsaturated aldehyde. The blocking 3´ group is further processed 

and removed by Ape1 (Krokan and Bjørås 2013). While OGG1 has lyase activity in vitro, its 

activity is enhanced by Ape1 (Hill et al. 2001), and in vivo it has been suggested that OGG1 acts 
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mainly as a monofunctional glycosylase and Ape1 releases OGG1 the AP site (Dalhus et al. 

2011).   

OGG1 activity is modulated by a number of factors. First, other protein-protein interactions 

besides its interaction with Ape1 can enhance or impair OGG1 function. For example, the activity 

of OGG1 is enhanced when bound to the scaffolding protein XRCC1 (Marsin et al. 2003). XRCC1 

also enhances many other glycosylases' activities (London 2015; Campalans et al. 2005). Second, 

posttranslational modifications can regulate OGG1 activity. Acetylation of OGG1 by histone 

acetyltransferases enhances its activity in vivo (Bhakat et al. 2006). Phosphorylation of OGG1 can 

either enhance its glycosylase activity or leave it unchanged (Dantzer et al. 2002; J. Hu, Imam, et 

al. 2005). Finally, the redox-sensitive cysteine residue of OGG1 is sensitive to oxidation and 

OGG1 activity is reduced when this residue is in its oxidized state (A. Bravard, 2006). 

Paradoxically, this causes OGG1 activity to be reduced under conditions of oxidative stress 

(Bravard et al. 2010; Morreall et al. 2015). 

OGG1 inactivation during transient oxidative stress may play an important role in gene 

expression. Under oxidative stress induced by TNF-alpha or NF-κB, 8-oxoG residues accumulate 

in gene promoters (Pan et al. 2016) and studies done in OGG1-/- mice suggest that OGG1 may play 

a role in the immune response (Ba and Boldogh 2018; Vlahopoulos et al. 2019). There is also some 

evidence that accumulation of 8-oxoG under oxidative stress may change transcription factor 

binding in the genome to regulate cellular response to oxidative stress (Ba and Boldogh 2018).   

MUTYH gives OGG1 another chance at error-free removal of 8-oxoG 

The oxidative DNA lesion, 8-oxoG, readily forms a base pair with adenine and can lead to 

G to T transversions. To combat the mutagenic potential of 8-oxoG:A base pairs, the glycosylase 

MUTYH will excise the adenine from 8-oxoG:A base pairs and gives OGG1 another change at 
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removing 8-oxoG (Markkanen, Dorn, and Hübscher 2013) (Figure 1.3d). Humans have both 

nuclear and mitochondrial MUTYH isoforms that repair nuclear and mitochondrial DNA 

respectively.  

Nuclear MUTYH associates with PCNA, RPA, and other replication fork factors and is 

responsible for removing adenine opposite of 8-oxoG in nascent, but not template DNA. Following 

removal of adenine, Polβ or Polλ will efficiently incorporate a cytosine opposite of 8-oxoG (Krahn 

et al. 2003; van Loon and Hübscher 2009). Structural studies suggest that Polβ  is able to 

incorporate a cytosine across from 8-oxoG (Krahn et al. 2003). However, in vitro and in vivo 

evidence suggests that Polλ is the likely polymerase to synthesize error-free A:8-oxoG base pairs 

(van Loon and Hübscher 2009). Under oxidative stress, however, excision of adenine:8-oxoG can 

lead to a futile BER cycle where adenine is re-incorporated across from 8-oxoG and re-removed 

by MUTYH (Hashimoto et al. 2004) (Figure 1.3d, middle). This futile cycle can lead to persistent 

abasic sites or strand breaks in the genome that can lead to PARP-mediated cell death (Sugako 

Oka et al. 2008).  

MUTYH also repairs mitochondrial DNA in the same manner as nuclear DNA. Under 

excessive oxidative stress and the futile cycle of A:8-oxoG repair by MUTYH also occurs in 

mitochondrial DNA. MUTYH activity can then lead to mitochondrial DNA depletion via an 

accumulation of single-strand breaks. Mitochondrial DNA depletion causes mitochondrial 

dysfunction and cell death (Sugako Oka et al. 2008; Nakabeppu 2014)  

NTH1 removes oxidized pyrimidines 

NTH1 (homologue of bacterial Nth protein) removes oxidized pyrimidines from the 

genome (Figure 1.3d, right). NTH1 is a bifunctional glycosylase that removes the damaged base 

and cleaves the 3´ side of the resulting AP site leaving a 5´-phosphate and a 3´-unsaturated 
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aldehyde (Wallace 2013). NTH1 has a wide array of substrate specificity and will broadly excise 

a number of oxidized pyrimidines. One lesion removed by NTH1 is thymine glycol (Tg) 

(Dizdaroglu et al. 1999). NTH1 will also remove 5-hydroxyuracil and 5-hydroxycytosine, 

preferentially in base pairs with guanine (Dizdaroglu et al. 1999; Eide et al. 2001). NTH1 is also 

able to remove oxidized purines, like 8-oxoG when mispaired with guanine (Matsumoto et al. 

2001). NTH1 will also remove FapyG lesions from genomic DNA (J. Hu, de Souza-Pinto, et al. 

2005). NTH1 activity is enhanced by its association with the nucleotide excision repair factor, 

XPG, and may play a role in transcription-coupled repair of Tg (Bessho 1999; Cooper et al. 1997).  

NEIL1, NEIL2, and NEIL3 

The Nei like proteins, NEIL1, 2, and 3 (named after their bacterial homologues), are 

bifunctional glycosylases that remove oxidized pyrimidines, although NEIL3 has weak AP lyase 

activity (Wallace 2013). Contrary to NTH1 and OGG1, NEIL proteins have β,δ-elimination AP 

lyase activity (Figure 1.3d). The glycosylase and β,δ-elimination activity of NEIL proteins result 

in a one base gap with a 3´- and 5´-phosphate (Wallace 2013). The 3´-phosphate is removed by 

PNK leaving a 3´-hydroxyl that allows Polβ to fill the gap and DNA ligase III to seal the nick 

(Figure 1.2 and Figure 1.3d, right). NEIL1, NEIL2, and NEIL3 recognize most of the same 

damaged bases. The NEIL proteins are responsible for removing Tg and other oxidized 

pyrimidines (Bandaru et al. 2002; Wallace 2013). NEIL1 will also remove FapyG and FapyA 

(Jaruga et al. 2004).  

Even though their substrates overlap, the activities of NEIL1, NEIL2, and NEIL3 do not 

seem to be redundant (Rolseth et al. 2017). NEIL1, 2, and 3 have different expression patterns in 

tissues, cell cycle, and subcellular localizations indicating that they have unique activities (Wallace 

2013). For example, during development, NEIL1 and NEIL2 protect against mitochondrial DNA 



 46 

oxidation during neural crest differentiation (Han et al. 2019). While NEIL3 is not expressed in 

adult neural tissue (Uhlén et al. 2015), it is responsible for oxidative DNA repair in neural 

progenitor cells (Regnell et al. 2012). NEIL1 is highly expressed during S phase and is responsible 

for repairing oxidized bases during DNA replication (Hegde et al. 2013) and NEIL2 is expressed 

throughout the cell cycle and colocalizes to transcribing genes indicating it may play a role in 

transcription-coupled repair (D. Banerjee et al. 2011). NEIL1 and NEIL2 also interact with TDG 

to remove products of TET oxidation products of 5-mC (Schomacher et al. 2016).  

Active removal of 5-mC through oxidation of 5-mC 

5-methylcytosine is a stable DNA modification that is essential for cell differentiation. 

DNA methylation patterns rapidly change during gametogenesis and the rate of demethylation in 

maternal and paternal genomes cannot be explained by passive demethylation alone 

(demethylation that occurs due to DNA replication) (Rasmussen and Helin 2016). Therefore, it 

has been proposed that active demethylation pathways exist to control DNA methylation patterns. 

While the factors controlling active demethylation are not fully understood, a prevailing theory is 

that products of enzymatic oxidation of 5mC and 5hmC by TET enzymes are hydrolyzed and 

removed by the DNA glycosylase TDG (Wu et al. 2014; Wu and Zhang 2014). The consequence 

of 5hmC and other active demethylation intermediates, 5fC and 5caC, are still unknown, however, 

there is some evidence that 5fC and 5caC may play a role in gene expression independent of their 

role as active demethylation intermediates (Rasmussen and Helin 2016). 

The TET enzyme family is comprised of three enzymes, TET1, TET2, and TET3 that 

catalyze the conversion of 5-mC to 5-hmC to 5-fC to 5-caC (He et al. 2011; Ito et al. 2011) (Figure 

1.3e). TET enzymes bind to CpG sites, but do not have other sequence specificity (S. Hu et al. 

2013). Some kinetic studies indicate that TET1 oxidation of 5mC to 5hmC is a fairly rapid reaction 
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(Ito et al. 2011; L. Hu et al. 2015). Further oxidation of 5hmC to 5fC and 5caC by TET enzymes 

is fairly slow (Ito et al. 2011; L. Hu et al. 2015), however, the removal of 5fC and 5caC by TDG 

may be quite rapid (Maiti and Drohat 2011). Together, the kinetics of TET enzymes and TDG 

leads to a somewhat stable accumulation of 5-hmC in the genome that has led some researchers to 

postulate that 5hmC may be a stable epigenetic mark (Rasmussen and Helin 2016; Ito et al. 2011; 

L. Hu et al. 2015).   

The thymine DNA glycosylase (TDG) removes thymine from T:G mismatches, 5fC, 5caC 

(Maiti and Drohat 2011) and 5hmU from CpG sites (Bennett et al. 2006) (Figure 1.3e). T:G 

mismatches occur through passive or enzymatic deamination of 5mC (Métivier et al. 2008). TDG 

base excision repair activity is essential for development, which may indicate it plays an important 

role in regulating epigenetic marks during development (Cortellino et al. 2011). TDG is a 

monofunctional glycosylase that requires subsequent BER steps for complete removal of modified 

bases. Interestingly, TDG expression is negatively regulated by the DNA damage response, which 

may indicate that TDG expression is important for epigenetic regulation rather than DNA repair 

(T. Nakamura et al. 2017). The products of TET oxidation of 5mC, 5-fC and 5-caC, are efficiently 

removed by TDG, however, there is some evidence that the carboxyl group from 5-caC can also 

be removed by an unknown methyltransferase (Schiesser et al. 2012). 

Oxidative DNA damage and repair in cancer  

Oxidative DNA damage and repair are involved in cancer development and treatments. 

OGG1 is frequently lost in lung cancer and OGG1 knockout mice develop spontaneous lung 

carcinoma, however, double-knockout of OGG1 and MTH1 suppresses this phenotype (Kunihiko 

Sakumi et al. 2003). However, both OGG1 deficient lung cancer and OGG1-/-/MTH1-/- mice 

accumulate genomic 8-oxoG lesions. It is possible that the genomic stress caused by OGG1-/-
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/MTH1-/- double-knockout leads to cell death in a MUTYH-dependent mechanism and thus 

prevents tumorigenesis (Nakabeppu 2014). This prediction was confirmed in a triple knockout 

mouse OGG1-/-/MTH1-/-/MUTYH-/- that resulted in significant genomic 8-oxodG accumulation, a 

shorter lifespan, and developed of tumors in several tissues (Ohno et al. 2014).   

The futile BER of A:8-oxoG repair by MUTYH may be used as a general sensor of 

oxidative stress and may have tumor suppression roles in cell division. In humans, mutations in 

MUTYH cause autosomal recessive familial adenomatous polyposis (MUTYH-associated 

polyposis) (Sieber et al. 2003; Al-Tassan et al. 2002). MUTYH-null mice develop spontaneous 

adenocarcinoma in the small intestine and colon (Sakamoto et al. 2007). Additionally, MUTYH is 

transcriptionally regulated by the tumor suppressor P53 (S. Oka et al. 2014) and MUTYH can act 

directly as a tumor suppressor by both preventing oxidative DNA mutations and by inducing cell 

death under high oxidative stress that is likely to lead to mutagenesis (Sugako Oka and Nakabeppu 

2011).   

Many cancers have altered cell metabolisms and redox regulation. Some theories indicate 

that during oncogenesis, cells experience an increase in ROS that creates a mutagenic environment 

(H. Yang et al. 2018). Additionally, alterations in cell metabolism caused by oncogenic mutations 

are correlated to an imbalance of radicals and antioxidants (H. Yang et al. 2018). Moreover, many 

cancer therapies increase cellular ROS either directly or indirectly. For example, ionizing radiation 

induces ROS through a variety of direct and indirect creation of oxidative radicals (Azzam, Jay-

Gerin, and Pain 2012). Cisplatin and other platinum-based chemotherapies induce a mitochondrial 

ROS response (Marullo et al. 2013). Alkylating agents and topoisomerase inhibitors also increase 

cellular ROS (H. Yang et al. 2018). The toxicity of these drugs relies on the accumulation of 

oxidation damage throughout the cell, including oxidative DNA damage. 
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Recently, targeted inhibition of MTH1 has been studied as a potential chemotherapeutic. 

Overexpression of MTH1 reduces genomic alterations in mismatch repair-deficient cells (Russo 

et al. 2004). Knockdown of MTH1 increases genomic 8-oxoG and decreases survival in cancer 

cells (Gad et al. 2014). Several inhibitors of MTH1 also inhibit growth of cancer cells, but their 

mechanism of action is not yet known, although it may not rely on high intracellular ROS (van der 

Waals et al. 2019). Overall, MTH1 may play a role in cleansing the nucleotide pool in rapidly 

dividing cancer cells and inhibition of this leads to cell death (Gad et al. 2014).      

Heterogeneity of oxidative DNA repair 

Oxidative DNA damage is heterogeneous and repair enzymes respond to that damage 

through complementary and overlapping functions. Cells incur heterogenous levels of DNA 

damage when exposed to bleomycin (Ostling and Johanson 1987) and malignant cells also 

experience heterogenous levels of DNA damage when exposed to ionizing radiation (Olive, 

Banáth, and Durand 1990). In modern radiotherapy, damage to healthy tissue varies greatly 

between people, however, finding biomarkers to predict the toxicity has been challenging (Barnett 

et al. 2015). However, there is evidence that oxidative DNA repair factors are differentially 

expressed or active between tissue types, with age, and between individuals (Wallace 2013; Uhlén 

et al. 2015; Pons et al. 2010a; Chaim et al. 2017a).  

Homozygous deletion in OGG1 in mice leads to accumulation of 8-oxoG lesions only in 

some cell/tissue types and is dependent on the age of the mice (Osterod et al. 2001). This indicates 

that OGG1 expression and oxidative damage may differ between tissues and change with age. In 

humans, repair of 8-oxoG in human fibroblasts is reduced with (Pons et al. 2010a) and 

polymorphisms in OGG1 have been identified as a risk for lung cancer (Z. Xu, Yu, and Zhang 

2013). Mutations in MUTYH have been associated with hereditary colorectal cancer indicating 
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that MUTYH plays an important role in maintaining genome integrity in colorectal tissue. 

Polymorphisms identified in MUTYH lead to decreased or abolished glycosylase activity leading 

to an increase in oxidative DNA damage in these cells (Ruggieri et al. 2013). The NEIL enzymes 

and NTH1 have redundant substrate specificity; however, they have different tissue-specific 

expression patterns, cell cycle regulation, and cell localization patterns (Wallace 2013). 

Additionally, nuclear and mitochondrial glycosylase activity of oxidative lesions differs between 

tissues (Karahalil et al. 2002).   

Alkylation DNA damage and repair 

Sources and types of alkylation DNA damage 

Alkylating agents are ubiquitous in nature and cells are constantly exposed to a number of 

different alkylating agents from the environment, our food, and pollutants (Fu, Calvo, and Samson 

2012). Cellular processes can also produce alkylating agents. Specifically, the cellular methyl 

donor S-adenosylmethionine (SAM) can react with DNA leading to methylated guanine and 

adenine residues (Rydberg and Lindahl 1982). Alkylating agents most commonly react with the 

nitrogen and oxygen atoms of purines. Specifically, ~75% of alkylating DNA damage is in the 

form of N7-methylguanine (N7mG) (Beranek 1990). N7mG is not inherently mutagenic, but it 

may alter sequence recognition and binding of some DNA binding proteins (Jianli Cao and Revzin 

1993; Siebenlist and Gilbert 1980). Additionally, N7mG undergoes depurination about 60 times 

faster than unmodified guanine residues (Hemminki, Peltonen, and Vodicka 1989), leaving abasic 

sites that can result in mutagenic single strand or double strand breaks. The second-most common 

alkylating DNA lesion is N3-methyladenine (N3mA), which accounts for 10-20% of the alkylative 

lesions on DNA (Drabløs et al. 2004). N3mA residues block replicative DNA polymerases and 

RNA polymerases (R. E. Johnson et al. 2007; Engelward et al. 1998). Finally, methylation of the 
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O6 position of guanine can lead to the mutagenic O6-methylguanine lesion (O6mG). O6mG 

readily base pairs with thymine and can cause G to A transitions during DNA replication (Loechler, 

Green, and Essigmann 1984). Several other alkylative lesions have been described; however, they 

naturally occur 100-fold less frequently than the DNA lesions described above (Fu, Calvo, and 

Samson 2012). 

Etheno-adducts 

Alkylating agents come in two flavors, the monofunctional alkylating agents that lead to 

the lesions described above, and bifunctional alkylating agents. Bifunctional alkylating agents can 

cause bulky DNA lesions, DNA crosslinks, and other biomolecule crosslinks. Environmental 

chemicals, like vinyl chloride, and intracellular products of ROS-induced lipid peroxidation are 

some examples of bifunctional alkylating agents that lead to DNA damage (Basu et al. 1993; Blair 

2008). Some lesions produced by bifunctional alkylating agents are 1,N6-ethenoadenine (εA), 

3,N4-ethenocytosoine, N2,3-ethenoguanine, and other bulky DNA lesions and crosslinks (Basu et 

al. 1993; Blair 2008), Etheno-DNA adducts are mutagenic since they can have ambiguous base 

pairing properties and they block replicative DNA polymerases causing stalled or collapsed DNA 

replication forks (Pourquier, Bjornsti, and Pommier 1998; Basu et al. 1993; Nair et al. 1999). 

Temozolomide 

Temozolomide (TMZ) is a common chemotherapeutic for treating glioblastomas. TMZ 

leads to methylation of O6 and N7 of guanine and N3 of adenine (Tentori and Graziani 2009). 

These DNA lesions are the main mechanism in which TMZ promotes cell death and of the various 

DNA lesions formed by TMZ, O6mG is thought to be the most toxic (Kaina et al. 1997; Roos et 

al. 2007; Meikrantz et al. 1998). O6mG does not halt replicative DNA polymerases, but it readily 

pairs with thymine and is highly mutagenic (Loechler, Green, and Essigmann 1984). O6mG:T 
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base pairs are recognized and removed by mismatch repair machinery creating single-strand breaks 

(Kat et al. 1993). High abundance of O6mG in the genome causes mismatch repair machinery to 

signal through ATR and P53 DNA damage response pathway and can lead to cell death (Yoshioka, 

Yoshioka, and Hsieh 2006; M. J. Hickman and Samson 1999). In fact, TMZ triggers apoptosis 

through several signaling pathways. Sensitivity to TMX is dependent on the levels of the repair 

factor, MGMT, cell proliferation rates, P53, and the abundance of double-strand DNA breaks 

(Roos et al. 2007; Fan et al. 2013; Mark J. Hickman and Samson 2004).  

Deamination of purines 

While purine deamination is not a consequence of alkylation DNA damage, the products 

of deaminated purines are repaired by the methyl-purine DNA glycosylase (MPG) and therefore 

are important DNA damage events to discuss within the alkylation DNA damage section. 

Deamination of adenine in single stranded DNA occurs much slower than deamination of 

cytosine in single stranded DNA (Karran and Lindahl 1980). As free bases, both adenine and 

cytosine have similar deamination rates in physiological conditions (Levy and Miller 1998). 

Deamination of purines occurs much more rapidly under oxidative stress and in the presence of 

nitric oxide (Shapiro and Shiuey 1969). In cells exposed to cigarette smoke or hydrogen peroxide, 

deamination of adenine and guanine to hypoxanthine and xanthine respectively were among the 

most common DNA lesions produced (Spencer et al. 1995; Toyokuni, Mori, and Dizdaroglu 1994). 

Additionally, cells exposed to sodium nitrite or other reactive nitrogen species created during 

inflammation accumulated a significant number of deaminated purines (Spencer et al. 2000). 

Alterations in purine biosynthesis can also lead to an increase in deaminated purines in DNA and 

RNA (Pang et al. 2012). Deaminated purines are inherently mutagenic because hypoxanthine 
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readily base pairs with cytosine and causes A to G transitions after DNA replication. Xanthine will 

base pair with thymine causing G to A transitions (Kow 2002).  

Repair of alkylation DNA lesions 

Enzymatic and nonenzymatic removal of N7mG and N3mA 

The repair of alkylation DNA lesions, like many other DNA lesions, can occur through 

multiple and overlapping DNA repair pathways. The removal of N7mG and N3mA is initiated by 

the methylpurine DNA glycosylase (MGP or AAG) (Engelward et al. 1996) or by spontaneous 

depurination. Both enzymatic and nonenzymatic removal of N7mG and N3mA result in the 

formation of an abasic site that is then repaired by subsequence BER steps as discussed above. 

While both N7mG and N3mA have much faster depurination than unmodified purines, in vivo 

removal of N3mA is faster than in vitro depurination due to MPG activity (Lawley and Warren 

1976). Additionally, in vitro MPG rapidly removes N3mA and N7mG from duplex DNA, although 

MPG removal of N7mG varies in vivo in a sequence dependent manner, most likely due to 

chromatin structure (Ye, Holmquist, and O’Connor 1998). 

MPG: A glycosylase with many substrates 

While the methyl-purine glycosylase is named after its methyl-purine substrates, MPG has 

a broad range of substrate specificity (C.-Y. I. Lee et al. 2009; O’Brien and Ellenberger 2004). 

MPG is a monofunctional glycosylase that recognizes and removes deaminated adenine (aka 

hypoxanthine or deoxyinosine) and the bulkier alkylation product ethenoA (O’Brien and 

Ellenberger 2004) (Figure 1.3f). This diverse substrate recognition is abnormal for DNA 

glycosylases that generally recognize a single substrate or structurally similar substrates. MPG has 

a non-specific interaction with DNA bases and can bind both modified and unmodified purines, 

however, its catalytic activity is specific for modified purines (O’Brien and Ellenberger 2004).  
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MPG most rapidly excises hypoxanthine from DNA, which indicates that MPG may have 

evolved to recognize deaminated adenine (O’Brien and Ellenberger 2004; Aamodt et al. 2004). 

However, MPG still recognizes and excises methyl-purines like ethenoA, N3mA, and N7mG, 

although at a slower rate that hypoxanthine (O’Brien and Ellenberger 2004). Some evidence 

suggests that MPG achieves it broad substrate specificity by recognizing instability in the DNA 

duplex. Bases from instable base pairs or mismatches are flipped into the recognition and catalytic 

pockets of MPG and will stably interact with MPG if the DNA duplex is unstable, evidenced by 

the fact that MPG will also remove mismatched purines at a low rate. Namely, MPG will remove 

adenine from the least stable mismatch, A:C, ten-fold more efficiently than A:T base pair (O’Brien 

and Ellenberger 2004). The pervasive theory of how MPG achieves its broad specificity is through 

several mechanisms. First, MPG’s base-flipping mechanism is unfavorable for conical Rosalind 

Franklin base pairs. Second, the binding pocket of MPG actively excludes the exocyclic amino 

group of unmodified purines, which allows for its ability to excise a wide variety of modified 

purines. Since N3mA and N7mG are already chemically unstable, they’re still able to be processed 

by MPG. Third, MPG uses an acid-catalysis that discriminates against pyrimidines (O’Brien and 

Ellenberger 2003). Evidence suggests that MPG has evolved to select against unmodified purines 

and pyrimidines, allowing it to remove a diverse array of modified bases (O’Brien and Ellenberger 

2004; C.-Y. I. Lee et al. 2009; Lau et al. 2000; Connor and Wyatt 2002). 

Removal of xanthine 

MGP will readily remove hypoxanthine from DNA, however, it does not efficiently 

remove xanthine and there are currently no known mammalian glycosylase that recognize xanthine 

(Kow 2002). It has been hypothesized that xanthine is removed by alternative excision repair 

catalyzed by endonuclease V, nucleotide excision repair machinery, or is passively removed by 
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spontaneous hydrolysis (Kow 2002; Morita et al. 2013; S. Wang and Hu 2016; Suzuki et al. 

1997).     

Direct reversal of O6mG 

Unlike N-alkylation products, the oxygen alkylation product, O6mG, is not removed by 

MPG or by other BER enzymes. O6mG is recognized and removed by the single-use 

methyltransferase, O6 –methylguanine-DNA methyltransferase (MGMT) (Fu, Calvo, and Samson 

2012) (Figure 1.3f, right). MGMT is the only enzyme responsible for the error-free removal of 

O6mG. MGMT is a single-use enzyme, meaning that one MGMT molecule removes one O6mG 

adduct. MGMT covalently transfers the alkyl group to a cysteine in the active site (Sedgwick et 

al. 2007). This mechanism leaves an unmodified guanine and an alkylated and inactivated MGMT 

that undergoes ubiquitin-mediated degradation (Sedgwick et al. 2007).  

Alkylation DNA damage and repair in cancer 

TMZ is often a very successful first-line therapy in gliomas; however, TMZ resistance is 

very common in recurring disease (Oliva et al. 2010). One of the main mechanisms of TMZ 

resistance is an increase in MGMT expression. High expression of MGMT has been measured in 

resistant glioma samples (Cai et al. 2005) and is a predictor of TMZ resistance (Nagel et al. 2019). 

MGMT expression is directly associated with TMZ resistance and methylation status of the 

MGMT promoter inversely correlates with expression and directly correlates with TMZ sensitivity 

(Christmann et al. 2010; Wick et al. 2012; Everhard et al. 2006). In addition to MGMT promoter 

methylation, activation of punitive MGMT enhancers by H3K4 methylation and H3K27 

acetylation marks also correlate with TMZ resistance (X. Chen et al. 2018). Chromatin remodeling 

may be the primary mechanism in which MGMT expression increases in response to TMZ 

treatment. However, it has also been proposed that MGMT expression is regulated by the 
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transcription factor hypoxia-inducible factor 1 alpha (Cabrini et al. 2015; Persano et al. 2012). 

Additionally, MGMT expression may be silenced by specific micro-RNAs that are often altered 

in glioblastomas (Kreth et al. 2013; Cabrini et al. 2015). It is entirely possible that cancer cells 

regulate MGMT expression through multiple pathways depending on their mutational patterns.     

In addition to TMZ, other alkylating agents are commonly used as chemotherapies 

including chlorambucil, cyclophosphamide, thiotepa, and busulfan. These alkylating agents 

produce a wide variety of alkylated DNA adducts. In contrast to the direct reversal target, O6mG, 

many of the other alkylation DNA adducts are repaired by MGP. Knockdown of MPG can sensitize 

cell lines to alkylation treatment (Paik et al. 2005). Additionally, overexpression of MPG also 

sensitizes cell lines to alkylation treatment, indicating that abasic sites and strand breaks induced 

by MPG removal of alkylation DNA lesions are toxic (Fishel et al. 2007; Trivedi et al. 2005). MPG 

also interacts with P53 and inhibits P53-dependent transcriptional activity. However, under 

alkylation DNA damage, MPG releases p53 (Song et al. 2012). The interaction between MPG and 

p53 may explain why both overexpression and knockdown of MPG sensitizes cells to alkylating 

agents.  

Heterogeneity in alkylation DNA repair 

In cancer, intratumoral heterogeneity can lead to disease recurrence and treatment 

resistance. In glioblastoma, evaluation of multiple biopsy samples taken the same tumor can result 

in different disease classifications and MGMT methylation statuses (Wenger et al. 2019). In fact, 

MGMT expression can be heterogeneous from the same tumor sample (Parker et al. 2016). The 

methylation status of the MGMT promoter is often correlated with MGMT expression and activity 

levels (Uno et al. 2011); however, not all of the evidence promotes that correlation (Rood, Zhang, 

and Cogen 2004). Additionally, MGMT is highly expressed in the liver, and in mice, the 
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expression of MGMT is linked to the circadian rhythm and glucocorticoid secretion (Horiguchi et 

al. 2010), indicating that MGMT activity is also heterogeneous in healthy tissue.  

MPG activity has been associated with tumorigenesis in the thymus (N. K. Kim et al. 1998) 

and over expression of MPG in gliomas is associated with poor prognosis (Liu et al. 2012). MPG 

activity can be directly regulated by phosphorylation by ATM (Agnihotri et al. 2014). 

Polymorphisms in MPG have been associated with rheumatoid arthritis progression (S. Y. Chen 

et al. 2010; Huang et al. 2015); however, the functional consequences of these polymorphisms has 

yet to be determined. Additionally, systemic treatment with alkylating agents in mice can lead to 

retinal degeneration in a sex-dependent manner and cerebellar damage independent of sex (Allocca 

et al. 2017, 2019). These tissue degeneration events are dependent on a number of factors such as 

MPG, PARP1, and RIP3 kinase, however, the sex differences and cell-type specific cell death have 

currently not been explained (Allocca et al. 2017, 2019). Together, these are several examples that 

indicate repair of alkylation DNA damage is heterogenous in diseases and healthy tissues. 

Additional DNA repair pathways 

In addition to the BER pathway described above, cells have several other DNA repair 

pathways to repair both endogenous and exogenous DNA damage (Hakem 2008; Sancar et al. 

2004). For example, nucleotide excision repair is responsible for repairing bulky lesions. Mismatch 

repair is responsible for removing mismatched bases incorporated during DNA replication. There 

are also two pathways to repair double-strand DNA breaks: homologous recombination and non-

homologous end joining. The Fanconi anemia pathway repairs inter-strand crosslinks. Each of 

these pathways include a number of enzymes with controlled regulation and expression patterns 

and are critical for maintaining a stable genome. Disruption in these DNA repair pathways is 

common in cancers and neurodegeneration (Hakem 2008).  
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In addition to tightly controlled DNA repair pathways, cells also have a critical DNA 

damage response (DDR) pathway. The DDR toes the line between tolerating and repairing DNA 

damage or initiating cell death (Jackson and Bartek 2009). Many DDR proteins associate with cell 

cycle regulators like P53 and PARP and if the DNA damage is too great, this can lead to cell death. 

To avoid cell death, many cancers have mutations in DNA repair proteins or DDR factors in order 

to rapidly expand and avoid the DNA damage checkpoints (Torgovnick and Schumacher 2015). 

DNA damage chemotherapies are effective, but some rely on a functional DNA damage response 

to initiate cell death. Upon resistance acquisition, first line DNA damage chemotherapies are 

ineffective, sometimes due to an increase in DNA repair capacity or mutations in DDR regulators 

(Torgovnick and Schumacher 2015).  

Overall, cells are poised to withstand and repair any and all sources of DNA damage 

through an awesomely efficient and complex network of DNA damage sensors, repair factors, and 

cell signaling pathways. These factors are vital to maintaining cellular homeostasis and allow for 

relatively error-free inheritance of genetic material.  

Methods to measure DNA repair capacity 

Measuring genomic DNA damage: Comet assay 

One common way of measuring a cell’s ability to repair its DNA (or its DNA repair 

capacity) is by measuring the amount of DNA damage in the cell. The alkaline comet assay (single 

cell gel electrophoresis) is one of the oldest (Ostling and Johanson 1984) and most common ways 

of measuring global DNA damage in the cell (Neri et al. 2015) (Figure 1.4a). Cells or nuclei are 

embedded in a thin layer of agarose and then lysed in an alkaline buffer. The alkaline buffer will 

lyse the cells, disrupt protein interactions, and degrade cellular RNAs. Upon exposure to an electric 

field, the remaining DNA will migrate. The DNA is stained using fluorescent nucleic acid dyes.  
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Figure 1.4: DNA repair methods 
 
a.  The comet assay measures DNA strand breaks in nuclei. The ‘tail moments’ are greater in 
samples with DNA damage.  
 
b.  Host cell reactivation assays use reporter plasmids with DNA damage to measure the rate of 
repair in living cells.  
 
c.  Oligonucleotide retrieval assays use DNA hairpin substrates to measure DNA repair in cells. 
 
d.  DNA repair microarrays use immobilized DNA repair substrates to measure DNA repair is cell-
free extracts. 
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Nuclei with few DNA damage events will remain in a relatively stable position and 

maintain a circular shape. Single and double-strand DNA breaks or alkaline-labile sites will cause 

the DNA to migrate further in the agarose creating a comet-like tail to form in the direction of the 

anode. The intensity of the tail is directly proportional to the amount of DNA damage. The comet 

assay is sensitive enough to measure hundreds to several thousand strand breaks per cell (Andrew 

R. Collins 2004). To measure the abundance of specific lesions, following lysis, the embedded 

cells are treated with DNA glycosylases creating lesion-specific DNA breaks that are again 

measured by the intensity of tails produced following electrophoresis (Langie, Azqueta, and 

Collins 2015a).  

The comet assay and its variations have been adapted and perfected in order to measure 

DNA repair by measuring DNA damage. For example, using time course experiments, cells can 

be treated with DNA damage agents and the comet assay can measure damage over time and thus 

get a measurement of DNA repair over time in order to comment on DNA repair capacity 

(Trzeciak, Barnes, and Evans 2008; S. Sauvaigo et al. 2007). The comet assay has been used to 

measure DNA repair capacity and heterogeneity of DNA repair capacity in cancers and healthy 

cells (Olive, Banáth, and Durand 1990). Additionally, DNA repair capacity can be measured by 

using nucleoid DNA from irradiated cells embedded in agarose as the substrate DNA. This 

substrate DNA can be treated with cell-free extracts supplemented with ATP and nucleotides. Over 

time, the tails of the substrate DNA disappear as the active enzymes in the extract repair the 

substrate DNA (A. R. Collins, Fleming, and Gedik 1994). 

The comet assay, while crude and simple, has been invaluable in expanding our knowledge 

of DNA repair capacity. Variations of the comet assay have been used to measure interindividual 

differences in DNA repair capacity (Slyskova, Lorenzo, et al. 2014) and intratumoral heterogeneity 
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in DNA repair capacity (Olive, Vikse, and Banath 1996). The comet assay has also found DNA 

repair capacity can change with age, exposure to sunlight or exposure to cigarette smoke (S. 

Sauvaigo et al. 2007).  Additionally, the comet assay has been used to correlate biomarker 

expression and DNA repair capacity in tumor biopsies in an effort to move towards precision 

medicine in cancer therapies (Slyskova, Langie, et al. 2014).  

However, the comet assay only provides coarse-grain resolution as to the types of DNA 

damage events that are being repaired. Given that BER substrates are diverse in structure, 

consequence, and the enzymes that repair them, the comet assay does not provide insight into 

which of the overlapping DNA repair enzymes are responsible for repair events, nor does it provide 

detailed quantification as to the types of DNA damage events that are being repaired quickly or 

more slowly. 

Measuring genomic DNA damage: Mapping  

Methods that provide detailed mapping of DNA lesions throughout the genome have been 

recently developed. For example, Excision-seq can map uracil and pyrimidine dimers throughout 

the genome (Bryan et al. 2014). Hyde-n-seq (Clausen et al. 2015) and Ribose-seq (Koh et al. 2015) 

can map ribonucleotides in DNA. However, these methods do not have the resolution to measure 

these DNA damage events in cells with efficient DNA repair enzymes and they require knockout 

or knockdown of DNA repair factors in order to measure these damage events. Because of their 

lack of sensitivity, genome-wide damage measurements have not been used as a way to measure 

DNA repair capacity. These genome-wide mapping studies have provided information on how 

DNA damage occurs in cells and where DNA damage hot-spots are located throughout the 

genome. For example, Bryan, et. al. (2014) found that uracil did not accumulate in early and late 

replicating regions of the genome. The authors only measured uracil accumulation in the absence 
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of the uracil DNA glycosylase, indicating that this method is not suitable to measure DNA repair 

capacity in wildtype cells. Mapping methods are, however, useful in understanding localized DNA 

repair capacity throughout the genome and the factors that contribute to damage ‘hotspots’.      

Measuring DNA repair in cells: Host cell reactivation 

Host cell reactivation assays were developed to measure endogenous DNA repair capacity 

of specific DNA lesions (J. M. Johnson and Latimer 2005). There are several variations to the 

assay, but the principle remains the same. First, an expression plasmid - usually coding for the 

expression of reporter or fluorescent protein - is embedded with a single (or multiple) DNA 

damage event(s). Second the plasmid is transfected into live cells. Third, the expression of plasmid 

will increase (or decrease) upon repair of the lesion by endogenous DNA repair proteins and the 

fluorescence is measured over time (J. M. Johnson and Latimer 2005) (Figure 1.4b).  

Host cell reactivation assays have been used to measure interindividual differences in DNA 

repair capacity across multiple DNA repair pathways (Chaim et al. 2017a). Additionally, host cell 

reactivation assays have been able to correlate and predict chemotherapy response based on DNA 

repair capacity of multiple DNA repair pathways (Nagel et al. 2017).  

Host cell reactivation assays have some limitations. First, host cell reactivation assays 

require cells to tolerate and function following transfection, which make them difficult to use on 

primary tissue. However, there has been success in measuring DNA repair using primary 

lymphocytes by host cell reactivation (Mendez et al. 2011). Second, they are limited in the number 

of DNA repair pathways that they can measure simultaneously. Nagel, et al. (2016) was able to 

co-transfect four expression plasmids into cells in order to measure DNA repair across four 

pathways, however, this is the upper limit of what can be transfected into a single sample of cells. 

Finally, HCR assays depend on complete repair of the expression plasmid in order for repair to be 
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measured; and thus, they lack the resolution to measure repair intermediates. For example, if BER 

repair is slow, it is difficult to know if glycosylase activity, Ape1 activity, POLB activity, or DNA 

ligase activity is responsible because all steps need to occur for the readout to be measured. 

Although by measuring multiple reporters simultaneously, Nagel, et al. (2016) was able to 

determine the importance of Ape1 AP lyase activity over glycosylase activity in glioblastoma cells.  

Measuring DNA repair in cells: Oligonucleotide retrieval assay 

Another method to measure DNA repair in vivo is through oligonucleotide retrieval assays 

(J.-C. Shen et al. 2014; Golato et al. 2017). In oligonucleotide retrieval assays, DNA repair 

substrates in the form of biotinylated DNA hairpins are transfected into cells. The cells initiate and 

complete repair on the DNA hairpin substrates. Then the cells are lysed, and the DNA repair 

substrates are recovered using streptavidin affinity purification. Repair is quantified through 

quantitative PCR. The presence of DNA lesions blocks DNA polymerases and alters amplification 

rates of the modified substrates compared to the repaired substrate (Figure 1.4c). Oligonucleotide 

retrieval assays have been developed for NER substrates (J.-C. Shen et al. 2014) and BER 

substrates (Golato et al. 2017). Oligonucleotide retrieval assays have shown differential DNA 

repair rates between cell lines (J.-C. Shen et al. 2014), however, their utility is limited to cells that 

tolerate transfection and substrates that alter DNA polymerase amplification rates.     

Measuring DNA repair in cell extract: DNA repair microarray 

DNA repair microarrays use cell-free extracts to measure strand incision events on DNA 

repair substrates. Plasmid DNA (Millau et al. 2008) or small oligonucleotide substrates with 

fluorescent tags (Pons et al. 2010a) are immobilized on microarray slides. The slides are then 

treated with cell free extracts and fluorescence of the array spots is measured. When DNA repair 

proteins present in the extract excise the damage base and create a strand break, this causes the 
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fluorophore on the end of the substrate to wash away (Pons et al. 2010a). Alternatively, 

fluorescently labeled nucleotides are added to the cell extract and when the nucleotides are 

incorporated into the repaired substrate, the fluorescence increases as repair occurs (Millau et al. 

2008). The signal can be measured overtime and is dependent on DNA repair enzyme 

concentrations (Figure 1.4d). The microarray assays have been used to measure interindividual 

differences in DNA repair capacity across multiple DNA repair pathways. Additionally, they have 

shown that DNA repair capacity can change with age (Pons et al. 2010a) and how functional DNA 

repair capacity can be used to understand sensitivity to DNA damage chemotherapies (Forestier, 

Sarrazy, et al. 2012). DNA repair microarrays have also shown how endogenous and exogenous 

factors can impact DNA repair capacity (Forestier, Douki, et al. 2012a; Candéias et al. 2010). 

DNA repair microarrays require bulk cell extract and thus are unable to measure DNA 

repair heterogeneity within a single sample. Additionally, DNA repair microarrays cannot measure 

repair at nucleotide resolution on the substrates. Nucleotide resolution can provide insight on 

which repair proteins are initiating repair (e.g. RNaseH2 or Top1).   

Single cell methods 

Single cell methods have rapidly expanded in the last 10 years. Methods that measure 

aspects of dozens of cells have been replaced with high throughput methods that can measure gene 

expression (Macosko et al. 2015; G. X. Y. Zheng et al. 2017; Junyue Cao et al. 2017), chromatin 

accessibility (Cusanovich et al. 2015), and protein abundance (Mimitou et al. 2019) in thousands 

to millions of cells in one experiment. These single-cell methods employ a number of different 

techniques to isolate single cells and tag or capture the molecules of interest; and thus, these 

methods have been widely successful in measuring the abundance of biomolecules in the cell. 
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Single-cell methods have greatly expanded our understanding of cell heterogeneity, complex 

tissues, and the development of organs and whole organisms (Stuart and Satija 2019a).  

Single-cell mRNA sequencing 

Some of the first high-throughput single-cell methods measured gene expression in single 

cells. Using microfluidic devices, these methods have accelerated the field of single-cell mRNA 

sequencing. The central idea of microfluidics-based single-cell RNA sequencing methods is that 

single cells are isolated and lysed in oil-water emulsion droplets (Macosko et al. 2015; G. X. Y. 

Zheng et al. 2017) (Figure 1.5a). Within each droplet, the mRNAs of each cell are uniquely 

barcoded with a drop- (and cell-) specific barcode. All the mRNAs present within a single droplet 

get tagged with the same cell barcode and a unique molecular identifier (UMI). Single-cell 

suspensions and oligo-dT primers that contain unique barcodes are run through different channels 

of a microfluidics chip, combining and forming droplets in oil. Upon droplet formation, the cells 

lyse and the polyadenylate 3´ ends of the mRNA anneal to the oligo-dT primer and are reverse 

transcribed (G. X. Y. Zheng et al. 2017). Following reverse transcription, the emulsion is broken, 

and nucleic acids are isolated. Since each cell was uniquely barcoded in the drop, the remaining 

mRNA sequencing library preparation can be done in bulk. Since the majority of the library 

preparation is done in bulk, this method has greatly simplified our ability to study single cells. 

Similar approaches have been successful, but instead of isolating single cells in oil-water 

emulsions, cells are sorted into microwells and are uniquely barcoded in each well (Picelli et al. 

2014) (Figure 1.5b).  
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Figure 1.5: Single-cell mRNA sequencing methods 
  
a.  Droplet-based single-cell mRNA sequencing methods encapsulate single-cells and barcoded 
oligo-dT primers in oil-water emulsions. mRNA from single-cell is uniquely barcoded within each 
drop allowing the researcher to identify and quantify mRNAs from single-cells. 
 
b.  Well-based single-cell mRNA sequencing methods isolate single-cells in wells. Within each 
well, cells are lysed, and mRNAs are uniquely barcoded within each well. 
 
c.  Combinatorial indexing single-cell mRNA sequencing methods uniquely barcode mRNA within 
fixed cells or nuclei using a series of RT, ligation, and PCR reactions in wells that contain dozens 
of cells. Between rounds of barcoding, cells are pooled and redistributed to ensure each cell 
receives a unique barcode.  
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There are two main single-cell mRNA sequencing approaches. One, explained above, 

involves live, viably frozen or fresh fixed cells where individual cells are isolated and barcoded 

individually. Another method developed separately by the Shendure and Seelig labs, involves 

barcoding individual cells through a series of split-pool barcoding reactions (Junyue Cao et al. 

2017; Rosenberg et al. 2018) (Figure 1.5c). Cells are first fixed and permeabilized and then 

undergo a series of barcoding reactions. Cells are distributed into 96 or 394-well plates where each 

well has a uniquely barcoded RT primer. Since cells are fixed, mRNA present within each cell is 

immobilized and locally reverse transcribed within each fixed cell or nucleus. Next, cells are 

pooled and redistributed into wells containing a unique barcoded sequence that is ligated onto the 

5´ end of the cDNA products. The cDNA is barcoded a third and final time during the PCR step 

where the sample barcode present within the sequencing primer becomes the third and final cell 

barcode. Through a series of two or three barcoding steps, millions of cells can be uniquely 

barcoded with very little overlap.  

In addition to single-cell mRNA sequencing methods, a number of imaging methods can 

track mRNAs and proteins at single-cell resolution. Because most imaging techniques rely on in 

situ hybridization of fluorescently tagged probes, there is a limit to how many fluorophores can be 

detected simultaneously and the number of repeat staining steps each sample can incur before 

degradation (Moffitt et al. 2016). However multiplexed in situ hybridization methods have been 

developed that significantly increase the number of targets that can be measured (Eng et al. 2019). 

Through a combination of imaging and sequencing approaches, spatial transcriptomics of tissue 

slices has approached single-cell resolution (Ståhl et al. 2016; Moffitt et al. 2018). Imaging 

techniques are inherently single-cell resolution and the throughput of these methods is continuing 

to increase. As imaging techniques improve and are combined with RNA sequencing, they have 
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reached the depth of information provided by single-cell RNA sequencing techniques (i.e. 

thousands of measurements per cell) and are approaching subcellular spatial resolution of imaging 

techniques (Rodriques et al. 2019; Eng et al. 2019).  

Multimodal single-cell methods 

In addition to single modality measurements in single cells, there are some methods that 

simultaneously measure gene expression and something else. For example, CITE-seq (Stoeckius 

et al. 2017) measures cell surface markers and mRNA expression simultaneously. To achieve this, 

antibodies are conjugated with oligonucleotides that contain a 3´ poly-A tail, a 5´ PCR handle, and 

an internal antibody-specific sequence tag. Cells are stained with the antibodies prior to a droplet-

based poly-A single-cell sequencing protocol. The tagged antibodies bind to cell surface receptors 

are captured alongside the cellular mRNA and amplified during the single-cell mRNA sequencing 

library protocol. Similar protocols have been used to pool samples, prior to single-cell protocols, 

cells are tagged using sample-specific barcodes conjugated to antibodies (Stoeckius et al. 2018) or 

lipids (McGinnis et al. 2019).  

The CITE-seq concept was expanded in a similar ECCITE-seq protocol (Mimitou et al. 

2019). ECCITE-seq uses the theory of CITE-seq but expands it to also capture CRISPR guides by 

including a reverse transcription binding site within the CRISPR guide-RNA transcript. Additional 

methods have been made to measure mRNA expression in combination with proteins, DNA 

sequence, chromatin accessibility, and DNA methylation status (Stuart and Satija 2019a).  

Cells of a multicellular organism have the same genetic material, but through a number of 

regulatory networks achieve different cell functions. Chromatin marks and DNA methylation can 

lead to differential gene expression that can be related to cell function. Additionally, post-

transcriptional modifications, transcription factor binding sites, and cis-regulatory sequences can 
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also affect cell function. With the development of multimodal single cell analysis, we can begin to 

establish cell type-specific regulatory networks. Because single-cell measurements provide the 

throughput and resolution to understand cell type-specific characteristics, their development has 

accelerated our understanding of cell regulatory mechanisms during disease progression and 

development (Schier 2020). 

Computational methods 

In parallel to developing molecular biology techniques to measure single-cell 

characteristics, computational methods have grown to help us understand biology at single-cell 

resolution. Some computational methods have been developed to deal with the challenges of 

single-cell biology. For example, there are strong batch effects in single-cell RNA sequencing. 

This creates a challenge when trying to make conclusions across samples and/or technology. 

Several methods have been developed to integrate data across datasets that regress out the 

differential gene expression related to batch effects (Butler et al. 2018a; Stuart et al. 2019a; Tran 

et al. 2020). 

Other computational methods attempt to help us understand the biological consequences 

single-cell differential gene expression. For example, during development cells differentiate into 

specific cell types. In order to understand which cells arise from which progenitor cells, 

computational methods have been developed to predict lineages and create a pseudo-time 

measurement that can track differentiation of cells through intermediate stages of differentiation 

(Trapnell et al. 2014; Qiu, Mao, et al. 2017). These methods have been used to track the 

development of organs, organoids, and even whole organisms (Stuart and Satija 2019a).  

Finally, data integration methods have been developed in order to predict phenotypes from 

single-cell measurements. For example, Stuart, et al. (2018) developed a method that can integrate 
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single-cell or bulk datasets into one to predict cell types or phenotypes. Multimodal single-cell 

analysis methods that integrate multiple measurements per cell provide a detailed framework to 

understanding how individual measurements contribute to cell phenotype (Butler et al. 2018a; 

Stuart et al. 2019a). 

Challenges of single-cell methods  

While both molecular biology and computational methods have greatly improved the field 

of single-cell biology, there are still several challenges that the field faces. First, because the raw 

material of single cells is minimal, the data produced by single-cell methods is inherently sparse. 

This creates a unique challenge in understanding the true negative and false negative rates of 

detection. Some data imputation methods have been developed to address the sparsity of the data 

(Mongia, Sengupta, and Majumdar 2019; Jin et al. 2020); however, these methods may lead to 

overinterpretation of the data or over correcting by masking true negatives. Second, the variation 

in single-cell data is difficult to explain. Variation in gene expression or other measurements could 

be due to biological differences between cells or produced by technical variation intrinsic to the 

methods. While technical vs biological noise is an important consideration for all molecular 

biology techniques, single-cell biology has a unique challenge since technical replicates for 

individual cells is not possible with the current techniques. Lastly, current single-cell methods rely 

on measuring the abundance of biomolecules in cells and use these measurements to predict 

phenotypes. The complex nature of cell regulatory pathways makes it difficult to accurately assign 

cell phenotypes using abundance measurements alone. To this end, we have developed an assay 

to simultaneously measure mRNA expression and enzyme function in single cells (Chapter II).  
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Summary 

Here I have summarized the workings of DNA repair and single-cell methods. DNA repair 

is important for maintaining cellular homeostasis; however, DNA repair is not static. DNA repair 

differs between individuals, cell types, cell cycle phases, and can change with age and with disease. 

Numerous methods have been developed to measure DNA repair enzyme activities in live cells 

and in cell extracts. These methods have helped us understand the importance of DNA repair in 

cancer development, treatment, and the heterogeneous nature of DNA repair in tumors and healthy 

individuals. With the acceleration of the single-cell genomics field, our understanding of cell 

heterogeneity has grown immensely. However, the single-cell field has been focused on measuring 

the abundance of molecules in cells and using that data to predict cell phenotypes. Cell phenotypes 

can be affected by many different modifications to mRNA and proteins that are not measured using 

current single-cell technology. To help bridge the gap between the current DNA repair fields and 

single-cell biology fields, I have developed a method to measure DNA repair at single-cell 

resolution. My findings are reported in the following chapters. Enjoy. ☺ 
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CHAPTER II 

SIMULTANEOUS MEASUREMENT OF BIOCHEMICAL PHENOTYPES AND GENE 

EXPRESSION IN SINGLE CELLS1 

Abstract 

Methods to measure heterogeneity among cells are rapidly transforming our understanding 

of biology but are currently limited to molecular abundance measurements. We developed an 

approach to simultaneously measure biochemical activities and mRNA abundance in single cells 

to understand the heterogeneity of DNA repair activities across thousands of human lymphocytes, 

identifying known and novel cell-type-specific DNA repair phenotypes. 

Introduction 

New methods to study heterogeneity at cellular resolution measure differences in gene 

expression (Macosko et al. 2015; Junyue Cao et al. 2017, 2019; G. X. Y. Zheng et al. 2017), 

chromatin accessibility (Cusanovich et al. 2015), and protein levels (Mimitou et al. 2019) across 

thousands to millions of cells to understand developmental trajectories of tissues, tumors, and 

whole organisms. But these methods only measure static levels of DNA, RNA, and proteins, 

limiting our ability to extract dynamic information from individual cells. 

We developed a functional assay as a new modality for single-cell experiments. Our key 

innovation is that, instead of measuring the abundance of molecules—i.e., levels of DNA, RNA, 

or protein—from single cells and predicting functional states, we directly measure enzymatic 

activities present in single cells by analyzing the conversion of substrates to intermediates and 

products in single-cell extracts within a high-throughput DNA sequencing experiment. Our 

approach is compatible with existing platforms that measure gene expression at single-cell 

 
Published with permission under a CC BY license from Nucleic Acids Research: Richer, et al. 2020 
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resolution and can measure many different enzymatic activities simultaneously, querying different 

biochemical activities by combining unique substrates. 

We measured DNA repair activities in single cells because the enzymatic substrate (i.e., a 

DNA lesion to be repaired by cellular enzymes) yields a product that can be directly analyzed by 

DNA sequencing. DNA damage is repaired by multiple different and often redundant pathways 

including base excision repair, nucleotide excision repair, mismatch repair, and direct reversal 

(Bauer, Corbett, and Doetsch 2015a). Current methods to study DNA repair in cells and cell 

extracts use synthetic DNA substrates to measure repair activities (J.-C. Shen et al. 2014; Nagel et 

al. 2014), but these approaches do not scale to multiple measurements (i.e., gene expression and 

biochemical activities) from the same cell, and their reliance on substrate transfection precludes 

facile application to primary cells. 

We were able to show that we could measure base excision repair and ribonucleotide 

excision repair at single-cell resolution. The repair signals we measured were stable across time 

and substrate concentration. We applied our method to primary human lymphocytes and measured 

known and novel differences in DNA repair across cell types. Our method is the first of its kind in 

measuring gene expression and DNA repair activities in single-cells and could be broadly applied 

to many cell types and primary samples. 

Materials and methods 

DNA repair substrates for single cell experiments 

Oligonucleotides were purchased from IDT (Table 2.1). Substrates contain a 5′ and 3′ C3 

spacer to prevent exonuclease degradation and reverse transcriptase extension of the substrates. 

Hairpins were gel purified prior to use in single cell experiments. Briefly, 2-5 nmoles of hairpins 

were loaded in denaturing buffer (47.5% formamide, 0.05% Orange G) on 8% 19:1 acrylamide 
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(BioRad) TBE-Urea gels (7 M urea, 0.1 M Tris base, 0.1 M boric acid, 2 mM EDTA). Hairpins 

were visualized with UV shadowing on a TLC Silica gel 60 F₂₅₄ plate (Millipore), cut from the gel, 

crushed in a 1.5 ml Eppendorf tube and eluted in 400 µl 0.3 M sodium acetate overnight at 37 °C 

shaking at 400 RPM. Acrylamide was removed using 0.45 μm cellulose acetate filters (Costar). 

Hairpins were then purified via ethanol precipitation and resuspended in water. The concentration 

of purified hairpins was determined via absorbance at 260 nm on a Nanodrop 2000 (Thermo 

Scientific).  

Preparation of single cell suspensions 

Single cell suspensions from cell lines were prepared according to 10x Genomics 

guidelines. Briefly, cells were quickly washed with 0.25% trypsin (ThermoFisher) and then 

incubated in 0.25% trypsin for 5 minutes at 37 °C. Trypsin digestion was quenched by the addition 

of cell culture medium. Cells were isolated by centrifugation at 150 xG for 3 minutes (these same 

conditions were used for all cell washes). For cell mixing experiments, approximately 106 cells 

from each knockout cell line (UNGKO or RNASEH2CKO) were filtered through a 30 µm strainer 

and mixed in the same tube. Cells were washed twice with cold PBS containing 0.04% BSA. Cells 

were resuspended in 500 µl PBS with 0.04% BSA and filtered through a Flowmi™ Tip Strainer. 

Cells were stained with trypan blue and counted on a hemocytometer. Cell concentration ranged 

from 400 - 1000 cells per µl and viability was between 80-95%. 

Fresh peripheral blood mononuclear cells (PBMC) were isolated from whole blood donated 

by healthy human donors according to University of Colorado IRB guidelines in sodium heparin 

tubes. Approximately 5-10 ml of whole blood was diluted with PBS to a total volume of 35 ml. 

Diluted whole blood was layered over 10 ml Ficoll-Paque PLUS (GE) and centrifuged at 740 xG 

for 20 minutes with no deceleration. Cells located above the Ficoll layer were removed and washed 
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twice with PBS. Cells were counted and approximately 2 million cells were washed an additional 

two times with PBS plus 0.04% BSA. Cells were resuspended in 500 µl PBS plus 0.04% BSA and 

run through a Flowmi™ Tip Strainer. Cells were counted on a hemocytometer: cell concentration 

ranged from 400-1000 cells per µl and viability was between 80-95%. 

Single cell repair measurements using the 10x Genomics platform 

The most current version of this protocol is available at: 

https://dx.doi.org/10.17504/protocols.io.uhyet7w. 

Cells were loaded onto the 10x Genomics single cell 3′ expression kit V2 according to the 

manufacturer's instructions (CG 000075 Rev C) with the following exceptions: 

1. When preparing the single cell master mix, 5 µl was subtracted from the appropriate 

volume of nuclease-free water. After the nuclease-free water was added to the master mix 

and prior to the addition of the single cell suspension, 5 µl of mixed DNA repair substrates 

were added (see Table 2.2 for substrate concentrations for each experiment). 

2. The GEM-RT incubation was changed to the following: 

1.  Lid temperature: 53 °C 

2. 37 °C for 60 minutes (unless otherwise noted in experiment Figure 2.6) 

3. 53 °C for 45 minutes 

4. 4 °C Hold and proceed directly to GEM-RT cleanup 

3. After GEM-RT cleanup, DNA repair substrates and products were separated from mRNA 

prior to cDNA amplification. 0.6x volume of AmpureXP was added to the eluted RT 

products (21 µl AmpureXP to 35 µl RT product) and incubated for 5 minutes at room 

temperature. The sample was placed on a magnetic strip (High on 10x Magnetic Separator) 

until the liquid was clear. The supernatant was transferred to a new tube since it contained 
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the DNA repair substrates and products. The beads containing the RT products were 

washed twice with 150 µl of 80% ethanol, then dried for 2 minutes at room temperature, 

and eluted in 35.5 µl of Elution Solution 1 according to 10x SPRIselect cleanup protocols. 

This fraction was used to prepare the mRNA expression library according to manufacturer's 

instructions. The supernatant was cleaned up by added 1.8x of the original volume of 

AmpureXP (42 µl), mixed, and then incubated for 5 minutes at room temperature. The 

sample was placed on a magnetic strip until the liquid was clear. The supernatant was 

discarded, and the beads were washed twice with 150 µl 80% ethanol. The beads were 

dried at room temperature for 2 minutes, then eluted in 20 µl water. This fraction was used 

to prepare the DNA repair libraries. Note: DNA repair substrates may be visible on 

Tapestation or Bioanalyzer prior to or following size separation, however, this was not 

measured in these experiments. 

Preparation of DNA repair libraries from single cells 

The DNA repair libraries were prepared with the following steps:  

1. End repair: 20 µl of the purified DNA repair libraries were added to an end repair reaction 

with a total volume of 30 µl (NEBNext End repair Module E6050) and incubated for 30 

minutes at 20° C. 

2. Clean up by precipitation: 120 µl of 0.3 M sodium acetate and 400 µl 100% ethanol were 

added to the end repair reaction (step 1). The reaction was allowed to precipitate at -20 °C 

for at least 30 minutes. Samples were centrifuged at 10,000xg for 10 minutes and the 

supernatant was removed, and the pellet was washed with 500 µl of 70% ethanol and 

centrifuged at >10000 xG for 10 minutes. The supernatant was removed ,and the pellet was 
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dried for 2 minutes at room temperature. The pellet was resuspended in 20 µl nuclease-free 

water. 

3. A-tailing: 15 µl of the end repaired DNA repair library was added to an A-tailing reaction 

with a total volume of 20 µl (1x Blue Buffer (Enzymatics), 400 µM dATP, 5 units Klenow 

3′-5′ exo- (Enzymatics)) for 30 minutes at 37 °C. The A-tailing reaction was cleaned up 

using precipitation as in step 2. 

4. Adapter ligation: 13 µl of the A-tailing reaction was added to an Illumina Y adapter ligation 

reaction with a total volume of 20 µl (66 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, 1 mM 

ATP, 7.5% PEG 6000, pH 7.6, 0.3 µM annealed Y adapters, 600 units Rapid T4 DNA 

Ligase (Enzymatics)) and incubated at 25 °C for 30 minutes. The ligation reaction was 

purified using 1.8 x volume of Agencourt AMPure XP (Beckman Coulter) beads as 

described by the manufacturer. The reaction was eluted in 20 µl nuclease-free water. 

5. Illumina TruSeq PCR: 13 µl of the purified ligation reaction was added to a PCR reaction 

with a total volume of 50 µl (1x Phusion HF buffer (NEB), 200 µM dNTPs, 0.6 µM ILMN 

PCR primers (F and R), 2 units Phusion High Fidelity DNA polymerase). 14-20 cycles of 

PCR were done with 98 °C melting temperature for 15 seconds, 65 °C annealing 

temperature for 15 seconds, and 72 °C extension temperature for 15 seconds. 

6. PCR cleanup and sequencing: The DNA repair library was purified using 1.2x volume 

Agencourt AMPure XP (Beckman Coulter) beads as described by the manufacturer. The 

DNA repair library was quantified using the Qubit HS dsDNA fluorometric quantitation 

kit (Thermo Scientific). 1 µl of the DNA repair library was analyzed on the Agilent D1000 

Tapestation. The DNA repair library was ~230-250 base pairs. The DNA repair library was 

paired end sequenced on a NovaSeq 6000 system with 2x150 base pair read lengths at the 
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University of Colorado Anschutz Medical Campus Genomics and Microarray core. Each 

library was sequenced with at least 10 million reads per sample. 

Single cell data processing 

Data processing scripts are available at https://github.com/hesselberthlab/sc-haircut. 

Briefly, FASTQ files from the 10x mRNA libraries were processed using the cellranger count 

pipeline (v3.0.2). Reads were aligned to the GRCh38 reference. For the repair libraries, the cell 

barcodes and UMIs were extracted from R1 using umi_tools (Smith, Heger, and Sudbery 2017a). 

All of the known 10x cell barcodes were provided as the whitelist. R2 was trimmed to remove the 

3′ polyA sequence and the 5′ template switching sequence. Then R2 was aligned to a hairpin 

reference fasta file using bowtie2 (v2.3.2)(Langmead and Salzberg 2012a), no reverse complement 

alignment was allowed to ensure sequences aligned in the correct orientation to the reference. The 

chromosome (same as substrate name) and 5′ alignment position were concatenated and added to 

the bam file in the XT flag. UMIs were grouped and appended to the BAM files as a tag using 

umi_tools group. UMIs were counted per cell per hairpin position using umi_tools count. The table 

output was converted into a sparse matrix and filtered by matching cell barcodes found in the 

cellranger filtered feature matrix output using functions in the scrunchy R package 

(https://github.com/hesselberthlab/scrunchy). 

Seurat 

Downstream analysis of RNA and repair data was performed using the Seurat R package 

(v3.0.0)(Stuart et al. 2019a). Raw, filtered counts for repair was added to the same Seurat object 

as gene expression. Gene expression counts and repair counts were log normalized 

(LogNormalize) where feature counts for each cell are divided by the total counts for that cell and 

multiplied by a scaling factor (104) and then natural-log transformed. PBMC samples were filtered 
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for number of genes per cell >150-200 and <2000-2500 and for percent mitochondrial reads <15%-

25%. Gene expression data was scaled and centered (ScaleData). 5000 variable features 

(FindVariableFeatures) were used for PCA calculation (RunPCA) and the first 10-20 principal 

components were used to find clusters (FindNeighbors, FindClusters) and calculate uniform 

manifold approximation and projection (UMAP) (RunUMAP). Cell types were identified using 

the Seurat functions FindTransferAnchors and TransferData(Stuart et al. 2019a). Reference PBMC 

data was downloaded from Seurat vignette and used as reference for PBMC cell types 

(https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html; https://support.10xgenomics.com/single-

cell-gene-expression/datasets/1.1.0/pbmc3k). Cells were filtered to exclude platelets unless 

otherwise noted (Figure 2.11). Significant differences and fold changes in repair activities and 

gene expression between cell types were calculated using Wilcoxon Rank Sum test (FindMarkers, 

FindAllMarkers) for all pairwise combinations (Table 2.3 and Table 2.4). PBMC replicates were 

merged and integrated using Seurat functions (FindIntegrationAnchors and IntegrateData) and 

then analyzed the same as individual replicates). In the cell mixing experiment (Figure 2.1), cell 

types were determined by repair activities. Knockout cells were identified if counts at the repair 

site (position 44 for ribonucleotide and position 45 for uracil) for one repair activity was > 5% of 

the maximum for the repair activity and the other was < 5% of the maximum. If both repair activity 

counts were >5% of the maximum, that cell was considered a doublet and if both repair activity 

counts were <5% of the maximum that cell was not classified. Filtered single cell gene expression 

matrices from previously published data(G. X. Y. Zheng et al. 2017) for Figure 2.10 were 

downloaded from 10x Genomics (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.2/5k_pbmc_v3_nextgem, https://support.10xgenomics.com/single-cell-

gene-expression/datasets/3.1.0/5k_pbmc_protein_v3, https://support.10xgenomics.com/single-
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cell-gene-expression/datasets/3.0.0/pbmc_10k_v3, https://support.10xgenomics.com/single-cell-

gene-expression/datasets/2.1.0/pbmc4k) and analyzed the same as above. 

Genome coverage 

To calculate genome coverage for cell mixing experiment (Figure 2.5), BAM files 

produced by cellranger were split into cell type (as assigned above and in Figure 2.1) specific 

BAM files by cell barcodes using samtools view (v1.9)(H. Li et al. 2009a). Bulk genome coverage 

was calculated for UNGKO or RNASEH2CKO cells using bedtools genomecov (v2.26.0)(Quinlan 

and Hall 2010a). Coverage was visualized with the UCSC Genome Browser(Kent et al. 2002). 

Cell type classification with repair data 

To determine whether DNA repair activities are useful in classifying PBMC cell types, we 

used the PBMC replicates 1 and 2 (Figure 2.8 and Figure 2.9, left). True cell types were 

determined using reference PBMC data from 10x Genomics as described in Seurat analysis section 

above. All other cell type classifications were compared to these reference cell types. Next, cell 

types were determined by renaming the defined Seurat clusters as the majority cell type present 

within each cluster (Figure 2.11b). Additionally, mRNA (Figure 2.11c) and/or repair data (Figure 

2.11d,e) from PBMC replicate 1 was used as the reference input for assigning cell types to PBMC 

replicate 2 using Seurat’s FindTransferAnchors and TransferData functions. Cell types were 

randomly reassigned using R (sample) (Figure 2.11f). True positive, true negative, false positive, 

and false negative numbers were calculated for each cell type for each classification method. These 

numbers were then used to calculate true positive rate and false positive rate for each cell type for 

each classification method (Figure 2.11g). 
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Bulk RNA-seq from tissues analysis 

Data was downloaded from the Human Protein Atlas 

(https://www.proteinatlas.org/download/rna_tissue_consensus.tsv.zip) for the RNA consensus 

tissue gene data set. These data are gene transcript expression levels from 74 tissues. The 

normalized expression values in the data are the maximum expression value from 3 different 

sources. These data were visualized using the R package ggplot2 (Figure 2.10). 

Empty drops vs cells analysis 

To determine biological vs background activity in single cells, we calculated hairpin 

coverage in empty drops (Figure 2.3). Empty drops were determined by filtering out cell-

associated barcodes from the repair matrix. The resulting repair matrix contains many barcodes 

that are associated with only a single UMI, so the matrix was filtered by descending UMI counts 

to the same number as cell-associated barcodes. This repair matrix from empty drops was used as 

the input to calculate empty drop signal across the hairpin by calculating the mean count across all 

drops at each hairpin position. 

Haircut signal detection sensitivity 

To determine the lower limit of haircut signal detection suitable for classifying cells as 

either UNGKO or RNASEH2CKO read alignments were randomly downsampled using samtools 

view (v1.9)(H. Li et al. 2009a). The downsampled BAM files were then processed using the haircut 

single cell processing pipeline to produce haircut signal matrices. Cells were classified as either 

UNGKO, RNASEH2CKO, doublets, or low signal using the same cutoffs described in the Seurat 

analysis methods. 
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Estimated recovery of substrates 

To determine the proportion of substrates recovered from each droplet (Figure 2.7), the 

total number of hairpins added to each drop was estimated using the following assumptions: 

1. When the oil-water emulsion droplet is formed within the 10x Genomics Chromium chip, 

the volume of the master mix is doubled, thus reducing the concentration of hairpins to ½ 

the concentration of hairpins in the master mix. 

2. Diameter of each drop: ~80 μm 

3. Volume of each drop: ~270 pL 

The number of substrates in each drop was then calculated and ranged from 40,000 to 

800,000 hairpin molecules per drop depending on the hairpin concentration in the master mix. To 

determine the proportion of hairpins recovered per drop, the total number of aligned reads per 

hairpin per drop was divided by the approximate number of hairpins per drop. 

Direct reversal substrate and 5 ́ biotin cleanup 

To measure repair of direct reversal substrates we included O6methyl-G substrate in PBMC 

experiments (Figure 2.3 and Figure 2.9). Prior to end repair, the repair fraction was digested with 

PstI (NEB, 20 U in 1x Cutsmart buffer) at 37 °C for 60 minutes. The reaction was cleaned up by 

precipitation, followed by the above steps starting at end repair. To remove background signal on 

the 5 ́ end of the substrates, we included a uracil substrate with a 5 ́ biotin in PBMC experiments 

(Figure 2.3 and Figure 2.9). To remove uncleaved substrate, prior to end repair, the repair fraction 

was incubated with Dynabeads™ M-270 Streptavidin (5 μg, Thermo) for 5 minutes at room 

temperature. Following incubation, the beads were discarded and the supernatant was cleaned with 

precipitation. The remainder of the protocol proceeded starting from end repair. 
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Oligonucleotides for repair libraries 

Other oligonucleotides used in the library preparation can be found in Table 2.1. To anneal 

Y adapters, 100 µM Y adapter 1 and 2 were mixed in equimolar concentration in 10 mM Tris-HCl 

pH 7.5, 50 mM NaCl and heated to 95 °C and cooled to 4 °C over 5 minutes. Annealed adapters 

were diluted to 10 µM final concentration in cold 10 mM Tris-HCl pH 7.5, 50 mM NaCl. Annealed 

adapters were stored at -20 °C until use. 

Cell lines and cell culture 

Hap1 UNGKO (HZGHC001531c012) and RNASEH2CKO (HZGHC004633c003) cells 

were purchased from Horizon Discovery. Cell lines were cultured in IMDM (Gibco, purchased 

from ThermoFisher) supplemented with 10% FBS (ThermoFisher) and Penicillin-Streptomycin 

(ThermoFisher) at 37 °C with 5% CO2. 

RT-qPCR 

Total RNA from cells was isolated using TRIzol reagent (ThermoFisher) according to 

manufacturer’s instructions. Total RNA (5 µg) was treated with TURBO DNAse (2 U) 

(ThermoFisher) according to manufacturer’s instructions. Following DNAse treatment, 1 µg of 

total RNA was reverse transcribed using Superscript II (200 U, ThermoFisher) and random 

hexamers primers (0.5 µM, ThermoFisher) to make cDNA. The cDNA was then used for 

quantitative PCR (qPCR) using Sso Advanced Universal SYBR Green Supermix (Bio Rad) and 

cycled on a Bio Rad C1000 384-well thermal cycler and plate reader. qPCR experiments were 

done in technical triplicate and biological duplicates. 
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Table 2.1: Oligonucleotides for single cell DNA repair measurements 

Oligo Sequence Source 

A:U - 1 /5SpC3/GTCGTGATGCATGCCTGTATGTGACACAAGTAATTGTGTCACAUACAGGCATG
CATCACGACAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

C:riboG - 1 /5SpC3/ACTCGAGTCACACTCGTACTGATGCATGAGTAATCATGCATCArGTACGAGTGT
GACTCGAGTAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

G:U /5SpC3/TGAATTCGAGAGTCGTTCGGCGATATAACGTAAGTTATATCGCUGAACGACTC
TCGAATTCAAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

G:Abasic /5SpC3/ACGTACGTTAGCATAACTGTAATCTTAATGTAAATTAAGATTA/idSp/AGTTATG
CTAACGTACGTAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

C:I /5SpC3/GAGCGCTACTCAGATGACTTCGAGTGATTGTAAAATCACTCGAIGTCATCTGA
GTAGCGCTCAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

T:I /5SpC3/AGTGCACGCTCTATGTATCGAAGAGTTGTGTAAACAACTCTTCIATACATAGAG
CGTGCACTAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

Normal /5SpC3/CGCTAGCCTTCAGCTATCTTCTACCCATCGTAAGATGGGTAGAAGATAGCTGA
AGGCTAGCGAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

A:U - 2 /5SpC3/GCTTGCCTTGTCGATCACAAGTATGTCAGGTAACTGACATACTUGTGATCGAC
AAGGCAAGCAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

A:U - 3 /5SpC3/GCTGGCCTTTGCACTAGGAACTTACCGCGGTAACGCGGTAAGTUCCTAGTGCA
AAGGCCAGCAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

A:U - 4 /5SpC3/TGCCAACGGTGGAGTACGAGGTAAGAAGCGTAAGCTTCTTACCUCGTACTCCA
CCGTTGGCAAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

A:U - 5 /5SpC3/ATGGTTCACGTGGGACATAGCGATCGTGCGTAAGCACGATCGCUATGTCCCAC
GTGAACCATAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

C:riboG - 2 /5SpC3/TCCGACGGCAAGAGTCCTCTCCAATTACCGTAAGGTAATTGGArGAGGACTCT
TGCCGTCGGAAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

C:riboG - 3 /5SpC3/TCAATTGTTGGCAGAGGCCAATTAGTGTCGTAAGACACTAATTrGGCCTCTGCC
AACAATTGAAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

C:riboG - 4 /5SpC3/TCGGACCAAGTTATGGGCCGCGAATTTCCGTAAGGAAATTCGCrGGCCCATAA
CTTGGTCCGAAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

C:riboG - 5 /5SpC3/CTCAGACGAACGTTGCTACGGACCCGTATGTAAATACGGGTCCrGTAGCAACG
TTCGTCTGAGAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 

T:ethenoA /5SpC3/AAGGCCTGATGACGCATATCTGAGTGCTGGTAACAGCACTCAG[Etheno-
dA]TATGCGTCATCAGGCCTTAAAAAAAAAAAAAAAAAAAA/3SpC3/ Phosphoroamidites 

from Glen Research 
C:O6mG /5SpC3/GTGTACAACATACGACTGCAGTAGAGTGCGTAAGCACTCTACT[O6mG]CAGTC

GTATGTTGTACACAAAAAAAAAAAAAAAAAAAA/3SpC3/ Phosphoroamidites 
from Glen Research 

A:hmU /5SpC3/AATCGATGAGCTAGAGACGTCGAATTGCAGTAATGCAATTCGA[hmU]GTCTCT
AGCTCATCGATTAAAAAAAAAAAAAAAAAAAA/3SpC3/ Phosphoroamidites 

from Glen Research 
Uracil-biotin  /5Biosg/GCTTGCCTTGTCGATCACAAGTATGTCAGGTAACTGACATACTUGTGATCGAC

AAGGCAAGCAAAAAAAAAAAAAAAAAAAA/3SpC3/ IDT 
Y adapter 1 /5Phos/GATCGGAAGAGCACACGTCT IDT 
Y adapter 2 ACACTCTTTCCCTACACGACGCTCTTCCGATCT IDT 
PCR F (Indexed 
P7 primer) 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTC
TTCCGA*T*C*T IDT 

PCR R (Indexed 
P5 primer) 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTCTTTCCCTACACGACGCTCT
TCCGA*T*C*T IDT 

 

* represents a phosphonothioate linkage 
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Table 2.2: DNA repair substrate experimental conditions  

Experiment Substrate 
concentration 

(each in 
master mix) 

(nM) 

Number of 
Substrates 

Substrate 
concentration 

(Total in 
maseter mix) 

(nM) 

Substrates Figure 
reference 

Barnyard 
Dilution 

0.5 - 25 15 111 A:U (x5),  
C:riboG (X5),  

G:Abasic, 
G:U, C:I, T:I, 

Normal 

Figure 2.1, 
2.3, 2.4, 

2.5 

PBMC 
Dilution 

0.5 - 25 15 111 A:U (x5),  
C:riboG (X5),  

G:Abasic, 
G:U, C:I, T:I, 

Normal 

Figure 2.6, 
2.7  

PBMC 1 10 7 70 A:U,  
C:riboG,  
G:Abasic, 

G:U, C:I, T:I, 
Normal 

Figure 2.8, 
2.9, 2.10, 

2.11 

PBMC 2 0.9 11 10 A:U,  
C:riboG,  
G:Abasic, 

G:U, C:I, T:I, 
Normal, 

T:ethenoA, 
C:O6mG, 

A:hmU, A:U-
5´biotin 

Figure 2.8, 
2.11 

PBMC 3 0.9 11 10 A:U,  
C:riboG,  
G:Abasic, 

G:U, C:I, T:I, 
Normal, 

T:ethenoA, 
C:O6mG, 

A:hmU, A:U-
5´biotin 

Figure 2.8 

Barnyard 10 2 20 A:U, C:riboG Data not 
shown 
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Table 2.3: Differential gene expression for base excision repair genes  

gene cluster p_val avg_logFC pct.1 pct.2 p_val_adj sample 

POLE4 T 2.60E-15 -0.359 0.052 0.135 8.71E-11 pbmc1 
PARP1 B 5.84E-14 0.726 0.255 0.09 1.96E-09 pbmc1 
POLE4 Mono 1.13E-40 0.662 0.247 0.052 3.78E-36 pbmc1 
APEX1 DC 8.49E-14 0.716 0.333 0.059 2.85E-09 pbmc1 
RNASEH2C DC 2.46E-05 0.447 0.25 0.076 8.24E-01 pbmc1 
HMGB1 NK 5.26E-21 0.388 0.712 0.744 1.76E-16 pbmc2 
POLE4 Mono 1.27E-73 0.438 0.459 0.12 4.25E-69 pbmc2 
APEX1 DC 9.00E-19 0.520 0.517 0.145 3.02E-14 pbmc2 
RNASEH2B DC 5.91E-09 0.267 0.371 0.133 1.98E-04 pbmc2 
POLD4 B 3.74E-08 0.481 0.247 0.116 1.25E-03 pbmc2 
MBD4 B 5.64E-08 0.434 0.229 0.103 1.89E-03 pbmc2 
PARP1 B 1.48E-05 0.353 0.307 0.183 4.97E-01 pbmc2 
POLE4 T 1.16E-20 -0.275 0.107 0.214 3.88E-16 pbmc3 
HMGB1 NK 1.10E-23 0.383 0.711 0.733 3.68E-19 pbmc3 
POLE4 Mono 2.23E-76 0.487 0.389 0.104 7.48E-72 pbmc3 
APEX1 DC 2.27E-13 0.440 0.471 0.134 7.62E-09 pbmc3 
POLE3 DC 1.96E-08 0.379 0.426 0.152 6.56E-04 pbmc3 
MBD4 B 2.17E-13 0.524 0.226 0.083 7.27E-09 pbmc3 
PARP1 B 1.88E-10 0.422 0.346 0.176 6.32E-06 pbmc3 
POLD4 B 6.01E-08 0.436 0.26 0.136 2.02E-03 pbmc3 
RNASEH2B B 9.14E-04 0.310 0.192 0.122 1.00E+00 pbmc3 
POLE4 T 1.10E-64 -0.270 0.091 0.211 3.70E-60 all_cells 
PARP1 B 5.26E-24 0.528 0.305 0.152 1.76E-19 all_cells 
MBD4 B 2.70E-20 0.425 0.176 0.072 9.05E-16 all_cells 
POLD4 B 7.56E-13 0.385 0.197 0.105 2.53E-08 all_cells 
RNASEH2B B 5.52E-05 0.261 0.156 0.106 1.00E+00 all_cells 
HMGB1 NK 1.13E-46 0.406 0.656 0.611 3.78E-42 all_cells 
POLE3 NK 1.35E-03 0.268 0.142 0.125 1.00E+00 all_cells 
POLE4 Mono 5.51E-210 0.509 0.384 0.092 1.85E-205 all_cells 
APEX1 DC 1.16E-45 0.540 0.459 0.114 3.89E-41 all_cells 

 
Significant differences and fold changes in gene expression between cell types and all other cells 
were calculated using Wilcoxon Rank Sum test (using the FindAllMarkers function from Seurat 
v3.0.0 (Stuart et al. 2019b)) for all cell types. The result was filtered for genes within the KEGG 
base excision repair pathway (hsa03410). Statistics were calculated for each replicate individually 
(sample: pbmc1, pbmc2, pbmc3) and for all samples integrated (sample: all cells) (Figure 2.8 and 
Figure 2.9).  
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Table 2.4. Differential repair calculated for biological repair positions 
 

gene p_val avg_logFC pct.1 pct.2 p_val_adj celltype1 celltype2 

Abasic-45 1.46E-165 9.94E-01 1 0.997 6.20E-163 T Mono 

Abasic-45 1.06E-73 5.41E-01 1 1 4.53E-71 T NK 

Abasic-45 2.89E-71 9.26E-01 1 0.997 1.23E-68 B Mono 

Abasic-45 3.92E-38 4.73E-01 1 1 1.67E-35 B NK 

Abasic-45 6.55E-36 4.53E-01 1 0.997 2.79E-33 NK Mono 

Abasic-45 2.51E-23 8.85E-01 1 1 1.07E-20 T DC 

Abasic-45 3.19E-22 8.16E-01 1 1 1.36E-19 B DC 

Abasic-45 3.02E-07 3.44E-01 1 1 1.29E-04 NK DC 

Abasic-46 7.65E-108 -6.04E-01 0.998 1 3.26E-105 T Mono 

Abasic-46 1.17E-41 -4.84E-01 1 1 4.97E-39 NK Mono 

Abasic-46 2.34E-25 -9.40E-01 0.998 0.958 9.96E-23 T DC 

Abasic-46 7.44E-23 -3.41E-01 0.998 1 3.17E-20 T B 

Abasic-46 3.41E-21 -8.19E-01 1 0.958 1.45E-18 NK DC 

Abasic-46 1.97E-16 -5.99E-01 1 0.958 8.41E-14 B DC 

Abasic-46 1.87E-13 -2.63E-01 1 1 7.96E-11 B Mono 

Abasic-46 1.55E-10 -3.35E-01 1 0.958 6.60E-08 Mono DC 

GU-45 3.17E-34 4.31E-01 0.984 0.959 1.35E-31 T Mono 

GU-45 1.53E-28 5.89E-01 0.995 0.959 6.51E-26 B Mono 

GU-45 5.45E-26 5.76E-01 0.995 0.969 2.32E-23 B NK 

GU-45 6.41E-24 4.18E-01 0.984 0.969 2.73E-21 T NK 

riboG-44 8.06E-52 1.03E+00 1 0.897 3.43E-49 B NK 

riboG-44 2.99E-37 -5.64E-01 0.957 1 1.27E-34 T B 

riboG-44 2.19E-27 6.32E-01 1 0.827 9.35E-25 B Mono 

riboG-44 2.11E-24 4.64E-01 0.957 0.897 8.98E-22 T NK 

riboG-44 5.83E-22 -1.28E+00 0.897 0.958 2.48E-19 NK DC 

riboG-44 6.68E-19 -8.14E-01 0.957 0.958 2.84E-16 T DC 

riboG-44 2.58E-16 -8.82E-01 0.827 0.958 1.10E-13 Mono DC 

riboG-44 2.06E-05 -3.96E-01 0.897 0.827 8.77E-03 NK Mono 

riboG-44 6.90E-05 -2.50E-01 1 0.958 2.94E-02 B DC 

Uracil-45 6.40E-144 1.51E+00 0.979 0.704 2.72E-141 T Mono 

Uracil-45 8.78E-68 1.59E+00 0.995 0.704 3.74E-65 B Mono 

Uracil-45 2.19E-40 6.68E-01 0.979 0.945 9.32E-38 T NK 

Uracil-45 3.23E-36 8.39E-01 0.945 0.704 1.38E-33 NK Mono 

Uracil-45 1.17E-33 7.54E-01 0.995 0.945 4.99E-31 B NK 

Uracil-45 6.94E-16 9.53E-01 0.995 0.917 2.96E-13 B DC 

Uracil-45 3.97E-12 8.67E-01 0.979 0.917 1.69E-09 T DC 
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Uracil-45 2.97E-08 -6.40E-01 0.704 0.917 1.26E-05 Mono DC 

Abasic-45 6.27E-183 5.91E-01 1 0.999 2.67E-180 T all_other_cells 

Abasic-45 2.83E-155 -9.37E-01 0.997 1 1.21E-152 Mono all_other_cells 

Abasic-45 8.37E-42 -4.42E-01 1 1 3.57E-39 NK all_other_cells 

Abasic-45 3.30E-16 -7.61E-01 1 1 1.41E-13 DC all_other_cells 

Abasic-46 6.91E-101 -4.43E-01 0.998 0.998 2.94E-98 T all_other_cells 

Abasic-46 1.55E-95 5.42E-01 1 0.998 6.59E-93 Mono all_other_cells 

Abasic-46 4.35E-23 8.14E-01 0.958 0.999 1.85E-20 DC all_other_cells 

GU-45 1.63E-31 -4.06E-01 0.959 0.983 6.94E-29 Mono all_other_cells 

GU-45 1.98E-26 2.58E-01 0.984 0.97 8.43E-24 T all_other_cells 

GU-45 2.36E-19 -3.82E-01 0.969 0.981 1.01E-16 NK all_other_cells 

riboG-44 4.18E-39 5.88E-01 1 0.935 1.78E-36 B all_other_cells 

riboG-44 1.08E-26 -5.21E-01 0.897 0.943 4.58E-24 NK all_other_cells 

riboG-44 2.22E-18 8.12E-01 0.958 0.939 9.46E-16 DC all_other_cells 

Uracil-45 6.71E-139 -1.45E+00 0.704 0.976 2.86E-136 Mono all_other_cells 

Uracil-45 4.41E-108 6.92E-01 0.979 0.851 1.88E-105 T all_other_cells 

Uracil-45 2.56E-22 -5.58E-01 0.945 0.943 1.09E-19 NK all_other_cells 

Uracil-45 7.38E-12 2.50E-01 0.995 0.941 3.14E-09 B all_other_cells 

Uracil-45 3.94E-07 -7.26E-01 0.917 0.944 1.68E-04 DC all_other_cells 

 
Significant differences and fold changes in repair activities between cell types and all other cells 
and all pairwise comparisons were calculated using Wilcoxon Rank Sum test (FindAllMarkers, 
FindMarkers, Seurat v3.0.0 (Stuart et al. 2019b)) for all cell types. The result was filtered for 
adjusted P < 0.05 and repair positions (Figure 2.8). Column information is as follows (from Seurat 
documentation for FindMarkers): 
gene: concatenation of repair substrate and position.  
p_val: p value of Wilcoxon Rank Sum test 
avg_logFC: The log fold-change of average repair activity between group and all other cells. 
Positive values indicate that the repair activity is greater in the first group. 
pct.1: Percentage of cells where the repair activity was detected in the group. 
pct.2: Percentage of all other cells where the repair activity was detected. 
p_val_adj: Adjusted p-value, based on Bonferroni correction using all hairpin positions in the 
dataset 
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Figure 2.1: Development and validation of a single-cell assay for measuring DNA repair 
capacity 
 
a.  Schematic of DNA repair substrates used in single-cell Haircut. Strand incision generates a new 
5′-end whose position is captured by cDNA synthesis with barcoded oligonucleotides. 
 
b.  Overview of single-cell Haircut. After droplet formation, cell lysis creates a ~50 pL reaction 
wherein enzymes contributed by the cell catalyze substrate turnover (i.e., strand incision for 
specific DNA repair substrates). Repair products and mRNAs are converted to cDNA with 
barcoded oligo-dT primers and separated by size to enable separate library preparations. The 
cDNA for each fraction is analyzed to identify the cell barcode and either mRNA abundance or 
the amount of enzymatic activity (i.e., number of strand incisions). 
 
c.  Polyadenylated hairpins containing a single uracil or ribonucleotide (25 nM each) were added 
to a single-cell suspension of a mixture of Hap1 cells containing null alleles of either UNG or 
RNASEH2C prior to capture in a 10x Genomics 3′ Gene Expression experiment. Sequences from 
the DNA repair fraction in (b) were grouped based on their cell barcodes, and the level of strand 
incision for uracil and ribonucleotide substrates was used to classify cells as either UNGKO (green) 
or RNASEH2CKO (blue) based on strand incision activity (UMI counts at position 44 for 
ribonucleotide, position 45 for uracil) greater than 5% of the maximum for all cells. Cells that fall 
on the x- or y-axis are single RNASEH2CKO and UNGKO cells, respectively; doublets are in yellow; 
and cells with low signal (<5% of the max for both activities) are in grey. 
 
d.  Aggregate counts of strand incision events are plotted against hairpin position for cells classified 
in (c) on the U:A substrate (top) and rG:C substrate (bottom). The vertical dashed line notes the 
position of the uracil and ribonucleotide (position 44 in both cases). UNGKO cells fail to incise 
uracil-containing hairpins (green line in top panel) and RNASEH2CKO cells fail to incise 
ribonucleotide-containing hairpins (blue line in bottom panel). The predominant signal at position 
45 (top) reflects UNG conversion of the uracil (position 44) to an abasic site, followed by removal 
of the abasic site by Ape-1 or Pol β. The predominant signal at position 44 (bottom) reflects 5′-
incision of the ribonucleotide at position 44 followed by copying of the rG template by reverse 
transcriptase in the droplet. Additional processing of incised repair intermediates yields signals at 
positions 3′ of the lesion (signals at positions 46-50 in the uracil substrate (top), and positions 45-
50 in the ribonucleotide substrate (bottom)). 
 
e.  Variable mRNA expression from cells classified in (c) was used to calculate a UMAP projection 
(identical coordinates in all 4 panels). Uracil repair activity (natural logarithm of strand incision 
counts (position 45 for uracil substrate and position 44 for ribonucleotide substrate; d) divided by 
total counts for that cell multiplied by a scaling factor of 104; top left) and ribonucleotide repair 
activity (top right) were superimposed in a grey-to-red scale and delineate two major cell types in 
the experiment; 90% of cells in each class have a scored activity. Levels of UNG and RNASEH2C 
mRNA (natural logarithm of mRNA counts divided by total counts for that cell multiplied by a 
scaling factor of 104) are plotted on the bottom panels are not sufficient to classify cell types. 
Stabilization of the null-mutation-containing RNASEH2C mRNA yields uniform RNASEH2C 
mRNA detection across both cell types. 
  



 91 

Results and discussion 

We included synthetic DNA hairpins with polyadenylate tails and DNA lesions at defined 

positions (Figure 2.1a) in a single-cell mRNA sequencing experiment and developed a protocol 

to capture incised DNA repair intermediates and products from single-cell extracts by library 

preparation and sequencing (Figure 2.1b and Figure 2.2). Because our method employs massively 

parallel measurement of strand incision on DNA hairpins, we named it “Haircut”. 

Cell mixing experiments confirmed we could measure DNA repair activities at cellular 

resolution with single-cell Haircut. We added DNA repair substrates with a uracil (U:A base-pair) 

or ribonucleotide (rG:C) to a single-cell suspension of haploid human UNGKO and RNASEH2CKO 

knockout cells immediately prior to emulsion formation in a droplet-based single-cell mRNA 

sequencing experiment (10x Genomics 3′ Gene Expression; Figure 2.1b). After sequential 

incubations at 37 ˚C and 53 ˚C to first promote endogenous enzymatic activity and then reverse 

transcription, the emulsion was broken and cDNA molecules synthesized from mRNA and repair 

substrate templates (the “repair fraction”) were separated by size. The mRNA fraction was 

subjected to the standard protocol to measure gene expression for single cells, whereas the repair 

fraction (containing DNA substrates, intermediates, and products) was captured in a modified 

protocol (Figure 2.2). Analysis of the mRNA fraction by DNA sequencing yielded the mRNA 

identity, a cell-specific barcode, and a unique molecular identifier (UMI(Islam et al. 2014)). 

Similarly, DNA sequencing of the repair fraction yielded the cell barcode, UMI, and a 5′ position 

derived from cDNA synthesis on either full-length hairpins or incised repair intermediates and 

products. 

We captured thousands of single cells with expected DNA repair defects: RNASEH2CKO 

cells could incise uracil but not a ribonucleotide repair substrate, and vice versa for UNGKO cells, 
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with a few droplets containing more than one cell from each genotype and therefore both uracil 

and ribonucleotide repair activities (Figure 2.1c and d). DNA repair associated incision and 

processing activities were measured at expected positions based on known repair pathways 

(Figure 2.1d, right) and were only present in cell-associated droplets (as determined from mRNA 

signals; Figure 2.3). Some signals, discussed more below and in Chapter III, were robustly 

captured in empty drops and were excluded from analysis. We calculated repair activity for each 

cell as the natural logarithm of strand incision counts at the primary repair site (position 45 for the 

uracil substrate and position 44 for the ribonucleotide substrate) divided by total counts for that 

cell multiplied by a scaling factor of 104. We also calculated two-dimensional UMAP projections 

based on variable mRNA expression and colored individual cells by enzymatic activity (UNG or 

RNASEH2) and mRNA abundance (Figure 2.1e). DNA repair activity was robustly detected for 

each cluster (Figure 2.1e, top row) and was sufficient to assign 75% of cells to the correct cell 

type using 1,500 reads-per-cell (Figure 2.4), similar to read depths required for cell type 

classification using gene expression(Heimberg et al. 2016). While UNG (229 cells) and 

RNASEH2C (1,075 cells) mRNAs were identified in these cells, they were not variably expressed 

across cell clusters (Figure 2.4). Moreover, our analysis of RNASEH2C mRNA levels in 

RNASEH2CKO cells found that whereas the mutation yields cells that lack RNASEH2 activity 

(Figure 2.1e, top right), it does not cause mRNA decay, with similar mRNA isoform abundance 

detected in both cell types (Figure 2.5). Altogether, this experiment illustrates the unique and 

orthogonal information provided by single-cell biochemical assays, which is especially useful in 

situations where mRNA expression is not predictive or may even be misleading of functional 

status. 
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Figure 2.2: Schematic of single-cell Haircut library preparation  
 
DNA repair substrates are added to a 10x Genomics Chromium Single Cell 3′ v2 kit. Within each 
droplet, DNA repair substrates are exposed to cell extract containing endogenous active DNA 
repair enzymes. Additionally, each drop contains a reverse transcriptase and an oligo-dT reverse 
transcription primer. Cell-derived DNA repair enzymes initiate DNA repair on the substrates 
creating a strand incision, oligo-dT primer and reverse transcriptase present in the drop capture the 
DNA repair intermediates along with cellular mRNAs. After the emulsion is broken, DNA repair 
substrates are separated from mRNAs by size. The 5′ site of strand incision is captured through 
end repair, A-tailing, ligation of a TruSeq adapter, followed by PCR. This library is compatible 
with next generation sequencing.  
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Figure 2.3: Determining biological DNA repair activity from single-cell Haircut signals  
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a.  Counts per cell (mean) (orange) by position were compared to counts per empty drop (mean) to 
determine which positions contained biological activity. Empty drops were determined by filtering 
out cell-associated barcodes from the unfiltered repair matrix. The resulting repair matrix contains 
many barcodes that are associated with only a single UMI, so the matrix was filtered by descending 
UMI counts to the same number of cell-associated barcodes. This repair matrix was used as the 
input to calculate empty drop signal across the hairpin by calculating the sum across all drops at 
each hairpin position. Positions exhibiting signal above empty drop background and associated 
with a known DNA repair position (e.g., position 45 for U:A) were considered biologically 
relevant. Some signals above background at the 5′ end of the substrate could be due to cellular 
exonuclease activity and were not considered in the analysis.  
 
b.  Coverage across all cells (orange) or across cell types (blue, green) and empty drops (grey) for 
barnyard experiment (Figure 2.1). While signals at the 5´ end of the substrate in cells are higher 
than signals in empty drops, only signals at or adjacent to the site of the lesion (dotted line) are 
consistent with known DNA repair pathways (Figure 2.1) and are dependent on the presence of 
DNA repair factors. 
 
c.  Coverage across all cells (orange) and empty drops (grey) for PBMC experiment (Figure 2.8). 
C:I and T:I substrates did not show biological activity above background.  
 
d.  Coverage across all cells (orange) and empty drops (grey) for PBMC experiments (Figure 2.9). 
The Uracil-5′ biotin substrate contained a 5′-biotin. During the library preparation, uncleaved 
substrate was removed using streptavidin beads. We only saw a modest reduction in signal on the 
5′ end of the substrate in cell-containing and empty drops. The hmU substrate did not have signal 
above empty drop background. The ethenoA substrate did not have signal above background due 
to a high level of background signal in empty drops, which could be due to the bulky ethenoA 
lesion causing the RT to stop. To measure direct reversal substrates, we included an O6mG 
containing hairpin. Following substrate isolation from the mRNA fraction, substrates were 
digested with PstI to measure the removal of O6mG (Encell and Loeb 1999a); however, we 
measured digestion in empty drops as well as drops with cells indicating the method was not 
specific for droplets containing cells.  
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Figure 2.4: DNA repair measurements determine cell types in a cell mixing experiment 
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a.  UMAP plot of cell mixing experiment (Figure 2.1). mRNA expression was used to calculate 
UMAP projections and cluster cells. Cells were clustered using an unsupervised shared nearest 
neighbors method in Seurat (FindNeighbors, FindClusters). Cells were colored by the resulting 
cluster numbers. 
 
b.  A table of cells expressing UNG mRNA, RNASEH2C mRNA, uracil repair activity, or 
ribonucleotide repair activity in each cluster. UNG mRNA was detected in < 10% of cells while 
RNASEH2C mRNA was detected in ~45% of cells. One or both repair activities were measured 
in >90% of cells. 
  
c.  Beeswarm plots of UNG mRNA expression, RNASEH2C mRNA expression, uracil repair 
activity, or ribonucleotide repair activity by cluster. To determine if UNG and RNASEH2C mRNA 
expression could be used to assign cell types, we made beeswarm plots of UNG expression and 
RNASEH2C expression and attempted to assign cell types based on expression levels by cluster 
(left 2 plots). Due to few cells with UNG or RNASEH2C mRNA measurements we could not 
assign cell types independent of repair measurements. To assign cell types by repair activity, we 
made beeswarm plots of repair activities by clusters (right 2 plots). Clusters with high uracil repair 
activity and low ribonucleotide repair activity were assigned as RNASEH2C cells (clusters 0, 1, 
and 5). Clusters with high ribonucleotide repair activity and low uracil repair activity were 
assigned as UNG (clusters 2, 3, and 4). Cluster 6 was assigned as having both repair activities. 
 
d.  Counts at ribonucleotide repair site and uracil repair site were plotted and colored by cluster 
(left), cell type as determined above (c) (middle), and cell types as determined in Figure 2.1 (right). 
Cell types as determined in Figure 2.1 show the greatest segregation in these plots. 
 
e.  BAM files from the cell mixing experiment in Figure 2.1 were down sampled to different 
sequencing depths to determine how many reads per cell are required for cell type classification. 
At each threshold, cell types were classified as in Figure 2.1 and the percent of cells that can be 
classified as either UNGKO or RNASEH2CKO is plotted as a function of sequencing depth. 
Approximately 75% of the 2,377 cells are correctly classified at 1,500 reads per cell.  
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Figure 2.5: Single-cell mRNA expression of RNASEH2C and UNG in Hap1 knockout cells 
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a.  Protein domains for RNASEH2C (top) and mutant RNASEH2C (bottom) from Horizon 
knockout line. A 10 base pair deletion in the RNASEH2CKO Hap1 line causes a frameshift at amino 
acid 19 that leads to 60 amino acid substitutions and a stop codon at position 79, disrupting the 
heterotrimeric interaction regions of RNASEH2C (Reijns et al. 2011). 
 
b.  mRNA coverage of RNASEH2C from single-cell RNA sequencing data (Figure 2.1). Coverage 
from all cells from negative strand is in orange. Cell types were identified by repair of uracil-
containing or ribonucleotide-containing substrates (Figure 2.1). Alignment files were then 
separated by cell barcodes associated with cell types. Bulk mRNA coverage for RNASEH2C for 
RNAESH2CKO cells (blue) and UNGKO cells (green) show similar coverage for the RNASEH2C 
gene independent of cell type. Coverage for the RNASEH2C gene is located near the 3′ end of the 
2 mRNA isoforms (gene diagrams on bottom). Horizon RNASEH2CKO sequencing results 
provided from Horizon Discovery displayed on bottom (RNASEH2CKO mutation). qPCR primers 
are also displayed on bottom (F1/2, R1/2).  
 
c.  Protein domains for UNG (top) and mutant UNG (bottom) from Horizon knockout line. An 11 
base pair deletion leads to a frameshift at amino acid 88, 49 amino acid substitutions, and a stop 
codon at amino acid 138 - likely leading to a truncated protein lacking the catalytic domain. 
 
d.  mRNA coverage of UNG from single-cell RNA sequencing data. Coverage from all cells from 
positive strand is in orange. Cells were identified by repair of uracil-containing or ribonucleotide-
containing substrates. Alignment files were then separated by cell type. mRNA coverage for 
RNASEH2CKO cells (blue) and UNGKO cells (green) show reduced UNG mRNA coverage in 
UNGKO cells. Gene diagram is on bottom. Horizon UNGKO sequencing results provided from 
Horizon Discovery is displayed on bottom (UNGKO mutation). qPCR primers are also displayed 
on bottom (F1/2, R1/2).  
 
e.  Quantitative PCR results for RNASEH2C and UNG mRNA confirm single-cell RNA 
sequencing results. RNASEH2CKO cells express RNASEH2C mRNA. UNGKO cells do not express 
UNG mRNA at high levels. Error bars represent errors across biological duplicates and 2 sets of 
primers indicated in b and d. 
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DNA repair activity measurements in single-cell extracts from human peripheral blood 

mononuclear cells (PBMCs) with separately barcoded uracil and ribonucleotide repair substrates 

spanning a 50-fold range in concentration showed that measured DNA repair signals change as a 

function of substrate concentration and time (Figure 2.6). Moreover, the proportion of DNA repair 

substrates recovered in the assay was independent of substrate, concentration, and incubation time 

(Figure 2.7). However, we did find that the proportion of substrates that were repaired increased 

as the concentration of substrates increased (Figure 2.7). Differences in DNA repair among cell 

types persisted independent of substrate concentration and time, enabling us to choose a single 

substrate concentration and time point (10 nM substrates at 60 min) for further experiments 

(Figure 2.6). 

We next used single-cell Haircut to measure the biochemical heterogeneity of DNA repair 

in PBMCs using five DNA substrates (unmodified, and containing U:A, U:G, rG:C, and abasic:G 

lesions - added at 10 nM each; Figure 2.8 and Figure 2.9). We were unable to measure DNA 

repair activity on several other base excision repair substrates (I:C, I:T, EthenoA:T, 

hydroxymethyl-U:A) and one direct reversal substrate (O6mG:C) (Figure 2.3), either due to the 

sensitivity of the assay (I:C, I:T, or hydroxymethylU:A) or the assay specificity (EthenoA:T and 

O6mG:C). We used single-cell mRNA expression to classify cells based on expression of common 

cell-type-specific markers (e.g., IL7R for CD4+ T cells, CD14 for monocytes; Figure 2.8a and 

Figure 2.9) and then used these classifications to assign cell-type-specific DNA repair activities 

(Figure 2.8b-f and Figure 2.9).  

We found little signal on the unmodified DNA substrate, confirming it is not a repair 

substrate. In contrast, incision and processing activities measured on uracil (on U:A and U:G 

substrates), ribonucleotide, and abasic repair substrates matched expected positions based on 
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known repair pathways (left and middle panels in Figure 2.8c-f and Figure 2.9) and were only 

present in cell-associated droplets (as determined from mRNA signals; Figure 2.3). These data 

revealed unique signatures of DNA repair activities in specific cell types. Monocytes and dendritic 

cells had low incision activity on the U:A substrate (Figure 2.8) resonating with the low level of 

uracil base excision in monocytes(Briegert and Kaina 2007) and confirming that myeloid lineages 

have unique uracil repair phenotypes(Hansen et al. 2016) consistent with lower UNG mRNA 

expression in these cell populations (Figure 2.10). However, these differences in uracil repair were 

not apparent for the U:G substrate, presumably due to redundant activities of SMUG1(Nilsen et 

al. 2000) and MBD4(Hendrich et al. 1999) in incising U:G-containing substrates. Dendritic cells 

demonstrated a unique repair phenotype, with increased levels of DNA substrate processing, 

measured as increased signals downstream of the position of the synthetic lesion. To explain these 

differences in DNA repair phenotypes, we examined cell type-specific mRNA expression and 

found that expression of APEX1, encoding the abasic endonuclease Ape-1, was consistently and 

uniquely elevated in dendritic cells (Table 2.3), possibly explaining the increased processing of 

DNA repair intermediates on U:A, U:G, and abasic substrates in dendritic cells. 

B cells and dendritic cells also had higher levels of ribonucleotide repair activity than other 

cell types (Figure 2.8 and Figure 2.9), and the increase in ribonucleotide repair in B cells and 

dendritic cells was corroborated by elevated expression of some RNASEH2 subunits in our (Table 

2.3) and previous single-cell mRNA sequencing data sets (Figure 2.10)(G. X. Y. Zheng et al. 

2017). Increased RNASEH2 activity in B cells may aid processing of R-loops that form during 

class switching (Yu et al. 2003). 

Finally, we focused on cell-type-specific differences in repair of a DNA hairpin containing 

a synthetic abasic site. These substrates undergo two unique events in droplets: on intact substrates, 
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reverse transcription halts at the abasic site, yielding extension products that map one base 

downstream of the abasic site (Figure 2.8 and Figure 2.9). Alternatively, incision and removal of 

the abasic site by Pol β and Fen1 (A. Klungland and Lindahl 1997) yields repair intermediates with 

5′-ends that map further downstream of the abasic site. Differences in signals from the abasic 

substrate specifically in monocytes and dendritic cells again indicate that they are more proficient 

at processing abasic lesions, evidenced by an increase in levels of intermediates 2 nt downstream 

of the abasic site (position 46; Figure 2.8f), likely due to elevated Ape-1 expression. The unique 

DNA repair phenotype provided some power for cell type classification (Figure 2.11). As 

additional activities are multiplexed with DNA repair, we expect the power of single-cell 

biochemical measurements for cell type classification will increase. 

Our approach to measure heterogeneity of single-cell biochemical phenotypes can be 

expanded to measure other types of DNA repair activities (e.g., nucleotide excision repair and 

mismatch repair) and adapted to measure other enzyme classes using substrate-DNA 

conjugates(Jetson and Krusemark 2016), enabling simultaneous measurement of many 

biochemical activities (e.g., kinases, phosphatases, and proteases) with gene expression at single-

cell resolution. 
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Figure 2.6: Measuring DNA repair in single cells across multiple concentrations and time 
points  
 

a.  DNA repair activities were measured in healthy human PBMCs. Uracil (U:A) and 
ribonucleotide (rG:C) substrates were mixed and added in a range of concentrations (0.5, 2.5, 5, 
10, and 25 nM each). After the emulsion was created, the sample was separated into 3 tubes and 
incubated for 15, 30, or 60 min at 37 ̊C prior to reverse transcription at 53 ̊C. 800-1,500 cells were 
captured at each timepoint. Cell types were identified using gene expression markers using Seurat 
and visualized on UMAP projections.  
 
b.  Repair activities measured increased as substrate concentration increased. Repair activity 
increased over time from 15 min to 60 minutes. Differences in repair between cell types were 
consistent across substrate concentrations and most remained significant (P < 0.05).  
 
c.  A linear model (log normalized count at repair site (as defined in Figure 2.1) ~ substrate 
concentration) was fitted for each cell for each repair activity. The slope of each linear model is a 
measurement of repair activity. Repair activity increases as time increases. Additionally, repair 
activity trends measured using a single concentration and time point are consistent with activity 
measurements made across substrate concentration (e.g., monocytes have lower uracil repair 
compared to B cells and T cells, significant P values). 
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Figure 2.7: Proportion of DNA substrates captured per cell. 
 
Uracil and ribonucleotide containing DNA repair substrates mixed at 5 concentrations (0.5, 2.5, 5, 
10, and 25 nM) and were added to the cells/master mix in a PBMC experiment. After the emulsion 
was created, the sample was separated into 3 tubes and incubated for 15, 30, or 60 min at 37 ̊C 
prior to reverse transcription at 53 ̊C. 800-1,500 cells were captured at each timepoint (Figure 
2.6). The number of hairpin molecules in each drop was estimated by assuming each drop was 
~300 pL in volume and the hairpin concentration in the droplet is half that of the concentration in 
the master mix. The number of repaired hairpins was calculated by deviding the number of UMIs 
at repair positions (defined in Figure 2.1) by the number of UMIs for each hairpin. We captured 
approximately 0.01-0.025% of the hairpins that were added to the assay (with ~10 million total 
library reads) (top). The proportion of hairpins recovered was independent of the concentration 
with the exception of the lowest concentration of 0.5 nM and the uracil hairpin at 2.5 nM. The 
proportion of hairpins recovered was also independent of the 37 ̊C incubation time. The proportion 
of hairpins repaired was not independent of incubation time or concentration. With the exception 
of the lowest concentrations of 0.5 nM and 2.5 nM, the proportion of hairpins repaired was greater 
at longer time points and higher substrate concentrations (bottom). 
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Figure 2.8: Analysis of DNA repair heterogeneity in human lymphocytes 
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a.  Two-dimensional UMAP projection of variable gene expression across 3,298 human PBMCs 
captured in a 10x Genomics 3′ Gene Expression experiment. Major cell types were determined by 
marker gene expression. 
 
b.  Single-cell DNA repair activity of an unmodified DNA substrate. The dashed vertical line 
indicates the position of lesions in other DNA repair substrates (left). Unmodified DNA substrates 
yield few measured incisions in single-cell Haircut with an average count per cell per position of 
< 1. Very few cells have measured repair activity (natural logarithm of strand incision counts (at 
position 45; arrow, left) divided by total counts for that cell multiplied by a scaling factor of 104), 
indicating they are not substrates for cellular DNA repair activities. 
 
c.  Repair of a substrates containing a uracil:adenine (U:A) base-pair initiates with UNG-mediated 
removal of the uracil nucleobase followed by processing of the abasic site by Ape1 and Pol β (left). 
Cell-type-specific counts of incision and processing (mean) are plotted against the position of the 
hairpin and colored as in (a) (middle). Single-cell repair activities (natural logarithm of counts at 
the incision site (arrow) divided by total counts for that cell multiplied by a scaling factor of 104) 
are plotted for each cell from each cell type (right). Monocytes and dendritic cells have reduced 
uracil incision relative to other cell types (P < 10-140 monocytes to T cells, and P < 10-8 dendritic 
cells to T cells; Wilcoxon signed-rank test; Table 2.4). 
 
d.  Repair of a substrates containing a uracil:guanine base-pair initiates with UNG, SMUG, or 
MBD4-mediated removal of the uracil nucleobase followed by processing of the abasic site by 
Ape-1 and Pol β (left). Cell-type-specific incisions are plotted as in (c) with a predominant incision 
site one base downstream of the uracil (arrow, position 45), similar to the U:A substrate (a) 
(middle). The higher uracil repair activity (as defined in (c)) on the U:G relative to U:A substrates 
for monocytes and dendritic cells likely reflects recognition of the U:G substrate by SMUG and 
MBD4. 
 
e.  Repair of a substrates containing a riboG:C base-pair initiates with RNASEH2-mediated 
incision 5′ of the ribonucleotide followed by processing by Pol δ and Fen1 (left). Cell-type-specific 
counts of incision and processing (mean) are plotted against the position of the hairpin and colored 
as in (a) (middle), with the predominant signal at the ribonucleotide, reflecting incision by 
RNASEH2 and cDNA synthesis using the ribonucleotide template by reverse transcriptase in the 
droplet (arrow, position 44). B cells and dendritic cells have higher levels of ribonucleotide repair 
activity (as defined in (c)) than other cell types (P < 10-33 B cells to T cells; P < 10-15 dendritic cells 
to T cells; Wilcoxon signed-rank test, Table 2.4). 
 
f.  Repair of substrates containing a abasic:guanine base-pair initiates with Ape-1-mediated 
incision followed by processing of the single-base gap by either Pol β (short-patch repair) or Pol 
δ/β and Fen1 (long-patch repair) (left). Cell-type-specific incisions are plotted as in (c) with a 
predominant incision sites one or more bases downstream of the abasic, depending on the cell type 
(middle). For each cell type, the levels of short-patch (top; signals 1 nt downstream of lesion, S 
arrow, position 45) and long-patch (bottom; signal 2 nt downstream lesion, L arrow, position 46) 
repair activities (as defined in (c)) are plotted (right). Monocytes and dendritic cells have lower 
levels of short-patch repair relative to other cell types (P < 10-162 monocytes to T cells; P < 10-19 
dendritic cells to T cells; Wilcoxon signed-rank test, Table 2.4). 
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Figure 2.9: Biological replication of DNA repair phenotypes in human PBMCs 
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a-b. PBMCs were isolated from a single healthy human donor in two batches. 3 ́ single cell gene 
expression and DNA repair activities were measured for each batch. mRNA expression was used 
to cluster cells and classify cell types. UMAP plot of cell types (top). Cell-type-specific counts of 
incision and processing (mean) are plotted against the position of the hairpin (left). Trends for 
single cell repair of U:A, U:G, riboG:C, and abasic:G substrates were similar across all three 
replicates (Figure 2.8 and a-b). 
 
c.  Single cell gene expression and repair measurements for 3 replicates (Figure 2.8 and a-b) were 
integrated into one Seurat object. mRNA expression was used to cluster cells. Cell types were 
identified separately for each sample. UMAP plot of cell types and sample number (top) indicate 
that cells cluster with cell types rather than with samples. Cell-type-specific counts of incision and 
processing (mean) are plotted against the position of the hairpin (left). Trends for single cell repair 
of U:A, U:G, riboG:C, and abasic:G substrates were similar to individual replicates (Figure 2.8 
and a-b). 
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Figure 2.10: Gene expression of UNG and RNASEH2 in single cells and cell populations  
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a.  Repair of a substrate containing a uracil:adenine (U:A) base-pair initiates with UNG-mediated 
removal of the uracil nucleobase followed by processing of the abasic site by Ape-1 and Pol β 
(left). Single-cell repair activities (natural logarithm of counts at the incision site divided by total 
counts for that cell multiplied by a scaling factor of 104) are plotted for each cell from each cell 
type (right) (Also in Figure 2.8). 
 
b.  UNG mRNA in single cells from our data (left) and data from 10x Genomics (middle) is not 
robustly detected in single cells at sequencing depths of 8,000 or 87,000 reads per cell. UNG 
expression from bulk RNA sequencing experiments (right) correlates with repair activities 
measured in single cells (a). 
 
c.  Repair of a substrates containing a riboG:C base-pair initiates with RNASEH2-mediated 
incision 5′ of the ribonucleotide followed by processing by Pol δ and Fen1 (left). Single-cell repair 
activities (natural logarithm of counts at the incision site divided by total counts for that cell 
multiplied by a scaling factor of 104) are plotted for each cell from each cell type (right) (Also in 
Figure 2.8).  
 
d.  Single cell measurements of RNASEH2 subunit mRNA from our data (left) and data from 10x 
Genomics (middle) are not robustly detected at sequencing depths of 8,000 or 87,000 reads per 
cell. RNASEH2 subunit expression from bulk RNA sequencing experiments (right) is difficult to 
correlate to repair activities measured in single cells (a). The catalytic subunit RNASEH2A does 
not greatly vary between cell types. While the structural subunit RNASEH2B roughly correlates 
to RNASEH2 repair activity measured in single cells, this phenotype would be difficult to predict 
given that each subunit is required for enzymatic function. 
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Figure 2.11: Cell-type classification using DNA repair measurements 
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a.  PBMC UMAP and cell classifications for PBMC replicate 2 (Figure 2.9). Cells were classified 
using reference data from 10x Genomics and Seurat v3.0.0 FindTransferAnchors and TransferData 
functions. These cell classifications are used as the true cell type for other classification methods, 
however, these classifications may not be 100% accurate. The percentage of each cell type that is 
classified the same as this reference data (bottom) is 100% since it is compared to itself.  
 
b.  Seurat clusters (0-10) were renamed for the majority cell type marker from a in each cluster. 
UMAP plot of renamed cells (top). Using this classification method 93% of cells are classified the 
same as a. > 89% of each cell type were classified the same (bottom). 
 
c.  mRNA data in Figure 2.8 was used as the reference for classifying cell types in PBMC replicate 
2 (Figure 2.9) using Seurat as before (a). Using this reference, 93% of the cells were classified the 
same. > 87% of each cell type were classified the same (bottom). 
 
d.  DNA repair measurements alone from PBMCs (Figure 2.8) was used as the reference for 
classifying cell types PBMC2 replicate. Using only DNA repair for reference data, only 43% of 
cells were classified the same as a. Platelets lack DNA repair activities in Haircut (data not shown), 
which could contribute to their identification using DNA repair measurements alone as they are 
distinctly different from all other cells. > 90% of T cells were also identified using repair alone, 
however, T cells make up ~40% of all cells in the data and when classified using repair data alone, 
~80% of all cells are classified as T cells, so by chance alone,T cells are more likely to be classified 
correctly. Dendritic cells make up only 2.6% of all cells in the data, however, 33% of them are 
classified correctly using repair activity data alone. DC have several unique repair signatures 
(Figure 2.8 and Figure 2.9) that are likely to contribute to their classification using DNA repair 
activities alone.  
 
e.  Count matrices for mRNA expression and DNA repair were combined and used as a reference 
(from Figure 2.8 data) to classify PBMC replicate 2 cells. Using this reference, 93% of the cells 
were classified the same as in a. > 86% of each cell type were classified the same (bottom). 
 
f.  Cell type labels from PBMC replicate 2 as defined in Figure 2.9 were randomly reassigned to 
cell ids. Only 31% of cells were classified the same. More abundant cell types were more likely to 
be correctly classified by chance (bottom). Error bars represent the 95% confidence interval for 
1000 independent samplings.  
 
g.  True positive rate (# of true positives / (# of true positives + # of false negatives)) and false 
positive rate (# of false positives / (# of false positives + # of true negatives)) for each cell type 
classified by each method. Cells classified using mRNA expression with or without repair had a 
high true positive rate and low false positive rate. Most cell types defined by repair alone had 
relatively equal true and false positive rates, with the exception of platelets that had a high true 
positive and low false positive rate and DC that had a relatively low true positive rate but a very 
low false positive rate indicating DNA repair measurements for these cell types may be helpful for 
classification. 
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CHAPTER III 

SUMMARY AND FUTURE DIRECTIONS 

This dissertation describes my main contribution to the single-cell field: measuring 

biochemical activities in single cells. I developed a single-cell assay that measures DNA repair 

enzyme activities simultaneously with single-cell gene expression called Haircut. Single-cell 

enzymatic measurements provide unique and orthogonal information to gene expression and may 

prove useful in characterizing single-cell phenotypes independent of gene expression. In Chapter 

II, I applied Haircut in primary human immune cells and found known and unknown differences 

in DNA repair between immune cell types. I also used Haircut to measure DNA repair activities 

and gene expression in primary human immune cells from a preliminary cohort of individuals with 

T21 (Appendix B). In Appendix A I described the steppingstones towards making a single-cell 

DNA repair assay, and in doing so, I developed a multiplexed DNA repair assay in bulk cell-free 

extracts. In this final chapter, first I will explore improvements and potential modifications to 

Haircut. Second, I will explore new methods to expand the single-cell biochemistry toolkit by 

measuring other enzymatic activities (e.g. protease, kinases, phosphatases, etc.). Finally, I will 

discuss the applications of single-cell biochemistry in the fields of precision medicine, 

developmental biology, and pharmaceutical sciences.  

Improvements to Haircut 

Expand the substrate repertoire for Haircut 

In its current form, Haircut is able to measure DNA repair on three main substrates: uracil, 

ribonucleotides, and abasic sites. These substrates represent three of the most common DNA 

damage events that occur in cells; and are the most robust repair activities. However, there are 

eleven known human DNA glycosylases, and currently Haircut can measure the activity of one to 
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four glycosylases at most. While the substrate requirements for DNA glycosylases fit within the 

constraints of the current Haircut design, there are two main challenges we need to overcome to 

measure their activity: specificity and sensitivity.  

Increasing Haircut specificity 

Currently, Haircut does not have the specificity to measure the repair of some bulky 

lesions, like thymine glycol and ethenoA. Polymerases cannot use thymine glycol or ethenoA as a 

template and therefore these lesions produce truncated extension products that look identical to a 

strand incision events catalyzed by BER enzymes in Haircut data (Figure 3.1a, left and middle). 

From data I collected in bulk and in single cells, these lesions create signals in Haircut in the 

absence of repair enzymes (Figure A.3a and Figure 2.3).  

One solution to this challenge is to add a translesion synthesis step to the library 

preparation. In vitro bypass of the lesions to remove the background noise created by stalled 

polymerases would allow us to measure only strand incision events catalyzed by DNA repair 

enzymes. There are several translesion DNA polymerases that are commercially available. 

Following single-cell encapsulation and reverse transcription and prior to end repair (Figure 2.2), 

we could add a translesion synthesis and extension step so that polymerase-blocking lesions are 

bypassed producing full-length substrates that are carried through the remaining library 

preparation steps (Figure 3.1a, right). Substrates that have been repaired by cellular DNA repair 

enzymes would remain truncated allowing us to accurately measure these repair events. 

Another solution is purely computational. Haircut collects signals from cells and from 

empty drops in every single-cell experiment, so we have a large collection of negative control data 

that represents non-enzymatic signals on Haircut substrates (Figure 2.3). There are several 

methods available that remove background noise from single-cell mRNA data (Fleming, Marioni, 
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and Babadi 2019; Young and Behjati 2018). These methods are somewhat useful in removing 

background signals from our data; but since they are optimized for mRNA data, their applicability 

to DNA repair data may be limited. Haircut data does not suffer from the same dropout rates as 

single-cell mRNA data, and thus different methods to remove background signal should be 

developed. I already use a simplistic, non-quantitative method for determining enzymatic signals 

in our data by comparing the average counts per position in drops with cells and the same number 

of empty drops (Figure 2.3). However, a more probabilistic method should be developed in order 

to systematically quantify cellular signal over signals that originate from empty drops. A simple 

method to do this is to normalize signal at each position to empty drops and any signal that is less 

than one (i.e. higher in empty drops), would be considered background noise (Figure 3.1b). 

Another method is to examine the signal distributions from empty drops and cells at each position 

and determine if the signal in cells is significantly different from the signal in empty drops. I have 

tried a variety of these simplistic methods for determining biological signals with some success; 

however, removing technical noise via alterations in the molecular biology steps would produce 

higher confidence results.  

Increasing Haircut sensitivity  

Currently, Haircut lacks the sensitivity to measure repair of some DNA repair substrates. 

For example, the inosine containing substrates do not generate any detectable signal at expected 

repair positions in single cells (Figure 2.3). Presumably this is because any glycosylase activity 

on the inosine substrates is below the sensitivity of the assay. DNA repair microarray studies 

(described in further detail in Chapter I) have shown that inosine and 8-oxoG substrates are 

repaired on the order of 10 times less than uracil and abasic contain substrates in cell-free extracts 

(Pons et al. 2010a). On a single-cell scale, we measure 10-100 repaired molecules per cell for the 
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most robust repair activities (i.e. uracil, ribonucleotides, and abasic sites). If repair events are 

reduced by a factor of 10, then we can expect to measure the repair event 1-10 times per cell. When 

we down sampled our data to reflect 1-10 repair events per cell (~150 reads per cell), we were 

unable to classify cells in a knockout experiment; indicating that repair events captured in low 

abundance are not sufficient to produce enzyme-specific signals (Figure 2.4). To capture low 

abundance repair events, we need to increase the sensitivity of the assay.  

One simple way to increase Haircut’s sensitivity is to sequence the samples at a higher 

depth. We sequenced ~3500 reads per cell and >85% of those reads align to hairpins substrates, 

which is sufficient to quantify abundant repair events. If we sequenced at a higher depth, it is 

possible that we would also be able to quantify low abundant repair events. However, most of the 

substrates included in the assay are not repaired (i.e., converted to products). Sequencing at a 

higher depth may result in sequencing more unrepaired substrates. One way to combat this, is to 

include more substrates in the assay. I estimate that 0.01-0.05% of the substrates added to the assay 

are sequenced and of those sequenced 5-25% are products of repair for uracil and ribonucleotide 

substrates (Figure 2.7). When I increase the substrate concentration, the proportion of substrates 

that were sequenced remained constant. However, the proportion of sequenced molecules that 

were products of repair increase as substrate concentration increased (Figure 2.7). As such, it is 

possible that including more substrates for low abundant repair events would increase our ability 

to measure those enzymatic activities.  

Another strategy to increase the sensitivity of Haircut is to decrease the background signal. 

Most of the signal that is sequenced in Haircut libraries is present in empty drops or at positions 

that are not specific to enzyme activity (Figure 2.3). If background signal is removed, then the 

majority of sequencing results would come from repair events. One way I tried to remove 
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background was to include a 5´-biotin on the substrates. The idea is that strand incision events 

would liberate the 5´-end of the substrates and we could remove unrepaired substrates and liberated 

5´-ends with a streptavidin pull down. However, this method did not reduce background noise 

(Figure 2.3) possibly because the proportion of streptavidin beads to biotin in the sample was not 

appropriate to fully remove the unrepaired substrates or because the signal was generated from the 

newly synthesized second strand/reverse transcription reaction that occurs in the drop.  

Most sequencing libraries, by nature, are double stranded. In Haircut, the single-stranded 

substrate is copied during the reverse transcription step of the library preparation and only the 

newly synthesized strand is PCR amplified and compatible with sequencing (Figure 2.2). It is 

possible that the streptavidin cleanup that I used only removed unrepaired substrates, but the newly 

synthesized strand created after reverse transcription remained and was carried through the library 

preparation. One way around this challenge is to only PCR amplify the substrates themselves, 

rather than the newly synthesized strand. To do this, the assay needs to be redesigned in five ways 

(Figure 3.2). 1. Remove the 3´-C3 spacer on the substrates. The 3´-C3 spacer acts as a blocking 

group on the end of the substrate preventing it from degradation and preventing the substrates from 

being extended during reverse transcription. However, if we remove this blocking group, then the 

substrates themselves can be extended to incorporate the cell barcode onto the substrate molecule. 

2. Prevent the reverse transcription primer from extending and copying the substrates. The reverse 

transcription primer present in the drop needs to be prevented from copying the full-length 

substrate. To accomplish this, we need to include a reversible, polymerase halting lesion in the 

substrates that is not recognized or repaired by cellular machinery. One option, although 

expensive, is to include a pyrimidine dimer in a single-strand region of the substrate. The 

pyrimidine dimer would block polymerases and since its present in single-strand DNA, it cannot 
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be removed by cellular NER machinery. 3. Include a 5´-biotin on the substrates. The unrepaired 

substrates can be removed by a streptavidin pulldown and the repaired products can proceed 

through the library preparation. 4. Remove the polymerase-blocking lesion present in the 

substrates. Following single-cell barcoding of the substrates in the drop, the polymerase blocking 

group on the substrate needs to be removed. This could be done by translesion synthesis or in the 

case of a single-strand pyrimidine dimer, by a photolyase (Selby and Sancar 2006). 5. Add second 

strand synthesis to library preparation. Finally, the barcoded and purified repair products can be 

amplified using a standard library preparation: second strand, A-tailing, and PCR (Figure 3.1c). 

These steps may improve Haircut’s sensitivity by preventing PCR amplification of full-length 

substrates or truncated RT products. 

Measuring direct reversal  

In contrast to BER, direct reversal DNA repair does not result in a strand incision event. 

The alkylation DNA lesion, O6mG, is removed by the single-use methyltransferase, MGMT 

(described in detail in Chapter I). MGMT activity can be measured using a restriction enzyme 

digest that is inhibited by O6mG, and I show that MGMT activity can be measured in bulk extracts 

on a Haircut substrate (Figure A.2g). However, I was unable to measure MGMT activity in single 

cells (Chapter II, Figure 2.3). To measure direct reversal in single cells, two main issues need to 

be addressed. 1. I need to confirm that Pst1 restriction does not cut the O6mG-containing substrate. 

While other studies have used Pst1 restriction to measure removal of O6mG (Encell and Loeb 

1999b), my readout is through PCR and sequencing. A few cleavage events on the O6mG substrate 

can be amplified and sequenced resulting in non-specific ‘repair’ events. 2. I need to have high-

quality O6mG substrates. In bulk, the O6mG substrate was commercially synthesized and I 

measured MGMT-specific activity using this substrate (Figure A.2g). For the single-cell 
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experiments, I synthesized the O6mG substrate myself. While I followed the manufacturer’s 

instructions for synthesizing the oligonucleotide, the final product did not undergo rigorous quality 

control. The O6mG phosphoramidite requires special handling during the deprotection step of 

synthesis, including a five-day incubation period in the dark. The commercially produced O6mG 

substrate failed quality control several times before I received the final product, indicating that its 

synthesis is not straight forward. Using a high quality O6mG substrate may resolve the non-

specific Pst1 cleavage events in single cells. 

Other DNA repair pathway substrates 

To fully assess DNA repair in single cells, I would like to measure all of the DNA repair 

pathways. Base excision repair, ribonucleotide excision repair, and direct reversal substrates are 

simple to design and manufacture since they are relatively small oligonucleotides of only 20 base 

pairs. The substrates for nucleotide excision repair (NER) need to be much larger (~200 base pairs 

for cell-free extract activity). The substrates for mismatch repair (MMR) need to be larger yet (~ 

1kb) and include a nick or ribonucleotide to direct the repair machinery to the correct strand. The 

substrates for double-strand break (DSB) repair are challenging since this repair pathway joins two 

separate molecules into one. In its current design, Haircut may be able to measure NER on large 

substrates, especially if the extracts are supplemented with ATP and the lesions are either bypassed 

or removed prior to library preparation to prevent non-specific truncated products (Figure A.3b). 

For MMR and DSB repair, Haircut needs to be changed in one significant way: substrates need to 

be transfected into cells and then recovered to measure DNA repair.  

The substrates for MMR and DSB repair are quite large, so using them with the current 

Haircut design is not possible since they cannot be separated from the mRNA by size. Host cell 

reactivation assays use reporter plasmids to measure MMR and the two pathways of DSB repair: 
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non-homologous end joining and homologous recombination (Nagel et al. 2014). A similar method 

could be used in the context of a single-cell mRNA assay where the reporter mRNA is captured 

alongside cellular mRNA. The presence of the mRNA and/or point mutations within the mRNA 

could be used to quantify repair on a single-cell level. The main drawbacks to this method are that 

it is difficult to do on primary samples since it requires transient transfection of the reporter 

plasmids; and DNA repair cannot be measured in all cells and all substrates since transfection is 

heterogenous and not all cells will contain the reporter plasmid.  

Measuring DNA repair in millions of cells 

The iteration of Haircut I describe in this dissertation uses the 10x Genomics platform to 

measure gene expression and DNA repair activities. The 10x Genomics system and other droplet-

based single-cell methods are very efficient at studying a few thousand cells (~2K - 8K). There are 

now methods that use the droplet-based systems in new ways to measure gene expression from 

>100K cells (Datlinger et al. 2019). To expand Haircut to measure >100,000 cells, I could alter 

the single-cell combinatorial fluidic indexing (Datlinger et al. 2019) or other combinatorial 

indexing protocols (Junyue Cao et al. 2017; Rosenberg et al. 2018). Rather than use cell-free 

extracts to measure DNA repair enzyme activities, small hairpin substrates could be transfected 

into live cells. Repair of the substrates would take place within the cell over a short time course 

(0.5-2 hours). Cells could then be fixed and permeabilized and hairpins and mRNA could be 

captured using similar combinatorial indexing protocols that have already been described 

(Datlinger et al. 2019; Junyue Cao et al. 2017; Rosenberg et al. 2018) (Figure 3.3).  

One motivation behind expanding the cell numbers of Haircut is to identify new DNA 

repair regulators in a CRISPR screen. Several protocols have been developed to sequence CRISPR 

guide RNA (gRNA) in single-cell sequencing (Mimitou et al. 2019) and they are compatible with 
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the current version of Haircut and the proposed combinatorial indexing version of Haircut. The 

approach for the screen is fairly simple. 1. Transfect cells with a library of CRISPR guides, 

including guides that target known DNA repair regulators. 2. Once cells have incorporated 

CRISPR guides, they can be transfected with DNA repair substrates for the appropriate amount of 

time. 3. Capture single-cell CRISPR gRNA and DNA repair substrates (Figure 3.4). 4. Sequence 

the samples and identify the known DNA repair effectors and confirm that DNA repair 

measurements reflect changes in known DNA repair proteins. This method would produce a robust 

dataset where known and unknown regulators of DNA repair could be identified.  

This approach only measures CRISPR gRNA and DNA repair activities, not mRNA 

abundance. Sequencing CRISPR gRNAs and DNA repair substrates allows us to significantly 

reduce sequencing cost, while still having high coverage of the CRISPR gRNAs and a quantitative 

functional readout for DNA repair. To illustrate, 10x Genomics recommends users sequence 

samples at 50,000 reads per cell. If we want 100X coverage (meaning that each cell is likely to be 

transfected with a single gRNA and each gRNA is in approximately 100 cells) of a targeted 

CRISPR library for the base excision repair pathway (KEGG: hsa03410) that contains 33 genes 

and we include four gRNA per gene, then we would need to sequence 13,200 cells. At 50,000 

reads per cell, we would need to get 660 million reads that cost $50 per 10 million reads for a 

grand total of $3,300 of sequencing cost. However, if we were to only sequence CRISPR guides 

and DNA repair activities via Haircut, we only need 2,000 reads per cell to quantify DNA repair 

activities (Figure 2.4), which totals to $150 in sequencing cost. Since this screen is designed to 

identify affecters of DNA repair, the functional readout that Haircut provides is arguably a cheaper 

and more accurate readout than global gene expression alone. 
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Figure 3.1: Improving Haircut specificity through translesion synthesis and computationally 
 
a.  Haircut signals are dependent on strand incision events (left); however, if a bulky lesion prevents 
second strand synthesis or reverse transcription (RT), it can lead to a truncated second strand 
product (middle). These truncated products look identical to Haircut signals but are not dependent 
on enzymatic activity. Including a translesion synthesis step in the library preparation would 
reduce nonspecific signal by bypassing bulky lesions and synthesizing full-length second strand 
products (right). 
 
b.  Haircut specificity could be improved by removing non-specific signals computationally. Each 
single-cell experiment has thousands of negative control droplets that do not contain cells. We 
could subtract this background signal (middle) from signals in drops with cells (left) to measure 
only cell-associated repair events (right).  
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Figure 3.2: Improving Haircut sensitivity by removing unrepair substrates 
 
To improve Haircut sensitivity, we could sequence only strand incision events rather than 
sequencing both unrepair substrates and incised products. To achieve this in the 10x Genomics 
system, we have to prevent the RT primer from extending onto the hairpins by including a 
polymerase-blocking lesion on the substrates. The reverse transcriptase extends the 3´ end of the 
DNA repair substrate on the RT primer template to incorporate the cell barcode and UMI onto the 
substrate (top). Next, we remove the unrepaired substrate and proceed with the library preparation 
with the repaired substrates only. To complete a standard library preparation (bottom), the blocking 
lesion needs to be removed or bypassed (middle). This method could decrease the background 
signal of the assay as an effort to improve the assay sensitivity. 
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Figure 3.3: Combinatorial indexing protocol to measure DNA repair and RNA 
 
To measure DNA repair in currently available combinatorial indexing protocols, DNA repair 
substrates need to be transfected into live cells for a short time course (top). Cells are then fixed 
and permeabilized. DNA repair substrates and RNA (either mRNA or CRISPR gRNA) in each 
cell are tagged via a series of barcoding reactions. The approach allows for inexpensive barcoding 
of millions of cells. 
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Expanding the single-cell biochemistry toolkit 

One of the true innovations of Haircut is that we show that it is possible to semi-

quantitatively measure enzymatic activity at single-cell resolution. DNA repair activities are 

simple to measure since the substrates (DNA hairpins) can be read out by DNA sequencing. 

However, measuring other enzymatic activities introduces unique technical challenges. 

Measuring the activity of RNA modifying enzymes 

Many cellular RNAs are heavily modified (Frye et al. 2018); however we do not fully 

understand how RNA modifications are regulated. RNAs are differentially modified during 

development, in cancers, and throughout the circadian rhythm (Zhao, Roundtree, and He 2017). 

High throughput sequencing methods have been developed to map RNA modifications throughout 

the transcriptome (Molinie and Giallourakis 2017; Riemondy et al. 2018) and single-cell resolution 

of RNA editing events indicate that RNA editing is differentially regulated spatially and 

temporally during development (Lundin et al. 2020). RNA modifications could potentially be 

measured in single-cell RNA sequencing experiments given that there is sufficient read depth and 

the modifications are within a few hundred bases of the 3´ or 5´ end of the mRNA. However, given 

the sparsity of current single-cell mRNA sequencing techniques, finding modifications events on 

low-abundant mRNA or other cellular RNAs is unlikely. 

Developing RNA substrates to measure RNA modifying enzyme activities is relatively 

simple. Substrates for RNA editing enzymes and m6A-RNA methyltransferases are small RNA 

oligonucleotides (Y. Wang, Park, and Beal 2018; F. Li et al. 2016). If designed to be compatible 

with the 10x Genomics platform, the substrates can be captured alongside mRNA and then 

separated by size, similar to Haircut and other multimodal single-cell methods (Amanda L. Richer 

et al. 2020a; Mimitou et al. 2019). The challenge is to separate or identify the modified RNA 
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products from the unmodified RNA substrates. For m6A modifications, the methylated RNA 

substrates can be affinity purified using m6A antibodies (Molinie and Giallourakis 2017) or the 

substrates can be digested using an m6A-sensitive RNA endoribonuclease that recognizes ACA 

motifs (Z. Zhang et al. 2019) (Figure 3.4a). Either method allows us to distinguish between 

modified and unmodified substrates. RNA editing substrates are reverse transcribed and the editing 

event would produce a point mutation and can be identified in the sequencing data (Figure 3.4a). 

Either of these methods could be developed to measure RNA modifying enzyme activities in 

heterogeneous cell populations. 

Measuring protease activity 

Intracellular and extracellular proteases play an important role in maintaining cellular 

homeostasis, during development, and in immunity. Caspases are tightly controlled enzymes that 

regulate apoptosis, necrosis, and inflammation (McIlwain, Berger, and Mak 2013). Other 

intracellular proteases, like cathepsins, help regulate protein turnover and when overexpressed in 

cancer can lead to unregulated cell migration (Mohamed and Sloane 2006). Granzymes regulate 

cytotoxic lymphocyte function. Extracellular proteases like matrix metalloproteinases are 

upregulated in almost every type of cancer and they can regulate cell migration by remodeling the 

extracellular matrix (Egeblad and Werb 2002). The diverse and important functions of proteases 

make them an ideal target to measure at single-cell resolution, especially in heterogeneous tumors.  

Unlike the nucleic acid substrates for DNA repair and RNA modifying enzymes, proteases 

require a peptide substrate that cannot be directly readout via sequencing. To measure protease 

activity, we designed peptide-DNA conjugates that can be generally applied to many peptide 

substrates (Figure 3.4b). The key challenge to overcome by using peptide-DNA conjugates is to 

reliably separate the products from the unreacted substrates. For proteases, peptide substrates with 
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a C-terminal biotin and an N-terminal azide are conjugated to a 5ʹ-alkyne barcoded DNA 

oligonucleotide via copper-assisted azide-alkyne cycloaddition. The barcoded DNA 

oligonucleotide is captured and tagged with a cell barcode in a single-cell mRNA experiment. 

Unreacted peptide substrates are removed via a streptavidin pulldown. The flow through contains 

only the cleaved products of protease activity. Many proteases have at least some sequence 

specificity, which allows us to include many different peptide substrates that are only cleaved by 

specific cellular proteases.  

One consideration to measuring protease activity (and other peptide-DNA conjugates), is 

the stability of the peptide construct in cell lysate. In measuring protease activity, we want to ensure 

we are measuring specific protease activity, not general protein degradation via relatively non-

specific cellular proteases. Peptide substrates used to measure kinase activity are relatively 

unstable in cell lysate, although some of the instability can be mitigated by modifications to the 

peptide (Proctor et al. 2012; S. Yang et al. 2013). The N-terminal modifications on our substrates 

may provide some protection since some secondary structures on the N-terminal increase the 

stability of kinase substrates in cell lysate (S. Yang et al. 2013). Many proteases have some 

sequence specificity and ensuring that we design peptide substrates that do not cross react with 

other proteases is essential. However, given that our substrates are stable and specific, measuring 

protease activity in single cells is feasible with few modifications to the current assay design. 

Measuring E3 ubiquitin ligase activity  

Regulation of protein stability and targeted degradation is an important process in 

maintaining cellular homeostasis. The ubiquitin proteasome system is a crucial regulator of 

controlled protein degradation in cells. Dysregulation of this system is a hallmark of cancer and 

an important regulatory process during development (D. Wang et al. 2017). Small peptide 
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substrates have been used successfully to measure E3 ubiquitin ligase activity in cell extract and 

in single cells (Melvin et al. 2013; Houston et al. 2017). Similar substrates can be designed as 

peptide-DNA conjugates (as described above). To isolated ubiquitinated products from unreacted 

substrates, we can use one of several commercially available anti-ubiquitin antibodies (Figure 

3.4b).  

Measuring signal transduction pathways 

Intracellular signaling pathways achieved through protein kinase and phosphatase activity 

are essential for cell viability and are altered in essentially all cancers. These pathways allow cells 

to respond to extracellular signals, control cell cycle and division, and alter cell metabolism. There 

is immense heterogeneity in protein kinases. Protein kinases can be differentially expressed and 

their activities can be ‘leaky’ meaning that they do not respond to extracellular signals in a uniform 

fashion (Voliotis et al. 2014; R. Zhang et al. 2017).  

To measure protein kinases and phosphatases in single cells, the substrates are peptide-

DNA conjugates. Protein phosphatase substrates contain a synthetically available phosphorylated 

amino acid and protein kinase substrates are unmodified. The amino acid sequence is designed to 

target the activity of specific kinases and phosphatases of interest. To separate products of kinase 

or phosphatase activity from the substrates, we can affinity purify the phosphorylated peptide using 

anti-phospho antibodies specific to the substrates of interest (Figure 3.4c). There are several anti-

phosphotyrosine, anti-phosphoserine, and anti-phosphothreonine antibodies that are commercially 

available, allowing us to design an array of kinase or phosphatase substrates. For each activity, the 

amount of phosphorylated and unphosphorylated peptide can be measured giving us a ratio of 

substrate to product for each activity, which may be important to quantify these activities.  
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Figure 3.4: Expanding the single-cell biochemistry toolkit 
 
a.  We can measure RNA modifying enzymes using RNA substrates that contain a polyadenylate 
or another defined 3´end. RNA editing activity of ADAR can be measured by quantifying point 
mutations caused by the presence of inosine (left). The activity of methyltransferases that add the 
m6A modification to RNAs can be quantified by affinity purifying m6A-containing substrates with 
an anti-m6A antibody. m6A modified substrates can also be isolated by digesting non-methylated 
RNA substrates with a specific endoribonuclease that is inhibited by the presence of m6A (right). 
 
b.  The activity of enzymes involved in protein turnover can be measured using peptide-DNA 
conjugates. The DNA portion of the conjugates contains a polyadenylate or other defined 3´ end 
and a substrate-specific barcode. E3 ubiquitin ligase activity can be measured by affinity purifying 
ubiquitinated substrates with an anti-ubiquitin antibody (left). Protease activity can be measured 
by removing intact biotin-containing substrates by streptavidin pulldown (right). 
 
c.  The activity of enzymes involved in signal transduction can be measured using peptide-DNA 
conjugates. Protein kinase activity can be quantified by isolated phosphorylated substrates using 
anti-pTyr, anti-pSer, or anti-pThr antibodies (left). Protein phosphatase activity can be quantified 
capturing non-phosphorylated substrates either by affinity purification by antibodies recognizing 
non phosphorylated substrates or though biotin-conjugated PTAD that will covalently bind to non-
phosphorylated tyrosine residues (right). 
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Applications for single-cell biochemistry 

If the outlined single-cell methods to measure enzymatic activities across several classes 

of enzymes are reduced to practice, we would have an expansive toolkit to measure biochemical 

phenotypes in single cells. Measuring the heterogeneity of enzymatic function has applications 

that span several fields of study and could greatly expand our current understanding of these 

complex cell systems. I have outlined several applications below that are of interest to me. 

Single-cell biochemistry in precision medicine 

Heterogeneous diseases, like cancer, are notoriously difficult to treat. Not only are cancers 

derived from heterogenous mutations from person to person, but cells with dozens of different 

mutational patterns and phenotypes can exist within a single tumor. The heterogeneous nature of 

cancer is one of the reasons why it is difficult to treat. While cancer is arguably the most studied 

complex human disease, it is estimated that 90% of drugs are ineffective for 50% of patients with 

complex diseases (Shalek and Benson 2017). There is a huge need for methods to enable data-

driven treatments on an individual basis, also known as personalized medicine.  

There is no shortage of data that indicate how the mutational landscape of cancers should 

dictate the course of treatment (Amanda L. Richer et al. 2015). However, many of the current 

clinical methods used to determine treatments only measure targeted mutational patterns of known 

oncogenic alterations. Single genetic changes can have significant effects on global gene 

expression and cell function, and gene expression studies in cancer cells have found pathway-level 

functional differences present within individual tumors. This intratumoral heterogeneity is thought 

to be a major driver in resistance to chemotherapies (Shalek and Benson 2017). The use of single-

cell methods can illuminate how a mixture of malignant and the surrounding non-malignant cells 

respond to conventional chemotherapies (K.-T. Kim et al. 2016; Shalek and Benson 2017).  
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Single-cell biochemical assays could be used to directly probe the functional response of 

individual cancer cells to chemotherapies. For example, a novel combination of the BCL-2 

inhibitor, venetoclax, and the DNA damaging agent, azacitidine, shows preclinical efficacy in 

treating acute myeloid leukemia (AML) (Pollyea et al. 2018). To test the efficacy of this drug 

combination using our assays, we can measure DNA repair capacities using Haircut and measure 

apoptosis through the caspase-3 protease activity. One prediction is that cells with high DNA repair 

activity may have low caspase-3 activity, showing that high DNA repair activity can result in cell 

survival (Figure 3.5a). Another example is the combined use of a WEE1 kinase inhibitor and a 

platinum-based DNA damage agent, cisplatin, in the treatment of lung cancer (A. L. Richer et al. 

2017). This combination therapy is effective in transgenic mouse models, in part because WEE1 

inhibition inhibits activation of the G2/M checkpoint causing DNA damage induced cell death. In 

this example, we can measure caspase-3 activity, DNA repair activity, WEE1 kinase activity, and 

the activity of other G2/M protein kinases and phosphatases that may regulate cell survival. This 

strategy enables us to evaluable the therapy from the main competing regulatory mechanisms that 

may determine its efficacy in heterogeneous samples. The G2/M checkpoint is a tightly regulated 

pathway that is often dysregulated in cancers, and by using a panel of kinase and phosphatase 

substrates, we can potentially measure the activity of many enzymes throughout the pathway to 

determine if WEE1 inhibition is effective when combined with DNA damage. Through 

comprehensive measurements of the G2/M pathway, DNA repair activities, and apoptosis, we can 

thoroughly measure the efficacy of this therapy at single-cell resolution. 

Single-cell methods have also been used to evaluate treatments and heterogeneity of other 

complex human diseases. For example, rheumatoid arthritis is an autoimmune disease that 

ultimately destroys the joints. T cells, macrophages, and synovial fibroblasts in the joints play a 
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pivotal role in rheumatoid arthritis disease progression (Huber et al. 2006). Single-cell 

biochemistry assays show heterogenous phosphatase and protease activity in fibroblasts from 

rheumatoid arthritis patients that may help explain why a third of patients are unresponsive to some 

rheumatoid arthritis treatments (Mainz et al. 2016). Additionally single-cell analysis of primary 

samples from patients with lung fibrosis indicate that there are heterogenous populations of cells 

that may contribute to the disease and may help dictate treatments for lung fibrosis (Reyfman et 

al. 2019). Our single-cell assay may be useful in determining successful treatments in these 

populations as well. 

Currently, single-cell methods have great potential in pre-clinical studies to understand the 

heterogeneity of complex diseases and their treatments. However, single-cell methods are in a 

relatively early stage of optimization and development. If single-cell methods are to transition into 

a clinical setting, there are several considerations that must be met (Shalek and Benson 2017). 

Namely, the process of collecting, processing, evaluating, and analyzing data from clinical samples 

must be standardized into a reproducible workflow (Shalek and Benson 2017). Arguably, using 

biochemical data is simpler than distilling gene expression networks into targetable phenotypes, 

which may simplify the application of single-cell biochemistry in a clinical setting. Before single-

cell methods can be standardized in a clinical setting, there needs to be a well characterized 

database of normal tissues and cell types. Single-cell methods continue to uncover new cell types 

(Macosko et al. 2015), indicating that we have more still to uncover about the natural variability 

in human tissues. Biochemical methods will only add to our understanding of normal and diseased 

cell types to contribute to the field of personalized medicine.  

  



 135 

 



 136 

Figure 3.5: Single-cell biochemistry has the potential to contribute to the fields of precision 
medicine, pharmaceutical sciences, and developmental biology     
 
a.  Hypothetical data of how single-cell biochemistry could be used to predict or understand tumor 
response to chemotherapies. Pre-treatment phenotypes for cancer cells could show some tumor 
cells have high DNA repair capacity (left). Immediately post-treatment measurements could 
indicate some cells rapidly undergo apoptosis, measured by caspase-3 activity, and some cells 
increase DNA repair capacity in response to treatment (middle). Several days following treatment, 
some tumor cells persist and have high DNA repair capacities (right). It may be possible to use the 
pre-treatment measurements to dictate or predict whether cells will persist during treatment. 
 
b.  Single-cell biochemistry could be used in combination with sample barcoding single-cell 
methods. Cells could be treated with a panel of drugs across a number of concentrations and time 
points (left). Each treatment could be barcoded separately, and the response could be measured by 
single-cell biochemistry. Since the samples are barcoded, cell responses could be measured for 
each treatment simultaneously and drugs could be screened by enzyme activity for efficacy 
(middle). Single-cell biochemistry could also be used as a readout for CRISPR knockout screens. 
A pooled CRISPR knockout library could be transfected into cells and through single-cell methods 
the CRISPR gRNA and enzyme activities could be measured to identify regulators enzymatic 
activities (right). 
 
c.  Single-cell biochemistry could contribute to the field of developmental biology by adding to cell 
atlas databases (left), measuring enzymatic activity at key lineage decision points (middle), or by 
characterizing cell states based on extracellular signals (right). 
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Single-cell biochemistry in pharmaceutical sciences 

Developing compounds that effectively target cellular proteins often requires high 

throughput readouts for measuring compound effectiveness. As single-cell technology improves, 

our ability to develop high throughput screens also increases. Sample barcoding methods currently 

enable us to pool hundreds of samples in a single experiment (Shin et al. 2019; McGinnis et al. 

2019; Stoeckius et al. 2018; Srivatsan et al. 2020). These treat, barcode, and pool methods have 

already been used to screen compounds and evaluate their mechanisms and efficacy through gene 

expression changes (Shin et al. 2019; Srivatsan et al. 2020). One study even found that some drugs 

produced a heterogeneous response, while other drugs with similar targets did not (Srivatsan et al. 

2020), indicating single-cell analysis provides a high-throughput and detailed readout for drug 

screening. One drawback to these methods is the sequencing cost (summarized in detail above). 

While some methods can prepare single-cell libraries at less than a penny per cell, the sequencing 

costs that enable thorough characterization of compounds is still quite high and distilling global 

gene expression into a response phenotype is computationally intensive.  

Our single-cell biochemistry assays can simplify drug screening by directly measuring 

enzymatic activity. There are two main ways that single-cell biochemistry can improve drug 

development and discovery (Figure 3.5b).  

First, drug screens can be done in a direct, high throughput, and inexpensive experiment. 

If testing a panel of kinase inhibitors, samples can be barcoded using one of several single-cell 

sample barcoding methods (Shin et al. 2019; Stoeckius et al. 2018; McGinnis et al. 2019; Srivatsan 

et al. 2020) and treated with a panel of inhibitors spanning different time points and concentrations. 

Then, we can measure kinase activities independently or simultaneously with gene expression in 

single cells. Individually barcoding each drug, dose, and time point enables us to demultiplex the 
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data to assess drug activities using single-cell kinase activity measurements. Drug toxicity can also 

be measured by caspase-3 activity. Drug specificity can also be measured, given that we have a 

panel of related kinase substrates that correspond to specific kinase activities. If combined with 

gene expression data, alterations in enzyme functions can be correlated with subsequent changes 

in gene expression. All together, these data would represent a thorough characterization of drug 

efficacy and specificity.    

Second, we can discover novel regulators of cellular processes using CRISPR screens and 

single-cell biochemistry measurements. There are several single-cell CRISPR screening methods 

that currently exist, however, the sequencing cost is often prohibitively high for widespread 

applicability (Adamson et al. 2016; Jaitin et al. 2016; Datlinger et al. 2017; Mimitou et al. 2019; 

Replogle et al. 2020). To identify novel functional regulators of DNA, protein kinases, protein 

phosphatases, and protease, we can transfect cells with a genome-wide CRISPR library and 

measure enzyme function at single-cell resolution. If we design the CRISPR guides to include a 

unique capture sequence (Mimitou et al. 2019), then we can capture them alongside our substrates. 

When known regulators of enzyme activities are knocked out, then the activity will decrease or 

disappear. When unknown or indirect regulators are knocked out, we are likely to measure an 

intermediate effect. For example, if the DNA glycosylase UNG is knocked out, we expect very 

little enzymatic activity on the uracil containing DNA repair substrate. However, if the scaffolding 

DNA repair protein XRCC1 is knocked out, we may see a moderate decrease in many DNA 

glycosylase activities. Since we are measuring enzymatic activities, we would have direct 

functional measurements in knockout cells at a much lower sequencing depth. This kind of single-

cell CRISPR screen can also be applied to identify synthetic lethal combinations or combinations 
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that significantly impact overlapping pathways. Overall, a genome-wide screen for regulators of 

enzymatic activities could act as a blueprint choosing drug targets.  

Single-cell biochemistry in developmental biology 

The field of developmental biology has benefited from the growing applications of single-

cell biology. Developing organisms are a prime example of rapidly changing heterogeneous cell 

populations. Cells progress along developmental trajectories as they differentiate into specialized 

cell types that make up diverse tissues. These developmental systems can be monitored at single-

cell resolution throughout developmental timepoints to understand how cell fates are determined. 

In addition to discovering key regulators during the developmental process, the single-cell field 

has also been working towards developing a reference single-cell atlas that describes all the cells 

in the body. In a recent review, Dr. Samantha Morris argued that there are three main features to a 

complete cell atlas (Morris 2019). First, we need a catalogue of cell phenotypes and functions. 

Second, we need a thorough lineage map for each cell type. Third, and finally, we need an 

understanding of cell states. Single-cell biochemistry methods can be applied to each of these 

features in order to create a complete cell atlas (Figure 3.5c). 

Using single-cell biochemistry to define cell types and functions 

Single cell methods are very useful in finding new cell types, especially rare subtypes with 

unknown markers that are easily lost in bulk and cell sorting experiments (S. Zheng et al. 2018). 

New cell types are characterized by their gene expression profiles that can leave many unanswered 

questions about cell phenotype and function. Using an expanded single-cell biochemistry toolkit, 

we can add to the characterization of novel cell types within the context of existing methods. Our 

unique position to simultaneously measure enzyme activity and gene expression may rapidly 

expand our characterization of cell types throughout the body, especially when combined with 
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bulk datasets, like the human protein atlas (Uhlén et al. 2015; Thul et al. 2017). Additionally, 

tissue-specific protein functions can lead to tissue-specific regulatory networks (Zitnik and 

Leskovec 2017). Adding single-cell biochemical data to an existing cell atlas would add direct, 

functional data to characterize abundant and rare cell types.   

Using single-cell biology to uncover the determinant factors of cell trajectories 

Single-cell methods have significantly improved our understanding of developmental 

lineages and trajectories. Many single-cell methods use computational strategies to track and 

predict developmental trajectories (Qiu, Mao, et al. 2017). There are also methods to directly track 

developmental lineages using polyadenylated heritable cell barcodes (Guo et al. 2019). Single-cell 

gene expression measurements of developing organs have been used to develop prediction models 

for regulatory networks that determine cell fates (Moignard et al. 2015; Lescroart et al. 2018). 

While these novel methods uncovered transition states and regulatory networks, understanding the 

functional changes throughout the process is still a challenge. Adding biochemical information to 

these types of analyses may aid our ability to make fate predictions or help us understand the major 

functional players of regulatory networks that govern the developmental process (Figure 3.5c, 

middle). 

Specifically, our single-cell biochemistry assays can provide insight into key enzyme 

activities that drive developmental processes. For example, the major endoderm differentiation 

marker, KLF8, regulates the expression of some MMPs (Chu et al. 2016; X. Wang et al. 2011). If 

we measure the activity of MMPs in single cells during endoderm differentiation, we may learn 

what role MMPs play in differentiation and whether specific cells drive the process. Another 

example is in B cell development where there are rapid changes in the proteome (Bendall et al. 

2014). By measuring E3 ubiquitin ligase activities and cellular protease activities, we can learn 
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about the regulatory processes that enable cells to rapidly change their proteomes. These are just 

two specific examples of how single-cell biochemical assays can add to our understanding of 

developmental processes.  

Using single-cell biochemistry to define and understand cell states 

Cells are dynamic and responsive to environmental cues that can lead to heterogeneous 

gene expression profiles even within a cell type. To fully achieve a single-cell atlas, cell states 

must be included in the picture. For example, the cell cycle represents four unique states of dividing 

cells. In fact, there are several single-cell methods that remove cell cycle variability from single-

cell analysis (Butler et al. 2018a; Qiu, Hill, et al. 2017). While the cell cycle is very well defined 

in gene expression and function, other cell states are less defined. For example, T cells can have 

many different states depending on their location in the body, what antigens they are exposed to, 

and from where they originate. Several single-cell studies have characterized T cell states in 

healthy tissues and in cancers (Zemmour et al. 2018; van der Leun, Thommen, and Schumacher 

2020; Sade-Feldman et al. 2018). In regulatory T cells, T cell receptor (TCR) activation can alter 

or determine a T cell state (Zemmour et al. 2018). The TCR signal transduction pathway is 

complex and has many overlapping signaling molecules. If we can comprehensively measure 

protein kinase and phosphatase activities, we may be able to determine how TCR signaling can 

affect T cell states and heterogeneity in T cell activation during an immune response. Given we 

can develop a panel of signal transduction substrates, our single-cell biochemistry toolkit could be 

deployed to effectively measure cell states based on environmental exposures.  

One consideration in characterizing cell states is variability in the enzymatic activities. I 

measure variability in enzymatic activities and gene expression in single cells. The amplitude of 

these variabilities (i.e. range) in normalized data (see Chapter II) is similar between mRNA 
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expression and repair activities. However, some cell types, like B cells, seem to have a smaller 

range of repair activities compare to other cell types, like T cells (Figure 2.8). These differences 

could be due to cell states or the presence of subpopulations of related cell types. Some evidence 

indicates that stochastic gene expression leads to heterogenous responses to DNA damage (Uphoff 

et al. 2016; Uphoff 2018). Single-cell measurements may uncover that healthy cells have a normal 

variability range that may change upon the onset of disease. To truly understand the biological 

significance of the variability in the data, we need to have first achieve a thorough understanding 

of gene expression and enzymatic activities for each cell type in each cell state.   

If everything works, what could we learn about biology?  

Imagine a scientific community where the term biomarkers is a thing of the past. Currently, 

we rely on gene expression or DNA sequence measurements to predict cell function. We use 

biomarkers to predict disease prognosis. If single-cell or multiplexed biochemistry methods 

became high-throughput, specific, sensitive, and available at a low cost, then biomarkers and gene 

expression may become irrelevant for a variety of fields. Rather than look at gene expression to 

predict cell function, a panel of substrates could be used to directly characterize cell function. Drug 

responses in cells could be measured using a panel of biochemical readouts. Developmental 

biologists could track kinase and E3 ubiquitin ligase activity throughout development. Medical 

providers and cancer biologists could directly measure the effect of small-molecule inhibitors in 

tumor biopsies and assess their efficacy at single-cell resolution with direct enzymatic data. 

Variability and stochasticity of cell responses could be thoroughly catalogued at unprecedented 

resolution. Gene expression and genome-wide measurements will still advance scientific 

discoveries, but they may no longer have to be distilled into biomarkers and phenotypic 

predictions.   
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APPENDIX A 

MEASURING DNA REPAIR ACTIVITIES IN SINGLE CELLS 

Abstract 

DNA repair is essential for cellular homeostasis and is carried out through multiple and 

often redundant pathways. The current methods to study DNA repair provide a coarse-grained 

view of DNA repair capacity and are often limited to studying a single or few types of DNA repair 

at a time. We developed a sequencing-based functional assay for measuring DNA repair activities 

that can be scaled to measure repair events catalyzed by endogenous activities in single cells on 

substrates containing any synthetically available DNA modification. We show that the assay 

quantitatively measures repair of substrates for base excision repair, ribonucleotide excision repair, 

and direct reversal. We have used this method to measure base excision repair and ribonucleotide 

repair at single-cell resolution. 

Introduction 

Endogenous and exogenous sources can lead to a number of different DNA damage events. 

These DNA lesions can be the product of oxidation, alkylation, deamination, misincorporation, 

and more (Bauer, Corbett, and Doetsch 2015b). Cells have developed many, and sometimes 

overlapping pathways to repair a slew of DNA damage events (Bauer, Corbett, and Doetsch 

2015b). Some of the most abundant DNA damage events are the products of DNA replication 

where deoxyuracil and ribonucleotides are incorporated into nascent DNA strands (Goulian, 

Bleile, and Tseng 1980b; Clausen et al. 2013b). While these incorporations aren’t inherently 

mutagenic, their presence in the genome can alter the stability of the DNA strand and genome 

regulation by altering the affinity of DNA binding proteins. The cell's ability to repair its DNA 

across many different DNA repair pathways is termed the cell’s DNA repair capacity.  



 180 

There are many methods to measure DNA repair capacity and each has strengths and 

weaknesses. One of the most common methods is the comet assay, which measures either 

nonspecific or endonuclease-specific DNA damage events (Langie, Azqueta, and Collins 2015b). 

The comet assay has been useful to understand DNA repair on a genomic level and has been used 

to measure DNA repair capacity in cells in response to drug treatments or genetic knockdown of 

DNA repair factors (Langie, Azqueta, and Collins 2015b). Novel methods like fluorescence-based 

host cell reactivation assays use fluorescent protein-expressing plasmids that contain a DNA lesion 

(Nagel et al. 2016). After transfection into cells and repair of the DNA lesion, the cell will express 

the fluorescent protein. Multiplexed HCR assays have been developed to measure multiple repair 

pathways simultaneously (Nagel et al. 2016; Chaim et al. 2017b). These assays have been used to 

measure interindividual differences in DNA repair capacity and to predict DNA damage 

chemotherapy sensitivity (Chaim et al. 2017b; Nagel et al. 2016). However, HCR assays require 

transient transfection of a reporter plasmid in the cells and it is not suitable for many primary tissue 

samples. Finally, DNA repair enzyme activity can be measured in cell-free extracts. One cell-free 

extract method is a DNA repair microarray where oligonucleotides containing a single DNA lesion 

site and a 5´-fluorophore are immobilized on a slide. These substrates are exposed to cell free 

extract and upon repair of the lesion, the fluorophore is washed away and DNA repair can be 

measured as a function of fluorescence (Sylvie Sauvaigo et al. 2010). DNA repair microarrays 

have been used to measure DNA repair capacity in primary samples and have found that DNA 

repair capacity varies between individuals and can change with age and upon the onset of disease 

(Sylvie Sauvaigo et al. 2010; Forestier, Douki, et al. 2012b). While each of these methods have 

been used to help expand our knowledge of DNA repair in healthy and disease states, our 

understanding of DNA repair in highly heterogeneous populations like cancer is lacking.  



 181 

Single-cell methods have greatly expanded over the last 10 years and as the methodology 

becomes more accessible and affordable, our understanding of cell heterogeneity has greatly 

expanded as well. Single-cell mRNA sequencing has been used to find new cell populations and 

track developmental lineages of organs and whole organisms (Stuart and Satija 2019b). In addition 

to mRNA sequencing, we can also measure chromatin accessibility, protein abundance, and DNA 

sequence at single-cell resolution. All of these methods focus on measuring the abundance of 

molecules in single cells (Stuart and Satija 2019b). However, abundance does not always correlate 

to function. For example, post-translational modifications or sub-cellular localization can have a 

much greater impact on phenotypes than abundance. Because of this, we developed a method to 

measure enzymatic function in single cells.  

We developed a droplet-based single-cell method that can measure the activity of dozens 

of DNA repair enzymes simultaneously (Figure A.1). We immobilized DNA repair substrates, in 

the form of DNA hairpins that contain a single DNA lesion, on toyopearl beads that were uniquely 

barcoded by split-pool synthesis to contain a bead barcoded and a unique molecular identifier 

(Figure A.1a-b). Multiple DNA repair substrates were ligated to a single bead via splint ligation. 

To ensure that our method was specific and sensitive, all of the substrates were tested in bulk cell-

free extract (Figure A.1c). We measured single-cell DNA repair of a uracil-containing substrate 

and a ribonucleotide-containing substrate in a mixture of UNG- and RNASEH2C-deficient cell 

lines. We also measured DNA repair activity on BER, RER, and DR substrates in cell-free extracts 

across a range of substrate concentrations, cell extract concentrations, and time points. 

Additionally, we measured DNA repair activities at single-cell resolution. Both the multiplexed 

bulk validation method and the single-cell method could be valuable methods to answer questions 

about DNA repair capacity in primary tissues and complex cell mixtures. 
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Figure A.1: Multiplexed DNA repair assay to measure DNA repair in bulk cell extracts and 
single cells 
a.  DNA repair substrates in the form of DNA hairpins that contain a single DNA lesion are splint 
ligated onto toyopearl beads. Each bead contains a unique bead ID and a UMI. 
 
b.  Many substrates can be ligated to a single bead, enabling multiplexed measurement of DNA 
repair activities in a single cell.  
 
c.  Beads containing DNA repair substrates can be used to measure DNA repair activities in bulk 
cell extract (left) or in single cells (right).  
 
d. DNA repair activities are measured by measuring strand incision events catalyzed by DNA 
repair factors via a standard DNA library preparation. Following sequencing, the repair activity is 
identified by the sequence of the substrate or substrate ID. Individual cells are identified by the 
cell ID and repair events can be quantified using the UMIs. 
  



 183 

Materials and methods 

Preparation of DNA repair substrates for substrate validation 

Oligonucleotides were purchased from IDT. Large hairpin substrates for haircut were 

prepared via a multi-unit splinted ligation. The common 3´-amino, pieces 1-3, and the split oligo 

were mixed in equimolar concentrations (20 µM each) in 50 mM NaCl. The oligonucleotide 

mixture was then heated to 95 °C for 5 minutes and cooled for 1 hour to 25 °C, then placed on ice. 

10X T4 DNA ligase buffer (Enzymatics) was added to the annealed oligonucleotides to 1X 

concentration (50 mM Tris-HCl, 10 mM MgCl2, 5 mM DTT, 1 mM ATP, pH 7.6). 1800 units of 

Rapid T4 DNA ligase (Enzymatics) was added to the annealed oligonucleotides and incubated at 

17 °C overnight. Ligated hairpins were gel purified in the same manner as the single cell substrates 

described above. 

Conjugation of DNA repair substrates to beads for substrate validation 

For each sample, 100 µg of NHS-activated magnetic beads (Pierce) were washed once with 

1 mM ice-cold HCl then incubated with 150 pmol of purified oligonucleotide hairpins with a 3 ́-

amino group diluted in 10 µL 0.1 M sodium carbonate/sodium bicarbonate buffer (pH 9.0) for 2 

hours at room temperature. If multiple oligonucleotide hairpin substrates were added to the beads, 

they were mixed in equal mole ratios. Beads were then washed twice with 0.1 M glycine (pH 2.0), 

then open NHS sites were blocked with 1M 3-amino-2-propanol in 0.1 M sodium 

carbonate/sodium bicarbonate buffer (pH 9.0) for 1 hour at room temperature or overnight at 4 °C. 

The beads were washed three times with 100 mM NaCl, 5 mM EDTA, 50 mM Tris-HCL pH 7.5 

(WB), then stored in WB at 4 °C until use.  
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Cell lysis 

Adherent cells were grown until 70-80% confluent, then isolated via trypsin. 1 million cells 

were washed once with PBS and lysed for 10 minutes on ice with 100 µL M-PER (Thermo 

Scientific) supplemented with 1x Halt protease inhibitor cocktail (Thermo Scientific). Lysate was 

cleared by centrifugation at 10,000 g for 10 min at 4 °C. Relative protein concentration was 

determined using absorbance at 280 nm on a Nanodrop 2000 (Thermo Scientific). Lysates were 

diluted to 2.5 mg/ml total protein (unless otherwise noted) and immediately incubated with Haircut 

beads. 

Haircut library preparation for substrate validation 

50 µg (20 µl) total protein from of freshly made cell lysate was added to 100 µg of prepared 

Haircut beads in MPER lysis buffer supplemented with Halt protease inhibitor cocktail (Thermo 

Scientific) and 2.5 mM MgCl2 (unless otherwise noted). The mixture was incubated for 2 hours 

(unless otherwise noted) at 37 °C with shaking at 350 rpm. The beads were washed three times 

with detergent wash buffer (100 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl pH 7.5, 0.5 % SDS, 1 

M Urea; DWB) and twice with WB. To test for direct reversal repair activity, those samples were 

digested with Pst1 with the following 20 µl reaction: 1x Cutsmart (NEB), 1 ul Pst1 (NEB) for 1 

hour at 37 °C with shaking. The beads were then washed three times with DWB and twice with 

WB. The beads were then incubated in 20 µl second strand reaction (1 µM second strand primer, 

1x Blue buffer (Enzymatics, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, pH 7.9), 

400 µM dNTPs, 10 units Klenow 3 ́-5 ́ exo- (Enzymatics)) for 1 hour at 37 °C with shaking at 350 

rpm. The beads were then washed 3 times with DWB and 2 times with WB. The beads were then 

incubated in 20 µL A-tailing reaction (1x Blue Buffer (Enzymatics), 400 µM dATP, 10 units 

Klenow 3´-5´ exo- (Enzymatics)) for 30 minutes at 37° C with shaking at 350 rpm. The beads were 
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washed three times with DWB and 2 times with WB. The beads were then incubated in 30 µL 

Illumina Y adapter ligation reaction (66 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, 1 mM ATP, 

7.5% PEG 6000, pH 7.6, 1 µM annealed Y adapters, 1200 units Rapid T4 DNA Ligase 

(Enzymatics)) and incubated at 25 °C for 30 minutes. The beads were washed 6 times with DWB 

and 2 times with WB, then resuspended in 20 µL water. 5 µL of beads were added to 45 µL 

Illumina PCR reaction (1x Phusion HF buffer (NEB), 200 µM dNTPs, 0.6 µM ILMN PCR primers 

(F and R), 2 units Phusion High Fidelity DNA polymerase) and 23 cycles of PCR with 98 °C 

melting temperature for 15 seconds, 65 °C annealing temperature for 15 seconds, and 72 °C 

extension temperature for 15 seconds. The PCR reaction was purified using Agencourt AMPure 

XP (Beckman Coulter) beads as described by manufacture. The purified PCR reaction was 

quantified using the Qubit HS dsDNA fluorometric quantitation kit (Thermo Scientific) and paired 

end sequenced on a MiSeq with 75 base pair read lengths using a MiSeq 150 cycle reagent kit v3 

(Illumina) at the University of Colorado Anschutz Medical Campus Genomics and Microarray 

core. 

Data analysis for substrate validation 

UMIs were extracted from fastq files from read 2 and appended to the read names. Fastq 

files were aligned to hairpin reference fasta files using bowtie2 (v2.3.2) (Langmead and Salzberg 

2012b). Some substrates had the same sequence, in these cases the fastq files were separated based 

on a hairpin ID that was extracted from read 2. Following alignment, BAM files were combined 

using samtools merge (v1.9) (H. Li et al. 2009b). Aligned BAM files were deduplicated using 

umi_tools dedup (Smith, Heger, and Sudbery 2017b). 5 ́ alignement counts were calculated for 

each sample using bedtools genomecov (2.26.0) (Quinlan and Hall 2010b). Counts were 

normalized to total sequencing depth per sample unless standards were included.    
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5 ́-phosphate standards for normalization 

To include an internal standard to normalize DNA repair activity measurements, 

oligonucleotides of similar length to repair products containing 5 ́ phosphates were included at 

3000, 600, 120, 25, and 6 fmoles per sample in bulk DNA repair assays. In the data processing, 

the total counts per substrate was summed. The lowest concentration standard (6 fmoles) did not 

fit the linear model and so it was dropped from normalization calculations. For each sample, a 

linear model was calculated (lm) for the log10 transformed counts for each substrate vs the log10 

transformed picomoles of each substrate added. The calculated linear model was used to calculate 

the normalized counts for each sample for each hairpin position using the following formula:  

log*+(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑑𝑎𝑡𝑎	(𝑝𝑚𝑜𝑙	𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑))

= 	
− log*+(𝑐𝑜𝑢𝑛𝑡𝑠	𝑎𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) − 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	𝑜𝑓	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑚𝑜𝑑𝑒𝑙	

𝑆𝑙𝑜𝑝𝑒	𝑜𝑓	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑚𝑜𝑑𝑒𝑙
 

Single-cell bead synthesis 

Single-cell haircut beads were synthesized on an Expedite oligonucleotide synthesizer 

rebuilt by Biolytic Lab Performance. Phosphoramidites and synthesizer chemicals were purchased 

from Glen Research. Oligonucleotides were synthesized on Tyopearl HW-65S beads. Cell 

barcodes were synthesized by doing 12 rounds of split-pool synthesis where the synthesis was split 

into 4 columns and each column was coupled with a different amidite. Following base coupling, 

the beads were pooled and re-distributed into four columns. Following synthesis, beads were 

deprotected for 24 hours at room temperature in ammonium hydroxide and methyl amine. The 

beads were then dried in a speed vac and washed with 100% ethanol at least three times. The beads 

were resuspended in 10 mM Tris, pH 7.5, 1 mM EDTA, with 0.01% Tween-20 and stored in the 

fridge until use. Beads were washed before use. 
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Single-cell bead ligation 

To attach DNA repair substrates to single-cell beads, 4.8 nmoles of each hairpin substrate 

(U:A, riboG:C, Abasic:G) were splint ligated onto 350,000 beads. Hairpins were mixed with 14.8 

nmoles splint in 50 mM NaCl and added to 350,000 single-cell haircut beads. The splint, beads, 

and hairpins were annealed by heating to 95° C and cooling at 0.1 °C per second to 4° C. 2X Rapid 

Ligase Buffer (Enzymatics) was added to 1X concentration along with 1000 U T4 DNA ligase 

(Enzymatics) and incubated at room temperature for 30 minutes. The beads were washed twice 

with H2O, twice with WB, twice with DWB, twice with WB and twice with H2O. 

Single-cell Haircut on Dolomite system 

UNGKO Hap1 and RNASEH2CKO cells were isolated using the same method as above 

(CHAPTER 2). UNGKO and RNASEH2CKO cells were mixed 1:1 and were counted and diluted 

to a concentration of 300 cells/μl in PBS. Haircut beads were resuspended in 2X lysis buffer (2% 

NP40, 100 mM Tris, 200 mM NaCl, 2X ProteaseHalt (Invitrogen), 5 mM MgCl2) to 300 beads/μl. 

Beads were loaded 300 μl beads in 2X lysis buffer into the sample loading loop. Ran the beads at 

30 μl/minute, cells at 30 μl/minute, and the oil (Droplet Generation Oil for EvaGreen; BioRad) at 

200 μl/minute. Ran for the system until beads stopped flowing (~20 minutes). Incubated emulsion 

at 37° C for 2 hours with end-over-end turning. Following incubation at 37° C, the emulsion was 

broken by adding 3 mL perfluorooctanol (Synquest) with 10% PicoBreak (Sphere Fluidics) for 

color. Emulsion was separated by centrifuging at 100 XG for 1 minute. The top lay was removed 

and the bottom layer was washed with 6X SSC (0.9 M NaCl, 90 mM sodium citrate, pH 7.0) 

several times to remove beads from the interface. Beads were then transferred to the Eppendorf 

tube and then washed three times with DWB, three times with WB and three times with H2O. 

Recovered beads were counted and then split into two tubes with ~17,000 beads each for the 
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remainder to the library construction as described above. Size selected libraries on 2% agarose E-

gel (Thermo) collecting samples between 150 and 300 base pairs and then re-PCR amplified for 

sequencing.  

Results 

Substrate validation with knockout cell lines 

Base excision repair, ribonucleotide excision repair, and direct reversal substrates were 

validated using knockout cell lines. I measured cleavage events on uracil containing substrates 

(U:A and U:G) one base downstream of where the uracil was present in the substrate (Figure 

A.2a,b). This signal was dependent on the presence of UNG. Lysate from UNGKO cell lines did 

not have cleavage events on the A:U substrate and only moderate cleavage on the G:U substrate 

presumably due to the presence of SMUG1 and MBD4 that specifically recognize U:G mismatches 

(FigureA.2b).  

Ribonucleotide containing substrates undergo sequential cleavage events catalyzed by 

RNASEH2 and Poleδ and Fen1 resulting in cleavage on the 5 ́ and 3 ́ side of the ribonucleotide 

respectively (Figure A.2c). I measured cleavage events on the ribonucleotide containing substrates 

(rG, rA, rC, and rU) consistent with the downstream cleavage on the 3 ́ side of the ribonucleotide. 

This signal was dependent on RNASEH2 activity, but not secondary repair pathways mediated by 

Polβ or Top1 (Figure A.2c).  

The substrate containing the alkylation lesion, ethenoA, is repaired by the glycosylase 

MPG. Cleavage of the ethenoA substrate is dependent on MPG and is significantly reduced in 

lysate from MPGKO cells (Figure A.2d). MPG also removes the adenine deamination product, 

inosine, however, we did not measure the inosine-containing substrates in the MPGKO lysate, 

although we would predict that their activity is dependent on MPG. 
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Figure A.2: DNA repair activities are validated in bulk cell extract from knockout cell lines 
 
a.  Repair of a substrate containing a uracil:adenine (U:A) base pair initiates with UNG-mediated 
removal of the uracil nucleobase followed by processing of the abasic site by Ape1 and Pol β 
(inset). Normalized counts of incision and processing (counts / sequencing depth) are plotted 
against the position of the hairpin. Incision counts are located one base downstream of where the 
uracil was located in the substrate, consistent with the DNA repair mechanism. The signal is 
dependent on the presence of UNG. 
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b.  Repair of a substrate containing a uracil:adenine (U:G) base pair initiates with UNG-mediated 
(or SMUG1, MBD4, TDG) removal of the uracil nucleobase followed by processing of the abasic 
site by Ape1 and Pol β (inset). Normalized counts of incision and processing (counts / sequencing 
depth) are plotted against the position of the hairpin. Incision counts are located one base 
downstream of where the uracil was located in the substrate, consistent with the DNA repair 
mechanism. The signal is mostly dependent on the presence of UNG. 
 
c.  Repair of a substrate containing a riboG:C base pair initiates with RNASEH2-mediated incision 
5′ of the ribonucleotide followed by processing by Pol δ and Fen1 (inset). Normalized counts of 
incision and processing (counts / sequencing depth) are plotted against the position of the hairpin. 
Incision counts are located one base downstream of where the rG was located in the substrate, 
consistent with the DNA repair mechanism. The signal is mostly dependent on the presence of 
RNASEH2C, but not on the secondary ribonucleotide repair factor TOP1. 
 
d.  Repair of a substrate containing a etheno-adenine:thymine (εA:T) base pair initiates with MPG-
mediated removal of the εA nucleobase followed by processing of the abasic site by Ape1 and Pol 
β (inset). Normalized counts of incision and processing (counts / sequencing depth) are plotted 
against the position of the hairpin. Incision counts are located one base downstream of where the 
εA was located in the substrate, consistent with the DNA repair mechanism. The signal is 
dependent on the presence of MPG. 
 
e.  Repair of substrates containing a abasic:guanine base pair initiates with Ape-1-mediated incision 
followed by processing of the single-base gap by either Polβ (short-patch repair) (inset). 
Normalized counts of incision and processing (counts / sequencing depth) are plotted against the 
position of the hairpin. Incision counts are located two bases downstream of where the abasic site 
was located in the substrate, consistent with the DNA repair mechanism. The signal is not 
dependent on the presence of Polβ or Ape1, possibly due to redundant AP endonuclease activities 
in cells. 
 
f.  Repair of substrates containing a abasic:guanine base pair initiates with Ape-1-mediated incision 
followed by processing of the single-base gap by either Polβ (short-patch repair) or Pol δ/β and 
Fen1 (long-patch repair) (inset). Normalized counts of incision and processing (counts / 
sequencing depth) are plotted against the position of the hairpin. Incision counts are located one 
or more bases downstream of where the abasic site was located in the substrate, consistent with 
the short-patch and long-patch BER mechanisms. The long-patch BER signal >1 base downstream 
of the abasic site is inhibited by the inclusion of ddTTP. The addition of ddTTP causes additional 
downstream peaks after a ddTTP is incorporated into the strand. 
 
g.  Repair of substrates containing an O6-methyl-guanine:cytosine (O6mG:C) base pair is 
completed by the direct reversal enzyme MGMT (inset). Repair is measured by restriction digest 
of the repaired substrate by Pst1. Normalized counts of incision and processing (counts / 
sequencing depth) are plotted against the position of the hairpin. Incision counts are located two 
bases downstream of where the O6mG site was located in the substrate, consistent with the 
restriction site. The restriction digest is dependent on the presence of MGMT, since the presence 
of the methyl group on O6mG inhibits Pst1 incision. 



 191 

Ape1 and Polβ activities can be complemented by other AP lyases and polymerases in the 

cell (Lebedeva et al. 2012b; Khodyreva et al. 2010b; Prasad et al. 2015b), so activity on the abasic 

containing substrate was not significantly reduced when exposed to lysate from APE1KO or 

POLBKO cells (Figure A.2e). On the abasic containing substrate we measured both short-patch 

and long-patch base excision repair activity. Long-patch base excision repair could be halted at 

specific locations with the addition of ddNTPs in the assay (Figure A.2f). Specifically, the addition 

of ddTTP led to excision products at locations where a T was incorporated into the substrate 

following incision of the abasic site and several bases incorporated.  

The direct reversal substrate O6mG was used to test the activity of MGMT. MGMT activity 

does not result in a strand incision event, however, the presence of the alkylation lesions O6mG 

blocks the activity of some restriction enzymes. The O6mG substrate was designed to contain a 

Pst1 restriction site that contains the O6mG lesion (Encell and Loeb 1999c). Upon removal of 

O6mG by MGMT, the substrate can be cleaved using Pst1. Following incubation with lysate from 

Hap1 cells, the O6mG substrate was cleaved by Pst1. This cleavage was dependent on MGMT 

(Figure A.2g).  

Other substrates tested did not show enzyme-specific activity either because the signal did 

not diminish in knockout cell lines (Tg, TT dimer) or we did not measure any activity at expected 

positions (8-oxo-G, carboxyC, formylC, mismatch) (Figure A.3). Tg and TT-dimers are bulky 

lesions that would stall DNA polymerases, so it is possible that we are unable to distinguish 

between repair activity and truncated second-strand products. If we included translesion 

polymerases in the second-strand reaction, we may be able to bypass the lesions and only capture 

repair-mediated strand incision events.  
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Figure A.3: Nonspecific signals in Haircut 
a.  Repair of substrates containing an thymine glycol:adenine (Tg:A) base pair is initiated by DNA 
glycosylases, Neil1, Neil2, Neil3, and others. Normalized counts of incision and processing 
(counts / sequencing depth) are plotted against the position of the hairpin. Counts located one base 
downstream, consistent with known repair mechanisms, are not dependent on NEIL1 glycosylase 
activity (blue) or the presence of cell extract (grey). 
 
b.  Repair of substrates containing a pyrimidine dimer (TT dimer) is initiated by nucleotide excision 
repair machinery. Normalized counts of incision and processing (counts / sequencing depth) are 
plotted against the position of the hairpin. Counts located several bases downstream, are consistent 
with known repair mechanisms, but are not dependent on the NER factor, XPG (blue) or the 
presence of cell extract (grey). 
 
c.  Repair of substrates containing a 8-oxoguanine:cytosine, carboxycytosine:guanine, or 
formylcytosine:guanine are initiated by BER machinery. Normalized counts of incision and 
processing (counts / sequencing depth) are plotted against the position of the hairpin. Counts 
around the lesion are not dependent on cell extract (grey), nor are they above background signal 
on the unmodified substrate (right).  
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Testing sensitivity and repeatability 

To determine if the enzyme signals identified on the hairpin substrates were reproducible 

and quantitative, I did replicate, time course, and dilution experiments (Figure A.4). Hap1 cells 

were lysed in triplicate (1 million cells per lysate) and the lysate was incubated with Haircut beads. 

Signal was normalized to internal 5 ́-phosphate containing standards. Two replicates had 

measurements that were the same +/- 10% for all repair activities (Figure A.4a). The third replicate 

had the same data trends but had ~50% fewer repair events for some repair activities than the other 

replicates, indicating that the variability of the bulk assay is greater than expected. Technical and 

biological replicates are necessary to make quantitative claims on DNA repair capacity if using 

the bulk assay.   

To determine if the signal was dependent on enzyme concentration and incubation time, I 

diluted the cell extract 100-fold and incubated the extract with DNA repair substrates for 15 

minutes to 2 hours. Repair signals were dependent on incubate time and lysate concentration 

(Figure A.4b,c). However, the highest lysate concentration (2 mg/ml) and longest time point (2 

hours) had fewer incision events than shorter timepoints (1 hour) and some dilutions (1 mg/ml). 

This reduction in signal is most likely due to complete repair events occurring on the substrate that 

are invisible to the assay. I also included five separately barcoded uracil, ribonucleotide, and abasic 

containing substrates and measured the relationship between the repaired substrates versus the 

amount of substrate added to the assay. I found that the amount of substrate added compared to 

the amount of substrate repaired in the assay was nearly perfectly correlated (R2 > 0.95), indicating 

that repair measurements are consistent across a 50-fold substrate concentration range (Figure 

A.4d).  
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Figure A.4: Repeatability and consistency of Haircut signals 
 
a.  Haircut was done in biological triplicate. Repair signal at defined repair positions is plotted by 
substrate. Replicates 1 and 2 show good agreement but replicate 3 varies in uracil containing 
substrates only.  
 
b.  Haircut substrates were incubated with cell extract for 15-120 minutes. Repair signal at defined 
repair positions is plotted over time. Generally, repair signal increases up to 60 minutes and then 
decreases slightly at 120 minutes. 
 
c.  Haircut substrates were incubated with cell extracts spanning a 100-fold protein concentration 
range. Repair signal at defined repair positions is plotted by lysate concentration. Generally, repair 
signal increases as lysate concentration increases except repair of the ribonucleotide substrate 
(blue).  
 
d.  Haircut substrates spanning a 50-fold concentration ranger were incubated with cell extracts. 
Repair signal at defined repair positions is plotted by substrate concentration. Generally, repair 
signal is directly correlated with substrate concentration.  
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Single-cell barnyard experiment 

To determine if Haircut was sensitive at single-cell resolution, I ligated DNA repair 

substrates onto single-cell Haircut beads that contained a cell barcode and UMI. I only included 

three substrates onto the beads: U:A, riboG:C, Abasic:G. I mixed two knockout cell lines 1:1; 

UNGKO and RNASEH2CKO Hap1 cells (Figure A.5). Using the Dolomite single-cell RNAseq 

system, I encapsulated single-cell Haircut beads and single cells in oil-water emulsion drops. I 

measured UNG or RNASEH2 activity in droplets for ~100 cells. While the cell number was low, 

DNA repair activity was segregated, where cells that had uracil repair activity did not have RER 

and vice versa, indicating we were measuring repair activity in single cells (Figure A.5, right). 

 

 

Figure A.5: Measuring DNA repair in single cells 
 
Single-cell Haircut beads containing uracil, ribonucleotide, and abasic substrates were 
encapsulated with single cells from a single-cell suspension of a mixture of Hap1 cells containing 
null alleles of either UNG or RNASEH2C (right). Repair signals at defined repair positions for the 
ribonucleotide substrate are plotted by the repair signal at defined repair positions for the uracil 
substrate. The level of strand incision for uracil and ribonucleotide substrates was used to classify 
cells as either UNGKO (green) or RNASEH2CKO (blue) based on strand incision activity (UMI 
counts at position 87 for ribonucleotide, position 87 for uracil) greater than 5% of the maximum 
for all cells. Cells that fall on the x- or y-axis are single RNASEH2CKO and UNGKO cells, 
respectively; and cells with low signal (<5% of the max for both activities) are in grey. 
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Discussion 

Through bulk and single cell experiments I validated DNA repair substrates. Base excision 

repair, ribonucleotide excision repair, and direct reversal substrates were validated through these 

experiments. However, due to different substrate and enzymatic requirements I was unable to 

measure repair activity on nucleotide excision repair and mismatch repair substrates. Additionally, 

the bulk experiments indicated that this assay functions across a wide range of enzyme 

concentration, however, some enzymes (e.g. OGG1, TDG) may be at too low an abundance in 

cells and so we were unable to measure that activity in our assay (Figure A.3c). Our inability to 

measure activity on the 8-oxoG substrate may be an example of an enzyme that is not present in 

high enough concentrations in order for us to measure its activity. Alternatively, it could be that 

our substrate design or buffer components were not suitable for OGG1 enzymatic activity. The 

latter is unlikely because similar small double-stranded substrates have been used to measure 

OGG1 activity in vitro and in cell-free extracts (Bravard et al. 2006; Pons et al. 2010b). OGG1 is 

active in similar buffers used in our assay. Paradoxically, qRT-PCR results indicate that OGG1 is 

expressed in our cell lines (data not shown). OGG1 activity can be inhibited with nitric oxide stress 

(Jaiswal et al. 2001), so it is possible that inhibitory post-translational modifications inactivate 

OGG1 in our cell lines or assay conditions.  

The substrate thymine glycol (Tg) has a large signal, but it’s not specific to NEIL1 

glycosylase activity (Figure A.4a). Thymine glycol is a large bulky lesion that could cause 

polymerase stalling during the second strand reaction producing a truncated extension product that 

is competent for ligation. These truncation products look identical to glycosylase activity; 

however, they are also present in the lysis buffer only control. While signal on the Tg containing 

substrate was high in cell extract, there was also significant signal in the lysis buffer control. Due 
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to the polymerase-halting nature of Tg (Yoon et al. 2010b), it is difficult, if not impossible, to truly 

measure enzymatic activity on the Tg containing substrate. These same problems are also found 

on the thymine dimer substrate. TT dimers stall DNA polymerases that could lead to signals around 

the TT dimer independent of DNA repair activity. Additionally, NER does not occur at precise 

single-base sites around the lesion like BER. NER cleavage events occur upstream (~18-20 bases) 

and downstream (2-4 bases) of the lesion (Reardon and Sancar 2005). The diffuse nature of these 

incision events makes it difficult to quantify. Nucleotide excision repair is also difficult to measure 

for a number of other reasons. First, because ~25 bases are excised from the substrate, NER 

substrates need to be quite large in comparison to the 20-base pair BER substrates. Second, NER 

requires assembly of many DNA repair factors at the site of damage in order for incision to occur. 

The assembly of NER factors may require a larger substrate. Our largest NER substrate was only 

~80 base pairs that may not facilitate assembly and activity of NER factors. Finally, NER factors 

require supplemental cofactors, like ATP. We were unable to measure NER in our assay, but it 

may be possible to develop substrates and assay conditions that can measure NER in the future. 

This version of the single-cell DNA repair assay provided a valuable steppingstone in 

developing an assay to simultaneously measure DNA repair enzyme activity and mRNA 

expression in single cells. Some of the major limitations to this method are as follows. While I was 

able to measure single-cell DNA repair activities in a barnyard experiment, it would be difficult to 

identify cell types using DNA repair activities alone in a more complex cell mixture. This 

limitation is even more abundant when using the data from Chapter II. The range of signal we 

measured in cells with high repair activity (B cells) to low repair activity (monocytes) that differ 

only as a factor of two with variation sufficient to bridge the gap (Figure 2.7). Inability to 

distinguish cell types with high and low repair significantly reduces the applicability of this assay 
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in its current form. The Dolomite single-cell RNAseq platform is an easily customizable system, 

however, the difficulties of isolating single cells reproducibly did not make it an ideal system to 

use if trying to measure DNA repair activity in more than a few thousand cells. Because of these 

limitations, I developed a method to measure DNA repair activities in single cells using the 10x 

Genomics single-cell mRNA expression platform (Chapter II). 
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APPENDIX B 

DNA REPAIR HETEROGENEITY IN INDIVIDUALS WITH TRISOMY 21 

Abstract 

We measured single-cell gene expression and DNA repair capacity in peripheral blood 

mononuclear cells from healthy individuals with trisomy and compared them to age and sex-

matched disomic individuals. We identified several known differences in cell type abundance in 

T21 PBCMs (fewer B cells) and gene expression differences in type I interferon response genes in 

CD14 monocytes. Additionally, we found differences in some DNA repair activities. Namely, we 

found increased abundance of DNA repair intermediates in our assay that is consistent with 

previously published data that decreased expression of DNA polymerase beta in individuals with 

trisomy 21 leads to a deficiency in single strand break repair and an increase in DNA strand breaks. 

Due to our small cohort (2 T21, 2 D21) it is difficult to make conclusions on these data, but with 

more samples and/or integration with additional datasets (cy-TOF, bulk RNAseq, etc) we can 

begin to understand DNA repair heterogeneity in individuals with trisomy 21.  

Introduction 

Trisomy 21 (T21) is the most common chromosomal condition in humans and is the cause 

of Down Syndrome (DS) (Dierssen 2012). People born with DS have both mental and physical 

challenges, as well as predispositions for a number of conditions and diseases including 

Alzheimer’s disease, autoimmune disorders, and some types of cancers. People with DS are also 

less likely to get solid tumors and hypertension, leading to the question of the molecular 

mechanisms driving the predispositions and protective effects of T21. Few direct gene-dosage 

links have been made that link disease predispositions to specific genes on chromosome 21. For 

example, the gene DYRK1A located on chromosome 21 promotes the development of leukemia 
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in murine models of DS (Malinge et al. 2012) and the extra dosage of the APP gene promotes 

Alzheimer's disease (Cataldo et al. 2003). However, much of the molecular mechanisms driving 

the disease predispositions are still unknown.  

DNA repair is an essential process in maintaining cellular homeostasis. Alterations in cell 

metabolism and redox regulation can alter the rate of DNA damage and DNA repair (Mikhed et 

al. 2015). At the cellular level, T21 causes global changes in gene expression and the cellular 

proteome (Sullivan et al. 2016, 2017). Some T21 cells have consistent activation of the interferon 

response (Sullivan et al. 2016) that may contribute to the development of leukemia through altered 

cell metabolism and changes in DNA damage and repair in the hematopoietic system, although 

little direct experimental evidence for this has been measured. Activation of the interferon response 

can lead to an increase in steady-state DNA damage levels, however, studies have found no 

increased sensitivity to DNA damage in cells from individuals with T21 (Morawiec et al. 2008). 

There have been a number of studies that measured DNA repair in T21 cells, but the results have 

been inconclusive. Some studies found that there was no difference in DNA repair rates (Steiner 

and Woods 1982). While other studies have found a decrease in DNA repair rates (Morawiec et 

al. 2008; Necchi et al. 2015), and other studies found an increase in DNA repair rates in T21 cells 

(Chiricolo et al. 1993). 

Given the heterogeneity in DNA repair between cell types, it is possible that the 

inconclusive DNA repair data in T21 cells is dependent on the type of DNA damage and the cell 

type. Some gene expression differences in individuals with T21 are cell-type specific (Sullivan et 

al. 2016) indicating that DNA repair may also differ by cell type. We have developed a sensitive 

single-cell DNA repair assay that measures the activity of several DNA repair enzymes 

simultaneously with single-cell gene expression (Amanda L. Richer et al. 2020a) called Haircut.  
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Haircut measures cell-specific differences in base excision repair enzyme activity from 

single-cell suspensions. We used Haircut to measure single-cell gene expression and DNA repair 

capacity in peripheral blood mononuclear cells (PBMCs) from healthy individuals with T21 and 

compared them to age and sex-matched D21 individuals. The single-cell resolution of our data, 

allowed us to identify several known differences in cell type abundance in T21 PBCMs (fewer B 

cells, altered T cell populations) (Verstegen et al. 2010; Araya et al. 2019) and gene expression 

differences in type I interferon response genes in CD14 monocytes (Sullivan et al. 2016). 

Additionally, we found very small differences in some DNA repair activities. Namely, we found 

increased abundance of some DNA repair intermediates in our assay that is consistent with 

previously published data that decreased expression of DNA polymerase beta (Polβ) in individuals 

with T21 leads to a deficiency in single strand break repair and an increase in DNA strand breaks 

(Patterson and Cabelof 2012). Due to our small cohort (2 T21, 2 D21) it is difficult to make 

conclusions on these data, but with more samples and/or integration with additional datasets (cy-

TOF, bulk RNAseq, etc) we can begin to understand DNA repair heterogeneity in individuals with 

T21.  

Methods 

PBMC collection 

Fresh PBMCs were isolated from four healthy individuals (females, between 18-35 years 

old; 2 D21, 2 T21) through the Linda CRNIC Center Human Trisome Project. PBMCs were 

collected from 4-5 mL of fresh peripheral blood collected in sodium heparin tubes. PBMCs were 

isolated using a Ficoll gradient as before (Amanda L. Richer et al. 2020b) within 6 hours of blood 

draw.  
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10X Haircut 

Single-cell mRNA and single-cell DNA repair measurements were made using the single-

cell Haircut method (Amanda L. Richer et al. 2020b). The following substrates were added to the 

master mix to a final concentration of 5 nM each (50 nM total): U:A, G:U, riboG:C, I:T, I:C, 

Abasic:G, hydroxymethylU:A, ethenoA:T, O6mG:C, unmodified. Substrates were designed to be 

captured in 10x Genomics 3´ mRNA capture kits V3 with feature barcoding technology. The 

hairpins contained a single strand tail complementary to capture sequence 1. Libraries were 

prepared as described previously (Amanda L. Richer et al. 2020b) with the addition of Pst1 

digestion to detect O6mG direct reversal repair and using PCR primers that are consistent with 

capture sequence design.  

Data analysis 

Fastq processing  

Single-cell mRNA and repair fastqs were processed as previously described (Amanda L. 

Richer et al. 2020b) with the following exception: cell barcodes from the mRNA analysis from 

cellranger (v3.0.2) were matched to the cell barcodes on the DNA repair substrates using the cell 

barcode reference file located in the cellranger (v3.0.2) software files (cellranger-3.0.2/cellranger-

cs/3.0.1/lib/python/cellranger/barcodes/translation/3M-february-2018.txt.gz).  

Single-cell analysis 

Seurat objects were created and normalized as previously described ((Amanda L. Richer 

et al. 2020b), Chapter II). Samples were integrated using Seurat functions (FindAnchors and 

IntegrateData)  (Stuart et al. 2019c).  

  



 203 

Autosomal expression 

Processed fastq files were input and normalized into Seurat objects as previously described 

((Amanda L. Richer et al. 2020b), Chapter II). Each sample was integrated into a single Seurat 

object using Seurat functions (FindAnchors and IntegrateData). Using the integrated or 

nonintegrated gene expression data, the mean gene expression was calculated for all genes on 

chromosome 19 and chromosome 21. Genes and gene location were identified using Encode 

annotations (Pazin 2015).  

Differential gene expression and GO analysis 

Differential gene expression for D21 and T21 cells were calculated using Seurat function 

(FindMarkers, FindAllMarkers) (Butler et al. 2018b; Stuart et al. 2019c). Differential gene 

expression was calculated by cell type. Differential genes and p values were used as the input for 

GO term analysis using TopGO (Alexa and Rahnenführer 2009). 

Results and discussion 

Single-cell gene expression in PBMCs from people with T21 

We collected PBMC samples from four adults between the ages of 18 and 35, two 

individuals with T21 and two individuals with D21. We captured between 1,700 and 5,500 cells 

per person and were able to identify cell types using gene expression. Samples were integrated 

using Seurat functions (Stuart et al. 2019c) and UMAP plots show that cells cluster according to 

cell type, rather than individual or chromosome 21 status (Figure B.1a). However, when we 

looked at gene expression on chromosome 21 and chromosome 19, we found higher average gene 

expression on chromosome 21 and chromosome 19 (Figure B.1b). It is possible that differences 

in sequencing depth affected our metric of chromosomal gene expression. We also integrated 

samples to remove sample and batch variations, but this integration method also removed variation 
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in average autosomal expression on chromosome 21 between individuals (data not shown). We 

expect that given higher and more constant sequencing depth for each sample; we would measure 

chromosome 21 gene expression difference.  

 
Confirming known alterations in PBMCs and gene expression in people with T21 

We were able to measure known differences in immune cell populations from individuals 

with T21. We confirmed the previously shown phenotype that people with T21 are deficient in the 

B cell population compared to people with D21 (Verstegen et al. 2010) (Figure B.2a). We were 

also able to identify CD8+ and CD4+ T cells and found that individuals with T21 had a higher 

proportion of CD8 + T cells and a lower proportion of naive CD4+ T cells (Figure B.2b), which 

was previously described (Araya et al. 2019). Even with our small dataset, these trends were 

consistent across individuals and confirmed known phenotypes. In addition to differences in cell 

populations, we also were able to recapitulate some previous data describing an altered innate 

immune response in some cell types form people with T21 (Sullivan et al. 2016). Our sequencing 

depth was low (~8,000 reads per cell) and our cohort of four individuals was quite small, however, 

we were able to identify GO terms associated with the innate immune response in monocytes from 

people with T21 (Figure B.2c). It is possible that with a higher sequencing depth for every sample, 

we may be able to find more differences in immune cell populations and gene expression 

differences in PBMCs from individuals with T21. 

  



 205 

 

Figure B.1: Single cell analysis of primary peripheral blood mononuclear cells in people with 
trisomy 21 
 
a.  Two-dimensional UMAP projection of variable gene expression across 11,727 human PBMCs 
captured in a 10x Genomics 3′ Gene Expression experiment. Major cell types were determined by 
marker gene expression (CD19 for B cells; IL7R for T cells; LYZ, FCGR3A, CD14 for monocytes; 
FCER1A for dendritic cells; GNLY for NK cells). Samples across four individuals, two people 
with T21 and two D21 individuals, were integrated and the major sources of variation are derived 
from cell types and not individuals or chromosome 21 ploidy.  
 
b.  Mean autosomal gene expression from chromosome 21 (top) and chromosome 19 (bottom) for 
each individual colored by chromosome 21 ploidy.  
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Figure B.2: Confirming known differences in cell populations and gene expression in 
individuals with T21 using single-cell RNA seq 
 
a.  Proportion of cells identified in four individuals with T21 or D21 by immune cell type, colored 
by chromosome 21 ploidy. 
 
b.  Proportion of cells identified in four individuals with T21 or D21 by T cell subtype, colored by 
chromosome 21 ploidy. 
 
c.  Gene ontology terms identified from differential gene expression in monocytes from individuals 
with T21 compared to individuals with D21 arranged by descending log10 of p values. Blue line 
represents P = 0.05. GO terms highlighted in blue have been previously identified.  
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DNA repair in cells from people with T21 does not differ from D21 cells 

We also measured single-cell DNA repair on DNA repair substrates for base excision repair 

and ribonucleotide excision repair enzymes. Major signals in Haircut come from the excision of 

damaged bases by DNA glycosylases and strand incision by AP endonucleases or RNaseH2 

(Figure B.3, left). While some studies found differences in Polβ expression and activity in cells 

from people with T21 (Patterson and Cabelof 2012), we only measured moderate and mostly 

insignificant differences in repair intermediates from any cell type in our cohort (Figure B.3, 

middle and right). Again, our cohort is small and the sequencing depth per sample varies greatly. 

These factors make it difficult to make firm conclusions from these data. However, the lack of a 

large difference in DNA repair in any cell type between individuals with T21 and D21, indicate 

that any differences in functional DNA repair in healthy cells may be quite small.  

More samples and sequencing depth are needed  

Since we had such a small cohort, it is difficult to make firm conclusions from these data. 

Moreover, any differences that we saw in DNA repair capacity was driven by a single individual 

with T21. There is natural variability in DNA repair capacity between healthy individuals and the 

differences in repair intermediates measured in our data across all people is within the natural 

variation in DNA repair measured previously (Chaim et al. 2017c).  

To fully answer questions about DNA repair in people with T21, we need to expand our 

cohort. Previous studies that found differences in immune cell populations between people with 

D21 and people with T21 have collected samples from ~10-30 individuals (Sullivan et al. 2016; 

Araya et al. 2019). However, the natural heterogeneity in DNA repair between individuals can 

range up to three standard deviations from the mean (Chaim et al. 2017c), so we may need to 
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measure a much larger cohort to understand any functional differences in DNA repair between 

individuals with T21 compared to individuals with D21.  

To increase our cohort size, it would be very helpful to test Haircut using viability frozen 

samples. Single-cell techniques are plagued with batch effects and attempting to measure single-

cell gene expression and DNA repair from dozens of individuals would be logistically challenging 

if we were to collect and run all the samples in a single day. However, the Human Trisome Project 

has viably frozen samples from hundreds of individuals. If we confirm that viably frozen samples 

can be used to collect reproducible single-cell DNA repair results, then we would be able to expand 

our study to understand interindividual differences in DNA repair in immune cells from individuals 

with T21 and D21.  

The Human Trisome Project and people from the Espinosa lab have also created several 

datasets using samples from individuals with T21. If we integrated some of our single-cell gene 

expression data and DNA repair measurements with other data sets (e.g. CY-TOF, bulk RNA-seq, 

etc.), we may be able to further understand heterogeneity of DNA repair and cell functions in 

individuals with Down syndrome.  
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Figure B.3: Single-cell DNA repair measurements from PBMCs from individuals with T21 
 
a.  Repair of a substrate containing a uracil:adenine (U:A) base-pair initiates with UNG-mediated 
removal of the uracil nucleobase followed by processing of the abasic site by Ape-1 and Pol β 
(left). Chromosome 21 ploidy-specific counts of incision and processing (mean) are plotted against 
the position of the hairpin (middle). Single-cell repair activities (natural logarithm of counts at the 
incision site divided by total counts for that cell multiplied by a scaling factor of 104) are plotted 
for each cell from each cell type (right). T cells from individuals with T21 have higher uracil 
incision relative to T cells from individuals with D21 (P < 10-60).  
 
b.  Repair of a substrates containing a uracil:guanine base-pair initiates with UNG, SMUG, or 
MBD4-mediated removal of the uracil nucleobase followed by processing of the abasic site by 
Ape-1 and Pol β (left). Chromosome 21 ploidy-specific counts of incision and processing (mean) 
are plotted against the position of the hairpin (middle). Single-cell repair activities (natural 
logarithm of counts at the incision site divided by total counts for that cell multiplied by a scaling 
factor of 104) are plotted for each cell from each cell type (right). 
 
c.  Repair of a substrate containing a riboG:C base-pair initiates with RNASEH2-mediated incision 
5′ of the ribonucleotide followed by processing by Pol δ and Fen1 (left). Chromosome 21 ploidy-
specific counts of incision and processing (mean) are plotted against the position of the hairpin 
(middle). Single-cell repair activities (natural logarithm of counts at the incision site divided by 
total counts for that cell multiplied by a scaling factor of 104) are plotted for each cell from each 
cell type with significant comparisons noted (right). 


