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ABSTRACT

Differential correlation or coexpression occurs when feature pairs (e.g.
transcripts, proteins, or metabolites) have different types of associations between
biological groups. Differentially correlated feature pairs may indicate processes or
interactions that are unique to disease. Differential correlation can be categorized
into different types. Disrupted differential correlation is when there is no association
in one group, but an association in the other group. Cross differential correlation is
when there is a positive association in one group, but a negative association in the
other group. Both types of differential correlation are relevant in biology, but most
differential correlation methods are better suited to identify cross differential
correlation, but not disrupted differential correlation. However, cases of differential
correlation discovered in low-throughput experiments are often disrupted. In this
thesis | present a novel approach for determining differential correlation called
Discordant, which uses Gaussian mixture models and the EM algorithm. In
simulations for continuous data, Discordant identifies disrupted differential
correlation at a much higher rate than leading methods. Discordant identified
experimentally-validated feature pairs in -omics data sets of Glioblastoma multiforme
and Chronic Obstructive Pulmonary Disorder to be more significant than competing
methods. We also determined if Discordant could be applied to non-normal data,

such as counts from sequencing data. Since correlation metrics for sequencing data



are not well established, multiple correlation metrics were compared. Using
simulations and breast cancer data it was demonstrated that Spearman’s correlation
metric performed the best over other metrics. We also examined extensions to
Discordant to determine how they affected its performance. First, we manipulated
Discordant so that it could identify features with elevated differential correlation,
which is when the feature pair has an association in both groups, but which is
stronger in one of the groups. Second, we developed an approach that addresses
the independence assumption and decreases computational complexity. In
summary, we report on the Discordant method and corresponding R package, which
is a powerful and flexible tool to discover differential correlation on a variety of -
omics data types.
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CHAPTERI
INTRODUCTION
1.1 High-throughput Data Collection and Analysis
1.1.1. -Ome and —Omics

The suffixes -ome and -omics are used to construct terms that define various
levels of biological systems. The suffix -ome was first applied by Hans Winkler in
1920 when he used the word “genome” to describe a haploid chromosome set
(Lederberg, 2001). “Genome” lead to “genomics,” a term that was coined by Tom
Roderick and associates at an international meeting in 1986 on the potential to map
the entire human genome (Kuska, 1998). Today, the suffix -ome is used to describe
an organism-wide set of features and their characteristics. The most commonly
mentioned —ome, the genome, is a set of genes and their structure and function. The
suffix -omics is used to describe disciplines that investigate various —omes, e.g.
genomics is the collection of technologies and bioinformatic tools used to
characterize genes.

The most common types of —omics found in biological research are
genomics, transcriptomics, proteomics and metabolomics (Choi and Pavelka, 2012)
as shown in Figure 1). All of these —omics relate to each other: genes are
transcribed into transcripts, transcripts are translated into protein, proteins bind to
genes to either upregulate or downregulate transcription, metabolites are catalyzed
by protein enzymes and metabolites can bind to proteins to either inhibit or activate
them (Voet and Voet, 2009). Commonly these —omics are interpreted separately

from each other, limiting the potential of a systems-level analysis.
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Figure 1. -Omics and the Central Dogma

—Omics datasets are now used more frequently in systems-level analysis
because the different types of —omics data represent various levels of a biological
system (Kitano, 2002). Recent efforts in systems biology have been made to
integrate the different types of —omics data (Choi and Pavelka, 2012). Projects such
as the the Cancer Genome Atlas (http://cancergenome.nih.gov/), Human
Microbiome Project (http://hmpdacc.org/), NCI-60 cell lines
(http://discover.nci.nih.gov/cellminer/), and ENCODE
(http://www.genome.gov/encode/) are examples of efforts to collect and curate
diverse types of data from either controlled samples or a wide range of subjects with
various backgrounds. All of these datasets encompass several levels of biological
systems (such as genomic, transcriptomic, proteomoic, metabolomic etc.) and have
been used repeatedly for systems-level analysis (Bussey, 2006; Kellis et al., 2014;

McLendon et al., 2008; Weiss et al., 2016).



1.1.2. Platforms

There are multiple platforms to collect —omics data. Transcriptomics data is
collected traditionally using microarrays and more recently with RNA sequencing.
Microarrays contain probes with complementary base pairing to a set of transcripts.
Extracted mRNA is labeled with fluorescent dyes and are hybridzed to the arrays.
The intensity of the fluorescent dye is used to measure gene expression (Malone
and Oliver, 2011). In RNA-Seq, protein-coding RNA is commonly selected based on
the absence or presence of a polyA tail, and then cleaved into fragments. The RNA
is then amplified, reversed transcribed into complementary cDNA, and sequenced
by binding of fluorescent-tagged nucleotides. Once the RNA sequences, called
reads, are obtained they are mapped against a reference genome. However, if a
reference genome is not available or alternative splicing is being examined, RNA
transcripts are reconstructed using de novo assembly (Li et al., 2010). The number
of reads mapping to a gene (or other genomic feature) can then be used to calculate
gene counts (Wang et al., 2009).

Sequencing methods have also been applied to epigenetics, such as
chemical changes to the DNA or histones (Zhu, 2008) and post-transcriptional
modifications to RNA (Liu and Pan, 2015). DNA methylation is measured by treating
DNA with a solution that will facilitate distinction between unmethylated and
methylated DNA. One solution is bisulfite treatment, which converts cystosine
nucleotides to uracil except for 5-methylcytosine. Sequencing is performed on
samples with and without bisulfite treatment, allowing DNA methylation locations to

be mapped (Chatterjee et al., 2012).



Chromatography and mass spectrometry (MS) can be used to collect
metabolomic data. Chromatography is used to separate analytes based on physical
properties and mass spectrometry is used for characterization. There are two
different types of chromatography: liquid and gas. In liquid chromatography (LC)
analytes are contained in a solution and passed through a column (Patti et al.,
2012), while in gas chromatography (GC) analytes are vaporized and passed though
a coated, fused capillary. Volatile metabolites, such as fatty acids and sterols, are
better suited to GC while less volatile metabolites and ionic compounds, such as
amino acids and sugars, are examined with LC (Agilent Technologies, 2007). LC-MS
is often used for metabolic profiling since the molecular ion is usually still present
and can be characterized using its m/z ratio (mass over charge ratio) (Patti et al.,
2012).

MS-MS is a technology used to collect proteomic data. Proteins are broken
into peptides and then put through MS to determine the m/z. The m/z peaks are
separated, selected and the products are examined again with MS (hence MS-MS)
to look at their spectra, which are used to determine peptide sequences (Aebersold
and Mann, 2003). Proteomics can also be performed with immunoassays, which are
much like transcriptomic microarrays except the probes are antibodies that proteins
bind to (Borrebaeck and Wingren, 2007) and targets are often protein biomarkers.
1.1.3. Challenges

Various challenges arise from characteristics of —omics data: multiple
hypotheses, dependence between features, large variance, high dimension and

small sample size compared to the number of features (small n, large p). For most



models, the false assumption is made that features are independent of each other
even though features are largely dependent on each other in a biological systems.
Unfortunately, this assumption holds in most models because otherwise analytical
methods accounting for the dependencies would be computationally expensive.

Statistical power is determined partly by effect size and sample size (Cohen,
1992). Effect size is a quantitative measurement of the phenomenon of interest (e.g.
the mean gene expression difference between two groups). However, if the variance
is large it can mask the observed true difference between groups. In general, large
sample size improves statistical power of observing small effect sizes. However,
what is reported repeatedly in —omics data is large effect size and small sample size
(Button et al., 2013). This problem is most common with human data, because
unlike classic experiments human phenotypes cannot be selected and controlled,
therefore many unknown variables unrelated to the scientific question are
introduced. Cell lines and mouse models tend to have smaller variance, but
sometimes the results may not directly translate to humans.

In high dimensional data sets, a hypothesis test is often performed for each
feature by their associations with outcome or phenotype, which creates a multiple
testing problem when there are thousands or more features. False positive rates or
Type | error is defined as the probability that the null hypothesis, or Hy will be
determined to be false when it is actually true, a value that is normally set to 0.05.
With multiple testing, the false positive rate increases dramatically. For example, if
there are 1000 tests at least 50 are false positives given a p-value of 0.05 (or, are

expected to have p < 0.05 when the null hypothesis Hy is true). Multiple hypothesis



(or comparisons) methods have been developed to reduce the false positive rate by
determining a new confidence level or convert p-values into g-values, which have
been adjusted to control the false positive rate (the percentage of false positives
amongst all predictions). Popular methods are Bonferroni and False Discovery Rate
(FDR) (Dudoit et al., 2003). Another way to diminish the effects of multiple
hypotheses is to increase power with larger sample size or reduce the number of
dimensions by filtering or using lower-dimensional alternatives from methods such
as Principal Components Analysis (PCA) (Lay et al., 2006).

Although concerns about variability and high dimensional data can be
alleviated with increased sample size, studies are usually hindered by lack of
funding and available samples. For example, the cost for a microarray per replicate
is $150 to $500, and sequencing per replicate is $600 to $1000 (costs can vary by
sequencing center). The cost of a study can increase rapidly with sample size.
Furthermore, human studies are often limited by the numbers of subjects for a
variety of reasons, including needing informed consent, obtaining a representative
selection of socioeconomic status, gender, location, or obtaining control samples
which may not be easily available (Greely, 2001; McDermott et al., 2013). Some cell
lines, while easily controlled, may only produce small volumes of biological material
because they are difficult to grow (e.g. HPV-infected NIKS cell lines (Griffin et al.,
2013)). Mice from inbred panels are another option, but can be expensive (Flint and

Eskin, 2012).



1.1.4. Types of Analyses

Types of analyses performed on —omics datasets are outlined in Figure 2.
The most common strategy to analyze —omics data is differential expression.
Differential expression is when a molecular feature has significantly disparate levels
of expression or abundance between biological groups (Malone and Oliver, 2011;
Oshlack et al., 2010). Statistical methods to determine differential expression
depend on the nature of the data. For example, microarrays have a continuous
distribution, so a simple Student t-test or Empirical Bayes alternative is used (Ritchie
et al., 2015). Several methods, such as 1imma, DiffSeq and the Tuxedo suite,
have been developed to determine differential expression in sequencing data, which
is often modeled with a negative binomial distribution (Anders and Huber, 2010;

Robinson et al., 2010; Trapnell et al., 2012).

Differential Differential Differential

Expression Variance Correlation
g Control . g Disease
= Diseade ‘»
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Control  Disease A expression A expression

Figure 2. Different Types of —-Omics Analyses. Control and Disease are two
biological groups. In panels 1 and 2, only feature A is examined for differences
between groups control and disease. In panel 3, features A and B are examined for
differences between groups control and disease.

Another analysis is differential variance or covariance, where molecular
features are identified that have dissimilar variance or covariance between groups

(Ho et al., 2008; Hu et al., 2009, 2010). Differential variance has been used to study
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methylation data, where it is assumed that significant differences in variation reflect
adaptation (Xu et al., 2013).

Another approach is differential correlation, which is the change of
association of molecular features between biological groups (i.e. healthy and
disease). These differential associations may indicate molecular interactions that
characterize or reflect biological or disease state. Molecular feature pairs that
experience differential correlation are most likely involved in a similar mechanism or
biological pathway that behaves differently between biological groups. For example,
differential correlation of features can result from a break in regulation from the loss
of a regulator gene (Shedden and Taylor, 2005). Differential correlation identifies a
different type of biological complexity than that identified by differential expression
and differential variance. Therefore, features that are differentially expressed may
not experience differential correlation, and vice versa. Identifying differential
correlation in —omics datasets will contribute to the understanding of the distinct
complexity that exists in biological data sets.

1.2. Differential Correlation
1.2.1. Examples

Examples of differential correlation can be found in both low and high-
throughput studies. One study using chromatin immunoprecipitation determined the
effect of mutant p53 on wild-type p53 in the cell (Willis et al., 2004). The gene p53 is
a transcription factor responsible for activating and inhibiting many pathways that
inhibits the progression of cancer, making it a tumor suppressor (Lodish, 2008).

Understanding the mechanism of p53 is one of the main focuses in cancer research.



Mutated p53 reduces the binding of wild-type p53 to the p53 response element of
p21, MDM2 and PIG3, causing differential correlation of p53 and these targets
between samples with wild-type p53 and mutant p53 (Willis et al., 2004). Many
cancerous cells express mutant p53; understanding the mechanism behind the
carcinogenic effects of mutant p53 and its targets may be useful for developing
therapeutics.

Differential correlation in another low-throughput study was also used to
understand the mechanism in paracoccidioidomycosis (PCM). PCM is a fungal
infection that causes lesions in the skin and lung disease (Marques, 2012). The
study used a enzyme-linked immunosorbent assay, or ELISA and a
lymphoproliferation assay to determine that patients with treated PCM had no
correlation between interleukins and tumor necrosis factor, but there was correlation
in untreated patients (Silva et al., 1995). From these results, they were able to
conclude that PCM broke down immunologic regulation.

Large-scale studies on the influence of transcription factors on transcript
expression have also identified differential correlation. Using microarrays, a study
determined differential correlation of transcription factors and cell cycle genes
between hyperdiploid myeloma and non-hyperdiploid myeloma (Wang et al., 2014).
Hyperdiploid myeloma is characterized by trisomies on several chromosomes and
non-hyperdiploid has translocations at several critical loci. Patients with hyperdiploid
myeloma have better survival rates than those with non-hyperdiploid myeloma
(Anderson and Carrasco, 2011). Therefore, understanding the differences in

molecular behavior is critical to understanding the pathogenesis and response to



treatment. Differentially correlated gene pairs were identified using Spearman’s
correlation and Hotelling’s test (Wang et al., 2014). It was found that the cell cycle
transcription factors SP1 and CDK2 have a positive correlation in hyperdiploid
myeloma, but no correlation in non-hyperdiploid myeloma, supporting the hypothesis
that transcription factor targeting of the cell cycle is disregulated in non-hyperdiploid
myeloma (Wang et al., 2014).

Another study used differential correlation to understand the molecular
processes that are unique to obesity (Walley et al., 2012). Obesity is a concern
within the health community because it can exacerbate numerous physical
conditions. ldentifying genomic regions or biomarkers that are linked to obesity
would be beneficial, but it has been a struggle replicating results. A transcriptomic
study that examined expression differences between lean and obese siblings found
that NEGR1 is a central hub in obesity-related differential correlation networks
(Walley et al., 2012), using permutations to determine gene pairs that had
correlations that were significantly different between the two groups. NEGR1 is a cell
adhesion molecule, and other cell adhesion molecules have been implicated in
obesity.

1.2.2. Disrupted vs. Cross Differential Correlation

There are two different types of differential correlation: cross and disrupted
(Figure 3). To illustrate this, let us assume we have molecular features A and B and
biological groups 1 and 2 (healthy vs. disease, control vs. experimental, etc.).
Molecular features A and B have a positive correlation (+) in group 1. The other

types of correlation are negative (-) or no correlation (0). There are three different
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scenarios of differential correlation given the type of correlation A and B have in
group 2.

(1) Group 1: +, Group 2: -

(2) Group 1: +, Group 2: 0

(3) Group 1: +, Group 2: +

Example 1 is an extreme version of differential correlation, where the
correlation is in opposite directions between groups. Example 2 also illustrates
differential correlation, except that in Group 2 the correlation is zero. In Example 3
there is no differential correlation because the correlation is in the same direction for
both groups. Most methods are well suited to detect molecular feature pairs with a
pattern similar to Example 1 (i.e., cross), but they are less likely to identify differential
correlation molecular feature pairs with a pattern similar to Example 2 (i.e.
disrupted). Molecular feature pairs in Example 2 could be biologically relevant since
they indicate an interaction in one group that is disrupted in the other group. While
Example 3 is interesting since both groups have existing associations, they do not
pertain to what is unique in one group compared to another.

Current differential correlation methods are designed to identify the most
extreme differences in correlation coefficients between groups, i.e. cross differential
correlation in example 1. However, examples in biology from section 1.2.1 illustrate
cases of disrupted differential correlation in example 2. A method that incorporates
the identification of both cross and disrupted differential correlation could capture

more associations that are relevant to disease.
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Example 1: Cross DC Example 2: Disrupted DC Example 3: No DC

=

5

B expression

A expression

Figure 3. Types of Differential Correlation (DC). Blue and orange lines represent
two different groups. Differential correlation between features A and B are being
examined in two hypothetical groups (represented by blue and orange lines).
1.3. Current Differential Correlation Models

1.3.1. Classical Frequentist

The most well-known classical frequentist method for differential correlation is
the statistic developed by Fisher. First, the Pearson’s correlation coefficient r
between two features in a group is converted into a z score using Fisher’'s

transformation (Fisher, 1915).

_ 1 A4+n (1)
z = 2ln(1—r)

The Fisher’s transformation is also used in other differential correlation models
(Dawson and Kendziorski, 2012; Siska et al., 2015) and has an approximately
normal distribution (Hotelling, 1953). To test the null hypothesis that the correlations
between two groups are equal (Ho: rs = r2), the test statistic is (Fisher, 1915):

5 = Zy — Z4 (2)

1 1
(n, — 3)? B (n; —3)2
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In equation 1, z1 and z: are the z scores, n; and n; are the sample sizes and
z*is the statistic that measures the dissimilarity between z; and z. Feature pairs that
have a higher absolute difference between Fisher-transformed z scores will be
considered to be the most significant, and therefore by design this method is the
most suited to identify cross differential correlation (Figure 3). The statistic z*follows
the normal distribution under the null hypothesis. Software implementing this method
has been published (Fukushima, 2013). Another R package, DECODE, using the
Fisher method is also available which integrates differential correlation and
differential expression (Lui et al., 2015).

1.3.2. Bayesian

Bayesian methods are characterized by using prior information in conjunction
with likelihood of the data to estimate posterior probabilities of events. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway information has been used
as a prior to determine pathways differentially correlated between carbon starved
and nitrogen starved Saccharomyces cerevisiae (Bradley et al., 2009; Ogata et al.,
1999). Another differential correlation application that uses Bayesian modeling is
EBCoexpress (Dawson and Kendziorski, 2012; Dawson et al., 2012a). EBCoexpress
is a hierarchical model that uses Empirical Bayes to estimate the posterior
probability of differential correlation. The model begins with z4 and z, the Fisher-
transformed correlation coefficients for group 1 and group 2. z; has distribution N(A4,
2) and z; has distribution N(A2, Z). They each have a prior distribution specified by a
mixture model with 1 to 3 components. In the hierarchical model, A; and A; are

unobserved parameters. The classes of the model relate to the relationship of Ay and
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A2, where the equivalent correlation (EC) class occurs when Ay = A2 and the DC class
occurs when A # A,. The posterior probabilities of the classes EC or DC is
determined by integrating over A; and A, using Empirical Bayes to estimate the
hyperparameters and using the Expectation-Maximization (EM) algorithm to
estimate the parameters of the mixture components. Since EBCoexpress only
classifies feature pairs by being differentially or equivalently correlated, cross
differential correlation will be selected more since that case results in the biggest
difference between correlations. Using prostate cancer data, EBcoexpress was able
to determine an enriched pathway that had been previously identified in literature.
1.3.3. Linear Interaction Models
In the linear model context, two variables x and y are expression or

abundance values from —omics data. Then, linear models are fit by regression of y
on main effects of x, disease group g and the interaction between x and the disease
group g. The variables x and y in —omics data can be molecular features, and
contain corresponding expression or abundance values. The follow linear model is
used:

y=atxprt+ghtxghste (3)
where a is the y-intercept, g, is the linear parameter for feature x, g is the group
effect, f; is the interaction term and ¢ is error. The parameter g, represents the effect
x has on y, and the group effect 3, explains how y changes based on the group (i.e. y
increases in group 1, but decreases in group 2). The interaction term g;is the
difference in the effect x has on y between the two groups. Significance of x and y

interactions between groups is evaluated by determining if the interaction §; has a
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significant contribution to the model. This term indicates group specific slopes and
would reflect differential correlation. A large absolute difference of group specific
slopes results in more significant interactions of feature pairs. Therefore, as in
previous methods, cross differential correlation is identified more than disrupted
differential correlation.

In one study integrating transcriptomic and metabolomics data, the
independent variable was a gene and the dependent variable was a metabolite
(Jauhiainen et al., 2012). The linear model also incorporated variables with prior
information on whether the gene and metabolite were in a particular pathway. Active
genes, or genes assumed to be functioning, are selected based on rate distortion, or
the minimization of the overall distortion. Once active genes have been determined
and modeled, active metabolites are determined by fitting them to the active genes
in one linear model where metabolites are inactive, and a series of linear models
where the metabolites are active. Finally, a R? for each pathway is determined
based on the extracted residual sum of squares and total sum of squares. Using
NCI-60 cell lines, the method was able to identify many key pathways such as
glycerophospholipid metabolism and nitrogen metabolism.

Another study used linear models to investigate ligand-receptor pairs in
ovarian cancer using survival analysis (Eng and Ruggeri, 2015). In this case, the
independent variable is the correlation between the ligand and receptor and the
dependent variable is the survival time. They validated their method using an
ovarian cancer data set, where several ligand-receptor pairs were identified that

have already been implicated.
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While linear models have been shown to be effective, there are deficiencies
when there are large differences in variability between groups, which may be
relevant when examining —omics data from different types of platforms and/or data
from humans or non-modeled experimental systems. It has been shown that large
variability results in incorrect slope estimates (Cornbleet and Gochman, 1979;
Ludbrook, 2010). Furthermore, slope estimates can be different depending on what
feature is considered the dependent or independent variable in the linear model.
1.3.4. Other Differential Correlation Methods

ROS-DET is a model that uses a similar framework to Fisher's method but
with some deviations for better performance (Kayano et al., 2011). Associations of
feature pairs are measured using biweight midcorrelation (see section 2.1.1.3), and
a score is generated that is the difference of the correlation coefficients multiplied by
a constant that reflects group variances. A test statistic T is developed which is
based on the sum of the weighted correlation coefficients. The test statistic T follows
a Chi-square distribution with one degree of freedom, and p-values are generated
based on if the null hypothesis is true (Ho: p1 = p2) or false (H+: p1 # p2) for each pair
of correlation coefficients p. This method is much like Fisher, where large absolute
differences in correlation coefficients are significant, and cross differential correlation
is identified. Kayano et al demonstrate that their new score has better statistical
power compared to other correlation metrics, such as Pearson’s or Spearman’s.

Expected conditional F-statistic modifies the F-statistic from analysis of
variance for multiple groups (Kayano et al., 2014; Lai et al., 2004). The F-statistic

was adapted to determine molecular feature pairs that share the least variance
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instead of single features that share dissimilar mean across groups. To determine
the expected conditional F-statistic, first a modified F-statistic is estimated based on
the assumption of normality and the principle that as sample size increases, the ratio
of sample size in a group compared to total sample size will be greater than 0. The
new modified statistic is A. To identify differentially correlated genes, it is assumed
that genes x and y are normally distributed, and that A now is a function of the
conditional distribution of x given y, or Axjy=y. The expectation of y is determined by
integrating over Axjy=y, as well as the expectation of x is the integral of Axyy=x. The
equations and further explanation is outlined in Lai, et al, 2004. They validated their
method by identifying genes that were significantly differentially correlated to tumor
suppressor genes in prostate cancer microarrays.
1.3.5. Differential Correlated Modules

There are also methods for identifying differentially correlated modules in —
omics data, rather than pairs of features. Some methods use pathway databases to
determine feature sets, such as the gene ontology, KEGG and molecular signatures
database (Ashburner et al., 2000; Liberzon et al., 2011; Ogata et al., 1999). Once
feature sets are obtained, statistical analysis is applied to determine if the correlation
matrices between two groups are significantly different. In one study, feature sets
are given a dispersion index to test how dispersed correlation coefficients in a
feature set are between groups (Choi and Kendziorski, 2009). Another study applies
cross correlation on each feature to all other features in the dataset, resulting in a

final weight vector (Rahmatallah et al., 2014). Each group has its own unique weight
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vector, and differential correlation of a feature set is determined by the differences
between the weight vectors.

There are also methods that build feature modules rather than determine
them a priori, e.g. use annotated information like KEGG pathways (Ogata et al.,
1999). This is achieved in a variety of ways. Some feature modules are built on one
feature at a time. In Fang et al, the score of a feature set is related to the percentage
of features in the set that are differentially correlated. The Apriori algorithm (not to be
confused with a priori) is used to search for the local minimum, adding and removing
features one step at at time (Fang et al., 2009). Kostka et al created subsets for
each group by measuring correlation based on the mean squared regression of an
additive model. Features are added and removed based on a threshold using the
greedy stochastic downhill search algorithm. Once the subsets are determined, the
mean squared errors for each group are compared to assess differential correlation
(Kostka and Spang, 2004). The issue with trying to find a local minima in Fang et al
is that it not always reflects the global minima, but using arbitrary thresholds in
Kostka et al is not optimal either.

Methods also use hierarchical clustering to determine modules. In the R
package DICER, hierarchical clustering is used to create two subgraphs based on
pairs that are up regulated and down regulated (Amar et al., 2013). Another graph is
created that contains feature pairs that are consistently correlated (regardless of
direction) in both groups. The up and down regulated subgraphs are paired with the
consistently correlated subgraph to find metamodules. DiffCoEx is an R package

which first determines a score that represents the dissimilarity of a feature pair’s
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correlation between groups (Tesson et al., 2010). This score is used as a metric in
hierarchical clustering. Another method, CoXpress, determines correlated feature
subsets in one group and determines if the gene set in the other group has no
correlation by using permutations (Watson, 2006).
1.3.6. Discordant Method

We have developed the Discordant method to determine differentially
correlated feature pairs (Siska et al., 2015). The Discordant model is based on a
method developed previously (Lai et al., 2007, 2014) which aims to identify
microarray experiments that are “concordant” and can be integrated. Concordance is
measured by the approximate equivalence of z scores derived from Student t-tests
in two microarrays. A three component mixture model for each microarray is used to
categorize z scores based on upregulation, downregulation and no difference. The
Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is then used to
estimate the posterior probability that the microarrays are similar based on similar z
scores between the two microarrays. The Discordant model modifies this algorithm
in that the z scores are now Fisher-transformed z scores of the correlation
coefficients of feature pairs and the mixture model is for each biological group
instead of each microarray. We are interested in cases where the z scores are
“discordant” instead of “concordant,” hence the name Discordant.

1.4. Novelty

The low-throughput examples outlined in section 1.2.1 provide evidence of

disrupted differential correlation. The experiments identified cases where genes or

proteins either associated or did not, such as p53 and its response elements and
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interleukins in PCM (Silva et al., 1995; Willis et al., 2004). Low-throughput
experiments are used to validate the findings in high-throughput experiments
because they give more accurate results (Wilkins, 2009), i.e. RT-PCR or western
blots. Since the feature pairs are demonstrating disrupted differential correlation
instead of cross differential correlation in the low-throughput experiments, it is vital
that methods be developed that can identify both types of differential correlation at
an equal rate.

By design of the mixture model, disrupted and cross differential correlation
are selected at an equal rate, since differences between positive and negative z
scores are just as significant as differences between 0 and positive/negative z
scores. The main novelty of our approach lies here, since in other competing
methods cross differential correlation is easier to detect than disrupted differential
correlation.

1.5. Outline of Dissertation

In Chapter Two, “Discordant,” the model and implementation of the model will
be discussed. In the model section of Chapter Two, several correlation metrics will
be described: Pearson, Spearman, Biweight Midcorrelation and SparCC (Friedman
and Alm, 2012). Next, the design of the three component normal mixture model and
EM algorithm in Discordant will be outlined along with corresponding issues. Finally,
multiple hypothesis testing correction will be discussed. The implementation section
will discuss how outliers were detected in the data, along with the approach to
compare Discordant to other competing methods and assess the application of

different correlation metrics to Discordant. We will also be introducing extensions to
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Discordant. One of the extensions is to apply a 5-component mixture model instead
of 3-component mixture model in order to identify more types of differential
correlation. The other extension is to use subsampling in the EM algorithm in order
to solve the issue of independence and decrease run-time.

Chapter Three is titled “Simulations and Biological Data” and will outline the
design of simulations and the details of the biological data. Two different simulations
were constructed in order to replicate continuous and count data. The process of
synthesizing data will be discussed, including types of distributions, covariance
structure and generating true positives. For each biological dataset, the
preprocessing, normalization, sample size and feature size of each biological
dataset used for validation and discovery will be listed. The biological datasets are
Chronic Obstructive Pulmonary Disorder from COPDGene
(http://www.copdgene.org/) and Glioblastoma multiforme and Breast Cancer from
the Cancer Genome Atlas (https://tcga-data.nci.nih.gov/tcgal/).

In Chapter Four, “Results”, results from the simulations and biological
datasets are outlined. Evaluation of model assumptions are examined first, such as
choice of initial parameters for the EM algorithm and the design of the mixture
model. Next, the results from the continuous data and comparison of Discordant to
other competing methods are investigated. Methods are compared based on
Receiving Operating Characteristic (ROC) curves generated from simulations, and
identification of phenotype-related features in the biological data by significance.
Next, the discovery of novel and known targets demonstrate that Discordant can

generate viable hypotheses. The same analysis is applied to count data, except the
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application of different correlation metrics is evaluated instead. Finally, subsampling
and 5-component mixture model extensions to Discordant are explored in both
continuous and count data using both simulations and biological data.

Chapter Five, “Discussion,” contains the discussion of all preceding chapters.
First, the conclusions derived from continuous and count analysis are outlined. Next,
the simulations and biological validation using GBM and Breast Cancer data are
investigated. Then limitations are examined, such as assumptions of the model and

sample size. Finally, the future direction of module building is discussed.
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CHAPTER 2
DISCORDANT
2.1. Model
The Discordant model is adapted from the Lai et al model which was
developed to test for concordance between microarrays (Lai et al., 2007, 2014). We
modified it to determine discordance of correlation coefficients between groups. The
Discordant model uses one or two —omics datasets as input (in Figure 4, we give the
example of two —omics datasets). All possible correlation coefficients are determined
for each group, and then are Fisher-transformed (Fisher, 1915) which is explained in
section 1.3.1, equation 1. Our method is based on a mixture model with three
classes: 0, - and + as seen in Figure 4. The marginal density for one feature pair,
with Fisher’s transformed correlations z, and z, of feature pair & for group 1 and
group 2 respectively, is:

2
Zlkizzk Zznu(pulal 1k](p11]‘[] [ 2,k]
j=

i=0

(4)

where ¢, ;2 is the normal probability distribution function (pdf) for group 1 with mean
p and variance o2, @y .2 Is the normal pdf for group 2 with mean n and variance 72
and ;; is the frequency that the feature pair is in class i for group 1 and class j for

group 2 where:

50
i=0 j=0

The three classes (represented by iand j)are O (iorj=0),—(iorj=1),and + (iorj

= 2). Class 0 correlations are distributed around 0, class — correlations are
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distributed around an unknown negative mean and class + correlations are

distributed around an unknown positive mean.
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Figure 4. Discordant Method. (a) Pearson’s correlation coefficients for all —omics A
and B pairs. (b) Fisher’s transformation (c) Mixture model based on z scores (d)
Class matrix describing between group relationships (e) EM Algorithm used to
estimate posterior probability (pp) of each class for each pair (f) Final output is sum
of DC pp for each pair.

The parameters of the mixture model are estimated using the Expectation
Maximization (EM) algorithm (Dempster et al., 1977). In the mixture model, the true

(k)=1

class membership is unobserved, which is represented by w;; if feature pair k

was sampled from class i for group 1 and class j for group 2, otherwise wl.(jk) =0.A3

by 3 class matrix in Figure 4d is used to explain all possible combinations of i and ;
(Figure 5). The cases of differential correlation (when i # j) are those on the off
diagonal of the class matrix. Specifically, boxes shaded in white have no differential
correlation, boxes shaded in darker gray are cross differential correlation and lighter

gray disrupted differential correlation.
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Using the observed data, the likelihood function is given as:

K (6)
1@10) = | [ £(zae720)
k=1
where @ is the set of parameters [u,, i1, U2, g, 01, 02, M0, N1, N2, To» T1, T2 ] fOr the mixture

components. The “complete likelihood” given the observed data and the unobserved

(k)

class membership w;; " is:
K 2 2
L(Z' WIQ) = 1_[ H(ﬂij(pui,oiz [Zl,k](pr[j,rjz [Zz,k]) N
k=1 i=0 j=0
Class1,9,=0,g,=0 Class 2,9,=0,g,=- Class 3,g,=0,g,=+
Class4,9:,=-,9,=0 Class5,gy=-,g,=- Class6,g,=-,9g,=+
Class 7,g,=0,g,=+ Class8,g;=-g,=+ Class 9,91 =+,0.=+

Figure 5. Visualization of Classes from Class Matrix in Figure 4d. Group 1 orange,
group 2 blue.

In the E-step, the expectation of feature pair k being in class i for group 1 and

class j for group 2 is:
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R1j P52 [20k] 05,22 [Z2] (8)

022 oﬁupr 52 [Zlk](pﬁ l?[ZZ,k]

Elw?18,2] =

where 0 is the estimate from the previous iteration »-1. We drop the r-1 notation for
readability.

The updated estimates of class membership from the E-step are used for the
M-step to update the mixture component parameters. Each parameter contained in 6
and weights & are estimated in a similar way. The symbols /i and j are classes -, 0
and + for groups 1 and 2 respectively and K is the total number of feature pairs.

Mixture Weight Parameters: (9)
So1Elw”16, 7]
K

ﬁij =
Group 1 Parameters:
SK Y2 Ew10,2] - 2
SK 22 w16, 2]

S 32 Ew (")IHZ (zap — )’
SK 22 Ew 18, 2]

QA =

6% =

Group 2 Parameters:

SN 2o Ew18,2] - 2y
K 22 Elw18,2]
K P E|w18, z] (720 = ))?
K Y2 Ew10,2]

ﬁj:

72 =

The mixture weight and distribution parameters in equation 9 are those determined
for iteration r. Similar to equation 8, we drop the r notation in the formulas of

equation 9 for simplicity.
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Once the parameters are re-estimated, the likelihood is determined using the
equation 6. After convergence of the EM algorithm (difference in log likelihood <
0.0001 or squared difference in parameters < 0.01), we report the summed

differential coexpressed posterior probabilities (i.e., off-diagonal in Figure 4d):

p(DC) = ) Elw10,2] (10)

i+j
Presented here are the steps of the method:
(k)

1. Determine initial parameters of 8°, 7% and E[w;,

;i 16°,2] (explained in

section 2.1.3.1).
2. For iteration r:
E-step: Determine expectation E [wi(j")|§ (r=1) 7] (equation 8) of each
molecular feature pair & in class w;; using parameters determined in
the last iteration » -1, é(r‘l),ﬁi(jr"l).
M-Step: Update §™and ﬁfj) based on formulas in equation 9 with

the expectation in the E-step.

3. Check if likelihood has converged using equation 6 or if squared
difference in parameters is less than 0.01. If not, continue to iteration r+1
and repeat Step 2. Otherwise, determine the posterior probability of
differential correlation by summing for each molecular feature pair the

posterior probability when i does not equal j (equation 10).
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2.1.1. Correlation Metrics
Correlation metrics are used to measure the relationships between two
variables, such as x and y. The metrics produce correlation coefficients, r, which are
between -1 and 1. Relationships are indicated if:
1. r> 0 — Positive relationship
2. r<0 — Negative relationship
3. r~ 0 — No relationship
The significance of a relationship is assessed by testing the null hypothesis (Ho:
there is no relationship) against the alternative hypothesis (H1: there is a
relationship). Correlation metrics differ by their underlying assumptions, such as the
distribution of the data to be applied or the type of relationships identified.
2.1.1.1. Pearson’s Correlation. Pearson’s correlation assumes that both
variables, X and Y, are normally distributed, and is optimal for identifying linear
relationships (Pearson, 1895). The population coefficient for Pearson’s correlation is
represented by p, and is defined by:

cov(X,Y) (11)
0,0y

Pxy =
2.1.1.2. Spearman’s Rank Correlation. Spearman’s correlation is
considered a non-parametric alternative to Pearson’s (Myers and Well, 2003). Its

population coefficient is represented by p, similar to Pearson. It is defined by:

6 d? (12)

Ty = nn? —1)

where d; is the difference in ranks for each observation.
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Since Spearman is rank-based, it can be applied to non-normal distributions
and measure monotonic relationships (Spearman, 1904). However, Spearman’s
correlation requires that all ranks for each variable are distinct, which can result in
tied ranks if there are repeated values.

2.1.1.3. Biweight midcorrelation. Biweight midcorrelation is much like
Pearson’s correlation, except it is median-based rather than mean-based. Biweight
midcorrelation is considered robust because it is median-based, meaning it does not
assume normality and the application of weights make it less sensitive to outliers
(Kayano et al., 2014). Weights based on the medians and median absolute deviation
of X and Y are determined. The value of the weights depends on the variance of the
data, where the weights are heavy if there is large variance and the weights are light
if there is small variance. The weights are used to minimize the effect of outliers on
the final value of correlation (Langfelder and Horvath, 2012).

2.1.1.4. Sparse Compositional Correlation SparCC (Sparse Compositional
Correlation) was originally designed to identify correlated species in microbial data
(Friedman and Alm, 2012). Since microbial data is compositional and sparse, it is
difficult to measure the absolute abundances because the variables are fractions of
the total abundance. The matrix of the absolute abundances follow a multivariate
logarithm normal distribution, which makes it possible to apply an additive normal
distribution to it (Atchison and Shen, 1980) i.e., the variance of absolute abundances
of a pair of species is equal to the variance log difference of the measured
abundances of a pair of species. Using this relation and the approximation that the

data is sparse and has large feature size, it is possible to estimate the correlation
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between a species pair. Although developed for microbial compositional data,
SparCC can also be applied to RNA-Seq data which is also count-based and
sometimes sparse.
2.1.2. Three Component Mixture Model

2.1.2.1. Comparison of Normal and Pearson VIl Distributions. One of the
assumptions of Discordant is that the Fisher-transformed z scores follow a normal 3
component mixture model. It is possible that the model could have fewer or more
components, or that the distribution is non-normal. A non-normal continuous
distribution is Pearson VII, which is characterized by having long tails (Pearson,
1916). The distributions of the Fisher-transformed z scores could have long tails if
there are extremely negative or positive correlations. The Pearson VII distribution
was compared to the normal distribution to determine which fit the data best.

Another concern is that the Fisher-transformed z scores have a better fit with
a number of mixture components other than 3. Mixture models with 1 to 5
components were compared using both normal and Pearson VII distribution. They
were evaluated based on the Bayesian Information Criterion (BIC), which is defined
as:

BIC = —2InL + kin(n) (13)
where L is the likelihood of the model, k is the number of parameters being
estimated, and n is the feature size (Findley, 1991). BIC is favored over using the
likelihood because it accounts for parameter size. The larger the parameter size, the
higher the risk of over fitting. BIC introduces a penalty term, k, which accounts for

parameter size. R packages mclust and 1cmix were used to measure BIC
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(Dvorkin et al., 2013; Fraley and Raftery, 1999). Unfortunately 1cmix does not
measure BIC of Pearson VIl mixture models with 1 component, so only 2to 5
mixture components were examined.

2.1.2.2. Extend to 5 Components. An extension to the Discordant model is
to increase the observable differential correlation classes. Currently, the only types
of differential correlation observed are cross (associations are opposite in between
groups) or disrupted (association is present in one group but not the other). In
previous studies, cases where there was an increase in association in one group
versus another has been observed. For example, antigen coexpression increased in
women 3 days after vaginal delivery (Juretic et al., 2004) and eotaxin and
interleukin-5 coexpression was increased in blister fluid of patients with bullous

pemphigoid compared to healthy patients (Shrikhande, T. Hunziker, L. R. Braa,

2000).
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Figure 6. Increasing from Three to Five Components Changes Class Matrix.
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In the simplest model, a three component mixture model is used to define
whether correlations are not present (0), are positive (+) or are negative (-) (Figure
4cd). We offer an extension that increases the number of components to 5, which
isolates the more extreme correlations, i.e. associations that are either very positive
(++) or very negative (--). This increases the parameter size from 21 to 35 and the
number of classes from 9 to 25 (Figure 6).

2.1.3. EM Algorithm

2.1.3.1. Initial Parameters. The parameters used to separate the class
components are denoted by b in Figure 7 in the mixture model represented in Figure
4c. Group v=1,2 has a unique parameter b, to allow for different mixture model
variances for each group. The parameter b, is the standard deviation of the Fisher
transformed z scores. Observations between — b, and b, are set to component 0,
observations to the left of -b, are set to component — and observations to the right of
b, are set to component +. Based on these assignments, the mean and variance of
the observations in each component were used to determine the initial parameters
Ho» U1, Uz, Oy, 04, 0, fOr group 1 and nq,n,, 74, 71, T, fOr group 2. The EM algorithm
(Dempster et al., 1977) is then used to iteratively update parameters in the M-step
and the posterior probability for each class and group in the E-step (Figure 4).

A similar approach is taken when developing the 5-component mixture model.
The ++ component initial distribution is determined by values to the right of 2b, and
the — — component initial distribution is determined by values to the left of -2b,. The +
component initial distribution is determined by values between b, and 2b, and the —

component initial distribution is determined by values between -b, and -2b,. The 0

32



component initial distribution is determined by values between -b, and -b,, similar to

the 3-component mixture model.
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Figure 7. Setting Initial Parameters of Mixture Components. Boundary b, where
v = 1,2 dictates initial distributions for each component. Values to the right of b,
belong to the + component, values to the left of -b, belong to the — component and
values between -b, and b, belong to the 0 component.

Adjustments were made from the original Lai, et. al algorithm. In Lai et al., z
scores derived from differential expression in microarray experiments have an
approximate N(0,1) distribution, whereas the Fisher-transformed z scores of
correlation coefficients tend to have a smaller standard deviation. The initial
parameters are determined by evaluating the Receiving Operating Curve (ROC) with
different values for b,.

2.1.3.2. Subsampling. Like other methods (Dawson and Kendziorski, 2012),
the Discordant model makes a false assumption that molecular feature pairs are
independent of each other, but features are in multiple different pairs which violates

the independence assumption. A subsampling option is included to address the

assumption and also cut down run-time. By default, the EM algorithm determines
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parameters across all molecular feature pairs until the EM algorithm converges
(Dempster et al., 1977). With the subsampling option, a subsample of correlation
coefficients independent of each other (or features that are only present in one pair)
are input into the EM algorithm. This is repeated for a number of iterations (default is
100), and the parameters of each mixture component from each iteration are
summarized by their mean (Figure 8a-e). Once the summarized parameters of the
mixture components are determined, the posterior probabilities of all molecular

features are determined (Figure 8f).

Figure 8. Subsampling. (a) Extract independent correlation coefficients. (b) Take
independent correlation coefficients and create subset of correlation vectors. (c)
Determine parameters of EM algorithm using subset of correlation coefficients. (d)
Repeat steps a-c for 100 iterations. (e) Take average of parameters across runs. (f)
Apply parameters to all features to obtain posterior probabilities (E-step of EM
algorithm).

2.1.4. Multiple Testing
The number of hypotheses tested in a differential correlation analysis is much

greater than a differential expression analysis. There is a hypothesis for each
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possible feature pair in differential correlation, resulting in millions of hypotheses to
test with even as few as 1500 features. Therefore, applying multiple hypothesis
testing methods to the p-value or posterior probability is critical. The p.adjust
function from the R stats package was used to determine FDR for the p-values
and the crit. fun function from R package EBarrays was used to determine g-
values for the posterior probabilities (Kendziorski et al., 2005).
2.2 Implementation

In this section, the application of continuous and count data is discussed.
Continuous data is characterized by real numbers. In our context, continuous data is
assumed to follow a normal distribution. Count data is characterized by integers
greater than or equal to 0. There are different approaches in some steps of the
analyses depending on whether continuous or count data is modeled. Using the
normal distribution to model the continuous data makes many of the statistical
analyses more straightforward. In contrast, the count data can be more challenging
to model since sequencing data often results in greater density towards 0 and large
dispersion. For this reason, performance of the Discordant method was first
assessed using continuous data. Once it was established that Discordant had better
performance than other methods, the application of count data was then examined.
2.2.1. Outliers

Outliers can skew correlation and create false positives. Filtering out features
may result in lost information, but may also reduce false positives and improve
power. Also, filtering features based on outliers reduces the dimension of the data

which eases computational and multiple testing burdens.
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In the case of normal data, Grubbs’ outlier test can be used (Grubbs, 1969a).
The null hypothesis is that there are no outliers in the data, and the alternative
hypothesis is that there are outliers in the data. Therefore, if a feature has a Grubbs’
p-value less than 0.05 in either group, it is deemed to contain an outlier and the
feature is filtered out. From the outliers R package grubbs.test was used to
determine features with outliers (Komsta, 2006).

Non-normal datasets may be filtered using cutoffs based on the median
absolute deviation (MAD) (Leys et al., 2013). Even after pre-processing and
normalizing, the distribution of sequencing data still is asymmetrical, where there is
large density around zero and long tails to the right. To determine outliers, the
values for each feature are split by being greater or lesser than the median (Figure
9). The two sets of features are tested for outliers by the difference they have with
their respective MAD (Magwene et al., 2011). The maximum distance of all features
from their MAD is used to determine if the feature has an outlier. The standard
threshold is two or three times the MAD outside the median (Leys et al., 2013), but
since the distribution in the sequencing data we explored is more extreme we used
larger thresholds. For the voom-transformed sequencing data (see section 3.4), a
threshold of 7 is used to retain most features and filter out those that were most
problematic (Law et al., 2014). Non-transformed data has even larger dispersions,
so a threshold of 20 was used.

The leading methods, Fisher, linear interaction models and EBcoexpress,
were chosen to compare to the Discordant method (Dawson and Kendziorski, 2012;

Dawson et al., 2012a; Fisher, 1915). These methods have a similar output to
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Discordant, which is a p-value or posterior probability of a molecular feature pair
being DC. They were compared based on g-values and ranks from simulations and
biological validations. Ranks were used to compare methods because p-values and
posterior probabilities are difficult to compare since they represent two different
kinds of probability (Kall et al., 2008). The p-value is the probability that an event this
extreme or more extreme would occur if the null hypothesis is true (or a false
positive), and the posterior probability is the probability that an event occurs given

the data.

Figure 9. Split MAD Outlier Detection. Values of x are split based on the median
of x, or median(x). Values to the left of median(x) are part of the left distribution, and
values to the right of the median(x) are part of the right distribution. The median
absolute deviation (MAD) is determined for the left and right distribution. Values that
are outside a factor of the MAD(left) and MAD(right) are considered outliers.
2.2.2. Compare Discordant to Other DC Methods

Initial hyperparameters in EBcoexpress can either be determined by using the
normal mixture modeling function mclust by default in the EBcoexpress R package
(Dawson et al., 2012b; Fraley and Raftery, 1999), or by a grid approach. We did the
latter for the simulations since the hyperparameters determined by mclust

produced posterior probabilities that had a small range and were non-informative.
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The hyperparameters we determined by the grid approach were based on three
components and produced a more even distribution of posterior probabilities. Since
EBcoexpress takes long periods to run with large datasets, only ten percent of the
data was randomly selected for ten iterations when determining appropriate
hyperparameters. The final output of EBcoexpress is either the posterior probability
of differential correlation or equivalent correlation.

For linear interaction models, we used the 1m function in the stats R
package. Linear interaction models are directional unlike other methods. It is
possible that the linear models will have different results if the independent and
dependent variable are switched. We explored this effect with the GBM miRNA-
MRNA data, since it is known that miRNA affects the expression of transcripts
(Cannell et al., 2008).

2.2.3. Comparison of Correlation Metrics Applied to Discordant

In count simulations and discrete biological data, it is unclear which
correlation metric best fits. It is more straight forward to apply correlation metrics to
continuous normal data because many correlation metrics assume normality
(Pearson, 1895). Also, the correlation metrics ability to identify relationships in
continuous data has been studied in normal continuous data, but not count data (de
Siqueira Santos et al., 2014; Song et al., 2012). Correlation metrics Spearman,
Pearson, Biweight Midcorrelation (BWMC) and SparCC applied to the Discordant
model along with generalized linear models with interaction terms were compared in
terms of statistical power and ability to identify experimentally validated features in

significant pairs.
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CHAPTERIIII
SIMULATIONS AND BIOLOGICAL DATA
3.1. Simulation Design
3.1.1. Continuous Data

Bivariate normal n by m matrices with n features and m samples were first
simulated using the function mvrnorm from R package MASS (Venables and Ripley).
The means were set to 0 and the covariance matrix was a diagonal matrix of 1. We
assumed independence for all samples in groups and across all features. The
features were separated into two different sections, where these sections were
treated as different types of —omics data (Figure 10a). The Pearson’s correlation
coefficients were calculated (Figure 10b) and then they were reorganized to create
pairs that simulate the nine different situations of Figure 4d within the data (Figure
10c). This resulted in known DC pairs, so we could observe how categorizing
association types in Discordant affected power compared to the other models.

The simulations were altered to take into account how the methods were
affected by feature size, sample size, proportion of forced DC and correlation
method. The standard was 1000 feature pairs, sample size of 20 in each group, 0.2
pairs forced to be DC and Pearson’s correlation. The effect of these parameters on
performance was assessed. All combinations examined are listed in Table 1.

All methods were run on the simulated data and compared using a Receiver
Operating Characteristic (ROC) curve and sensitivity/specificity by rank of p-values
or 1 - posterior probabilities. Simulations were run 100 times and results were

averaged over the runs.
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-omics A

-omics B
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Pearson's rho
of feature A/B
pairs
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imitate scenarios in
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Figure 10. Generation of Data for Simulations. (a). Create a data matrix and
separate into two different type of omics. (b). Determine correlation coefficients
between features in —omics A and —omics B. (c). Swap correlation coefficients in
vectors to simulate scenarios from class matrix.

Table 1. Summary of Simulation Adjustments. Shaded in red are standard
parameters for simulations.”

Sample Size Forced DC Feature Size Correlation Method
Pairs
10 10 0.1 500 Spearman
20 20 0.2 1000 Pearson
Biweight
5050 0.3 2000 MidCorrelation
10 20 5000
20 50

3.1.2. Count Data
There are no available R functions that simulate bivariate negative binomial
count data for a fixed covariance structure. Therefore, we used information from the

TCGA breast cancer data to first generate a data set without any structure between

' Portions of this chapter have been reprinted with permission from Bioinformatics.
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miRNA and mRNA. Figure 11 shows the pipeline to create simulations. First,
parameters are generated based on the TCGA breast cancer data (Figure 11a,

Step1) and then they are used to simulate data (Figure 11b, Step 2).

Original Data X Simulated Data Y

Step 1 Step 2
Group1 Group 2 N G 1 Group 2
% a b. ' e
4 Bios Bin 8; (7
£
-
glm.nb rnegbin Group1 Group

Group1 Group 2

mRNA

mRNA

e.

Group 1 Group 2 Step 3

miRNA

rnegbin

 e— Yir 6

mRNA

Figure 11. Generating Simulations from TCGA Breast Cancer Data. (a)
Determine negative binomial paramters 6 and 8 of each feature using glm.nb (b)
Use the same 6 and 3 from (a) to create simulated data row by row with rnegbin
(c) Choose randomly 200 pairs from miRNA and 200 pairs from mRNA (d) Simulate
mRNA features that are positively or negatively correlated to miRNA (e) Stack
generated mRNA features on top of mMRNA simulated subset.

For each feature in the TCGA miRNA and mRNA sequencing data, we
estimate the two group (control vs. tumor) means and common dispersion using R

function glm.nb from library MASS (Figure 11a).
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Step 1 glm.nb(x_i~groups) - Boi, B1i, 6i
glm.nb(x_j~groups) — Boj B, 6
Variables x_i and x_j contains the counts for the i and | features in the miRNA
and mRNA data sets respectively. The parameters for feature i are means Boi and B
and dispersion 8iand the parameters for feature j are means Bo;and Bsand
dispersion 8;. The variable groups signify which samples are in group 1 and group
2.
Next in Step 2, the R function rnegbin and parameters generated from Step
1 are used to simulate data, for each feature y (Figure 11b).
Step 2 Boi, &i — rnegbin — yj
BO], é,- — rnegbin — Yj
GOi’“Bli, 6 — rnegbin — Vi
Boj+By, 6 — rnegbin — yjp
The variables yi; and yj; are the simulated features for group 1 and group 2 for the i
miRNA feature and variables y;; and y;» are the simulated features for group 1 and
group 2 for the j'» mRNA feature. For faster simulations, a subset of 200 features of
the miRNA and mRNA were extracted (Figure 11c).

In Step 3 dependencies between the miRNA and mRNA are created. The
MRNA features (correlated_mRNA) whose values were correlated with miRNA
features were generated using the negative binomial distribution and paramters from
Step 2. Positive and negative associations were included to capture both indirect
and direct effects of mMiRNA on mRNA. Although not reflecting the common

relationships of mMiRNAs and mRNAs, positive correlations have been observed in
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previous studies (Pasquinelli, 2012). This was performed using the glm.nb function
from library MASS with parameters from Step 2 where the mean is defined by the
simulated miRNA values {y;} and the mRNA dispersion ; to create 200 correlated
pairs (Figure 11d). Positive associations were created since correlated_mRNA has a
similar pattern to the miRNA, with added variance. Negative assocations were based
on positive associations, which were generated by first obtaining the index of
ordered miRNA; values and then matching the mRNA values in reversed order.

Step 3 mean = {y;}, dispersion = §; — rnegbin — correlated_mRNA

Since the data has been normalized, no constant was used to scale the
miRNA value in the generalized linear model. We use miRNA as the independent
variable in the linear model since miRNA can target 3'UTR of genes and affect
MRNA expression, and not vice versa (Cannell et al., 2008). This creates a subset of
data with miRNA—mRNA relationships (orange squiggly lines in Figure 11e), and
we also include a set of independent mMRNA (orange checkered pattern in Figure
11e) which would be in mMiRNA-mRNA pairs that are non-correlated pairs (negative
cases).

The data are then converted into correlation coefficients for each group
(Figure 4b). The highest correlations are reorganized in the Fisher-transformed z
vectors to match correlations in each the 9 classes in the class matrix of the
Discordant model (Figure 4d). These will be the true positives and there are 16 in

each class.
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3.1.3. Extensions Simulations

Simulations to test the statistical power of extensions were performed. Both
continuous and count simulations were used. In the count simulations, the
correlation metric that demonstrated the most power in the simulation analysis was
used. For the 3 versus 5 component mixture model analysis, simulations with the
standard set of parameters (Table 1) was used. In the subsampling simulation, 100
by 200 features were generated, where 100 feature pairs were used in the
subsampling.

3.2. The Cancer Genome Atlas Glioblastoma Multiforme miRNA and mRNA
Microarrays

From The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) we
accessed normalized GBM miRNA and mRNA expression data that had matched
subjects (McLendon et al., 2008b). This dataset was selected because it had the
largest sample size of organ-specific control samples between the two arrays on
TCGA (Appendix A.1). The miRNA data was generated on an Agilent miRNA array
and was normalized using quantile normalization and is available at TCGA. The
mRNA data was generated on custom Agilent 244K array and normalized using
loess normalization. In the datasets, there are 470 miRNA and 90797 mRNA.
Grubbs’ outlier test (Grubbs, 1969b) was used to eliminate any molecular features
with outliers that could skew correlation, which reduced the feature size to 331
mMiRNA and 72656 mRNA (Grubbs’ p-value > 0.05). The number of matched
samples between the —omics datasets are 10 control samples and 21 tumor

samples.
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Cancer-related miRNAs were accessed from multiMiR and miRcancer (Ru et
al., 2014; Xie et al., 2013). We collected miRNAs on four cancers, including GBM as
well as breast cancer, prostate cancer and melanoma as negative controls. There
were 47 total cancer-related miRNA for GBM, but only 4 were unique to GBM and
not occurring in any of the other cancers (Appendix A.2). Since the results are in the
form of molecular feature pairs, miRNA may occur in more than one pair. Therefore,
the first occurrence of the GBM miRNAs in the top ranked list is reported. After
running each method, the top rank, and respective p-value/posterior probability and
g-value of unique GBM-related miRNA-transcript pair was interpreted.

3.3. COPDGene Transcriptomic and Metabolomic Data

Through COPDGene (http://www.copdgene.org/), a nation-wide genetic
epidemiologic study, we were able to acquire metabolomic and transcriptomic data
from COPD patients. The peripheral blood mononuclear cell (PBMC) transcriptomic
data was generated on the Affymetrix HGU133 Plus 2.0 array (Gene Expression
Omnibus GSE42057) and normalized using RMA (Bahr et al., 2013). Metabolomic
data from plasma was processed and generated using LC/MS Agilent software and
tools and pre-processed and filtered using MSPrep (Bowler et al., 2015; Hughes et
al., 2014). Both datasets were filtered based on Grubbs’ outlier test, leaving 38852
transcripts and 1640 metabolites (Grubbs’ p-value > 0.05). COPDGene subjects
were separated by spirometry, which indicates the severity of COPD in a patient.
The control group contained subjects with normal spirometry (FEV4/FVC > 0.7 and
FEV4 percent predicted > 80% after bronchodilator) and the disease group contained

subjects with abnormal spirometry (FEV1/FVC < 0.7 and FEV1 percent predicted <
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50% after bronchodilator). The final sample size for each group was control: 39 and
COPD: 39.

Previous studies by COPDGene have implicated sphingolipids and their
related pathways in COPD (Bowler et al., 2015). Sphingolipid-related metabolites
were determined using ID Browser in Mass Profiler Professional (MPP) software
(Agilent). The Gene Ontology (GO) database was used to collect transcripts with a
GO term related to sphingolipids, and the probes were acquired from Ensembl
BioMart. The final number of sphingolipid-related metabolites and transcripts is 37
and 188 respectively (Appendix A.3). We examined the top ranks and respective p-
values/posterior probability and g-values of the sphingolipid-related feature pairs.
Since the result are in the form of molecular feature pairs, sphingolipid-related
features occur in more than one pair. Similar to our GBM analysis, we report the first
occurrence of the sphingolipid-related feature in the pairs ranked by p-value or
posterior probability.

3.4. TCGA Breast Cancer miRNA-Seq and RNA-Seq

From the Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov), we

accessed miRNA-Seq and RNA-Seq breast cancer data with matched subjects. Of
these, there are 15 samples with normal (or control) tissue and 42 samples with
tumor tissue (Appendix A.4). This dataset was selected because it was one of the
few datasets on TCGA that had matched samples with miRNA-Seq and RNA-Seq
data, and had sufficient number of samples for control and tumor groups. Both
datasets was normalized using HTSeq filtering and TMM normalization (Rau et al.,

2013; Robinson and Oshlack, 2010) and were transformed using voom for
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Pearson’s correlation and BWMC (Law et al., 2014). The number of features
remaining were 212 miRNA and 19414 mRNA.

Datasets were filtered using median absolute deviation (MAD) (Leys et al.,
2013). Features were further filtered by the presence of outliers using the MAD
outlier method outlined in section 2.2.1. The number of features after filtering for
outliers is 16656 for RNA-Seq data and 200 for miRNA-Seq data for the voom-
transformed data and 17972 for RNA-Seq and 200 for miRNA-Seq for non-
transformed data.

Results were validated using experimentally validated miRNAs, much like
with the COPD analysis GBM analysis in sections 4.2 and 4.3. A total of 8 unique
breast cancer miRNAs were found to be in the TCGA breast cancer data (Appendix

A.5).

47



CHAPTER IV
RESULTS
4.1. Evaluating Assumptions
4.1.1. Initial Parameters

The initial parameters to define the mixture component distributions were
determined by assigning different values to parameters and comparing their ROC
curves from simulations. Parameters are defined by 6, which is the set
(11, Uy, Us, 01, 04, 03,11, M2, M3, T1, T2, T3] . Parameters y; and g; are the mean and
standard deviation for mixture components i in group 1, and n; and t; are the mean
and standard deviation for mixture components j in group 2 (where i, j = {0,+,-}).
These parameters are determined by the boundary b. The z scores within —5 and b
are used to define the prior distribution for mixture component 0, z scores greater
than b define the prior distribution for mixture component + and z scores less than —»
define the prior distribution for mixture component -. The mean and standard
deviation of each of these distributions are defined by the b cutoffs to assign initial
values of 6.

The model in Lai et al was used to determine concordance of two microarray
experiments (Lai et al., 2007, 2014). In their application, the z scores generated from
multiple t-tests are assumed to have a N(0,1) distribution, so they set » equal to 1. It
is evident from simulations and the biological data that Fisher-transformed z scores
do not necessarily have a N(0,1) distribution, and the variance of the distribution can

vary depending on the sample size.
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Figure 12. ROC Curves of Initial Parameters. (a) Effect of b with same sample size.
AUC of standardized, b = 1 is 0.985. AUC of b=sd(z) is 0.985. AUC of b=sd(z)*2 is
0.982. AUC of b=sd(z)*0.5 is 0.838. (b) Effect of b with different sample size. AUC of
standardized, b = 1is 0.990. AUC of b1=sd(z1) and b=sd(z2) is 0.990. AUC of b=sd(z)
for both groups is 0.950.

In Figure 12a, the effects of b are examined with the same sample size
between groups. ROC curves were plotted based on simulations described in
section 3.1.1 b and different manipulations of z scores were evaluated. In one case,
z scores were standardized to have a N(0,1) distribution with b equal to 1 as in the
original model in Lai et al. Another case tested unaltered z scores and b equal to the
standard deviation of the z scores. Standardizing z scores and using » equal to 1
produced a similar result when the z scores were unaltered and » equaled the
standard deviation of the z scores (Figure 12a). This demonstrates that the best way
to generate prior distributions of mixture components is to use the standard deviation

of the z scores, and that » equal to 1 was chosen in the Lai et al model because z

scores generated from t-tests were close to a N(0,1) distribution. The sensitivity of 5
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equal to the standard deviation of z scores was tested further by increasing or
decreasing b by a factor of 2. These ROC curves are plotted in Figure 12a as well,
and it is shown that increasing or decreasing b by a factor of two hinders
performance.

In many —omics experiments the sample size may be different between
groups. The effect of this on the Discordant model in regard to the initial parameters
was examined. For example, if the sample size was different between groups the z
score distribution for group 1 and group 2 could be dissimilar. It was investigated if
each group should have its own unique b or if z scores from both distributions should
be pooled together to determine b. The results are in Figure 12b. Several cases
were analyzed: standardized z scores with initial parameter » equal to 1, z scores
with 5 equal to the standard deviation of the pooled z scores from both groups, and z
scores with unique b for each group. Unfortunately, cases of » equal to twice or half
the standard deviation of z scores would result in a segmentation fault and could not
be evaluated. It was found that the standardized z scores and the unique b for each
group v had similar performance in Figure 12b, but the pooled » had decreased
performance. Therefore, we use b, as the standard deviation of the z scores for
group v.

4.1.2. Mixture Model

We explored the number of components and distribution assumptions using
the Bayesian Information Criterion (BIC) to compare alternative models. Plots of BIC
with the number of components from 1 through 5 for normal and Pearson VII

distributions are shown in Figure 13 and 14 for continuous GBM and COPD datasets
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and different correlation metrics in breast cancer sequencing data (Spearman,
Pearson, SparCC and biweight midcorrelation). The more positive the BIC, the
better the model fits the data. In all cases, mixture models with a normal distribution
have a more positive BIC than models with the Pearson VIl distribution. In GBM and
COPD, the difference of BIC between mixture components is negligible for the
normal distribution (Figure 13). Figure 14 shows that regardless of the correlation
metric, more than one mixture component is favored in the breast cancer data, and
the difference in BIC when the component size is greater than two is small.
Therefore, we assume that the data can be represented by a 3-component mixture
model, because models with a normal distribution had a more positive BIC and the 3
component normal mixture models did no worse than models with component size 2,

4 or 5. Tables of BIC values plotted in Figures 13 and 14 are in Appendices B.1 and

B.2.
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Figure 13. Comparison of Distributions (Normal vs. Pearson VIl) and the
Number of Mixture Components for the GBM and COPD Data.
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Figure 14. Comparison of Distributions (Normal vs. Pearson VIl) and the
Number of Mixture Components for the Breast Cancer Data and Various
Correlation Metrics.

4.2. Continuous Data and Comparison to Other DC Methods
4.2.1. Simulations
Performances of the methods were evaluated using simulations to observe
the concordance of predicted positives and negatives and true positives and true
negatives. In the ROC curve, Discordant has more area under the curve (AUC) than
any of the methods, and Fisher, linear interaction models and EBcoexpress have
similar AUC (Figure 15a). The sensitivity and specificity were plotted to determine

why the Discordant method has a better ROC curve (Figure 15b). While specificity is

52



the same for all three methods, Discordant method performs better with respect to
sensitivity demonstrating that the Discordant method identifies more true positives

than the other methods.
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Figure 15. Simulations of Continuous Data. (a) ROC curve. Discordant AUC =
0.985, EBcoexpress AUC = 0.931, Fisher AUC = 0.940, Linear AUC = 0.930. (b)
Senstivity/1-Specifcity plot.

The ROC curves and plots of sensitivity and specificity for adjusted simulation
parameters are in Appendices C.1 and C.2. From the plots, change in sample size,
the type of correlation used and the number of simulated differentially correlated
pairs and feature pairs in the simulation did not affect performance except for
disparate sample size for the linear interaction models.

To explore the predictions of paired correlation scenarios in the class matrix
(Figure 4d), the distribution of the ranks for each class was displayed for each
method. The smaller the rank, the more significant the method determined the

feature pair to be. Class 3 is an example of disrupted differential correlation, where

group 1 has a positive correlation and group 2 has a correlation close to 0, while
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class 6 is an example of cross differential correlation, where group 1 has a positive
correlation and group 2 has a negative correlation (Figure 5). In Figure 16a, the
distribution of ranks for feature pairs that belong in class 3 are shown, where the
ranks for Discordant are much smaller than Fisher or EBcoexpress, but in Figure
16b which shows molecular feature pairs that belong in class 6, the distribution of
ranks is similar across all three methods. This confirms that binning, or the
categorization of types of differential correlation, in Discordant achieves greater
power for identifying disrupted DC, whereas all methods identify cross DC pairs at

similar significance.

gt

Class 3 Class 6

Discordant Fisher EBcoexpress Linear Discordant Fisher EBcoexpress Linear

Figure 16. Distribution of Ranks for Classes 3 and 6 for all Methods. Groups 1
and 2 are orange and teal respectively. Black is Discordant, red Fisher, blue
EBcoexpress and green Linear. (a) Class 3. (b) Class 6.
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Boxplots for all classes are in Appendix C.3. Similar to Figure 16, Discordant
has smaller distribution of ranks for all disrupted DC classes but similar distribution
of ranks for all cross DC classes in comparison to other methods. Linear interaction
models showed the worse performance in Figure 15a and 15b, which is found in the
larger distribution of ranks in classes with disrupted DC and lower distribution of
ranks in classes with no DC. EBcoexpress has much tighter, higher distribution of
ranks for classes 5 and 9, which occurs when both groups have an association
between molecular feature pairs, but they are in the same direction.

4.2.2. Biological Validation with Experimentally Validated Features

4.2.2.1. GBM miRNAs. The top ranks, p-values and g-values of the four
unique GBM-related miRNAs pairs in Discordant, EBcoexpress, Fisher, miRNA-
independent and transcript-independent linear interaction models were examined
(Appendix D.1). The mean and median of these ranks are found in Table 2 and
complete information is in Appendix D.1. It was found that Discordant had a smaller
mean and median rank than the other methods, indicating that overall Discordant
identifies unique GBM-related miRNAs more significant than any other method.
Furthermore, at g-value < 0.05 Discordant identified all 4 GBM-related miRNAs,
while EBcoexpress, Fisher and linear interaction models identify 3, 1 and 1
respectively. The top unique GBM-related miRNA pair, hsa-miR-92b and Agilent
probe A_32_P56375, is plotted in Figure 17.

The linear interaction models identify miRNAs at a more significant rank than
Discordant but the results are inconsistent between the linear interaction models

when the independent and dependent variables are swapped (Appendix D.1). This
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was further confirmed using a Wilcoxon Signed-rank test on the —log1o(p-values)
between the two models (p-value < 0.05).

Table 2. Summary Ranks of Experimentally Validated Features in GBM and
COPD. Cells Highlighted in Grey Indicate Best Result.

GBM Discordant 464.75 347.5
EBcoexpress 815 607
Fisher 781 801
Linear (miRNA- 1095 532 5
Independent)
Linear (transcript- 2596.5 7875
Independent)
COPD Discordant 5.08e5 2.14e5
EBcoexpress 4.91e5 3.21e5
Fisher 5.42e5 4.41e5

hsa-miR-92b and A_32_P56375

control tumor

0.75 -

0.50 =

transcript expression

0.25 -

0.00 -

miRNA expression
Figure 17. Top Example of Unique GBM-related miRNA Differential Correlation
in GBM Data in Discordant. The gene name associated with the probe is
unavailable since the probe is unannotated. Control samples are in the left panel,
tumor samples on the right panel.
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The frequency of GBM-related miRNAs and their associated classes were
compared in Discordant and Fishers to determine the effect of binning on the
analysis. It was found that the differentially correlated pairs with a GBM-related
miRNA were more likely to be class 2 or 3, or disrupted DC, in Discordant (Figure
18a.1), in contrast to Fishers and EBcoexpress where there were relatively more

pairs that were class 6 or 8, or cross DC (Figure 18a.2 and 18a.3).
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Figure 18. Disrupted vs. Cross DC found in GBM and COPD by DC Methods. a.
Increasing frequency of classes in GBM. b. Classes of sphingolipid-related
metabolite and gene pairs in top ranked 100,000 pairs (Discordant g-value = 0.08,
EBcoexpress g-value = 0.35, Fisher FDR = 1).

4.2.2.2. COPD Sphingolipid-Related Features. The sphingolipid pathway
has been previously implicated in COPD (Bowler et al., 2015). A list of sphingolipid-
related metabolites and genes was acquired (Appendix A.3.), and the top rank and

respective p-value or posterior probability and g-value when sphingolipid-related
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pairs identified by the three methods was evaluated (Appendix D.2). The top ranked
sphingolipid-related metabolite-transcript pair determined by Discordant, a
sphingenine and PSAPL1, is plotted in Figure 19. PSAPL1 codes for a prosaposin,
which is a precursor for saposins that cleave glycosphingolipids (Schnabel et al.,

1992).

N-(tetradecanoyl)-sphing-4-enine-1-(2-aminoethylphosphonate) and PSAPL1
GS0 GS3/4

transcript expression
-
-
1

3l 33 a0
metabolite abundance

Figure 19. Top example of sphingolipid-related differentially correlated pair in
Discordant. Control subjects (GOLD Stage 0) are on the left panel and more severe
COPD (GOLD Stage 3/4) are on the right panel.

In Table 2, it was found that the median sphingolipid-related pair rank is
smaller for Discordant compared to EBcoexpress and Fisher. The EBcoexpress’
mean rank is smaller than Discordant, but only by 2e4 where the median rank

between Discordant and EBcoexpress differs by 1e5. At g-value < 0.10 Discordant

identified 146 sphingolipid pairs, whereas EBcoexpress identified 1 and Fisher 0.
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The findings here indicate that overall Discordant identifies sphingolipid-related
feature pairs earlier than the other two methods. However, the ranks are much later
in the hundred thousands. This may indicate that although the sphingolipid pathway
could be relevant to COPD, there may be other pathways that contribute to the
complexity of the disease that may appear more significant in relation to the
phenotype.

Since the sphingolipid pathway is not as significantly differentially correlated
in COPD, we examined the classes of sphingolipid-related metabolite and gene
pairs that were in the top ranked 100,000 pairs. We found that Discordant identified
relatively more disrupted classes than EBcoexpress or Fisher (Figure 18b).

4.2.3. Novel and Known Targets

4.2.3.1. GBM miRNAs. Pairs with Discordant posterior probability greater
than 0.99 were used to investigate which features had the most connections, or
hubs. The top 4 genes that were the biggest hubs with over 30 connections are:
AGAP2, CRY2, GRIN1, and UPF3A (Table 3). Most of these genes have functions
that are central to the brain, where GBM occurs. AGAP2 is an Arf GAP that has anti-
apoptotic effects of nerve growth factor (Inoue and Randazzo, 2007), CRY2 is a
circadian rhythm gene that principally is localized in the brain, GRIN1 is a ligand-
gated ion channel that facilitates signals through neurons (Wahlsten, 1999). UPF3A
is found in the UPF complex that is implicated in pathways altered in cancer such as
post-splicing, mMRNA decay and nuclear export (Dreyfuss et al., 2002). None of these

genes have previously been implicated in GBM.
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The miRNA hsa-miR-545 was the biggest hub connected to 39 genes, which

is visualized in Figure 20. hsa-miR-545 has not been found to be involved in GBM.

Ten of the connected genes are annotated as being transmembrane proteins, and 3

of these are serine/threonine kinases (CDC2L2, PDPK1 and BMPRZ2). Tyrosine

kinases have been found to be involved in GBM and are similar to serine/threonine

kinases (Hamza and Gilbert, 2014).

Table 3. Summary of Gene Hubs with Most Connections in Pairs in GBM Analysis
(g-value < 1.0e-4).

Gene Connections Annotations

AGAP?2 60 Anti-apoptotic effects of nerve growth
factor

CRY2 39 Circadian protein

GRIN1 34 _Glutamate receptor, form ligand-gated
ion channel
Part of post-splicing multiprotein

UPF3A 34 complex involved in mMRNA decay and
nuclear export.

SLC27A4 CDC2L2 pcC F2RL2

IL6ST
PDPK1

PRRG2
TBL1IXR1

TMEM208
TPCN1

hsa-miR-545

Figure 20. GBM Network of miRNA with Most Significant Connections to
Genes. Solid edges are cross DC, dashed edges are disrupted DC.
Transmembrane genes are labeled.
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4.2.3.2. COPD Sphingolipid-related Features. Molecular features that had
the largest hubs were identified and listed in Table 4. IGHG1, or immunoglobulin
heavy constant gamma 1 is considered a relevant result since immunity plays a
central role in COPD (Rovina et al., 2013). Another gene identified as a hub is
SARDH, or sarcosine dehydrogenase which has been implicated previously in
COPD (Ubhi et al., 2012). The metabolite that has the largest hub has yet to be
formally annotated; its chemical formula is C2oH33NgP2S. The other metabolite that
was a large hub is L-Valine, a metabolite involved in multiple biochemical pathways.

Table 4. Summary of Metabolite and Gene Hubs with Most Connections in COPD
Analysis (g-value 2.0e-3).

Type Name Connections | Annotation
Gene LOC284561 247 unknown
Gene SARDH 265 Sarcosine dehydrogenase
Gene IGHG1 294 Immunoglobulin
Metabolite C20 H33 N9 P2 S | 2222 Unknown
Metabolite L-valine 1667 Amino acid
UBE2G1
UBE2G2
UBE2N
UBE2W
UBE4A
RCHY1
BIRC2
DET1
SKP1
SKP2
KEAP1 =

ANAPC10 L-Vaifhe

NEDDA4L

HERC3

TRIM32 -y 3 cpc27

Figure 21. COPD Network of Metabolite with Most Significant Connections to
Genes. Solid edges are cross DC, dashed edges are disrupted DC. There are 17
genes involved in ubiquitin mediated proteolysis connected to L-Valine in COPD, L-
Valine connected in total to 1667 genes.
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Genes connected to L-Valine were investigated using DAVID to determine if
they were enriched in a biological pathway that is implicated in COPD (Huang et al.,
2008a, 2009). The ubiquitin mediated proteolysis KEGG pathway was most enriched
in the L-Valine differential correlated gene set with g-value = 0.001. In Figure 21 the
genes involved in this pathway are highlighted from the rest of the other genes,
which total to 17 out of 1667 in the gene set. In previous studies, the ubiquitin
protease degradation pathway has been associated with COPD (Ottenheijm et al.,
2006).

4.3. Count Data and Comparison of Correlation Metrics
4.3.1. Simulations

In our context and others, count data consist of the number of reads mapped
to each protein coding region and is commonly modeled with a negative binomial
distribution. Correlation metrics have not been thoroughly investigated in count data,
so to determine if sequencing data could be applied to Discordant several multiple
correlation metrics were assessed. We also investigated Generalized Linear models
for negative binomial distributions (NBGLM) with an interaction score, similar to the
linear interaction models examined in the continuous data. Fisher and EBCoexpress
differential correlation were not run on the sequencing data, since the continuous
analysis demonstrated that Discordant had better performance than those methods.

Four correlation metrics (Spearman, Pearson, SparCC, BWMC) and NBGLM
were applied to simulated data to assess performance in identifying DC molecular
feature pairs. Three methods were applied to count data (Spearman, SparCC,

NBGLM) and two methods were applied to transformed data (Pearson, BWMC), as
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explained in section 3.4. Figure 22 shows the sensitivity and specificity of the
methods.

NBGLM has less area under the curve and lower sensitivity than all other
correlation metrics applied to Discordant. Pearson and BWMC perform similarly,
most likely because the mean and median are close to each other and Pearson is
mean-based and BWMC is median-based. SparCC has the second highest
performance. Out of all correlation metrics, Spearman had greater area under the
curve in both the ROC curve and the sensitivity curve. Observing rank distributions
of each class show similar results (Appendix C.4.). Since Spearman’s correlation
was the metric that had the best performance, it is used in the simulations and

biological validation for the extensions that were explored.

sensitivity/1 - specificity

0z 04 08 08 1.0 o 100 200 300 400 500 500

FPR rank

- Spearman - SparCC - BWMC —_— Specificity

- Pearson ‘ NB GLM -——- Sensitivity

Figure 22. Simulations of Count Data. (a) ROC curve. Spearman AUC = 0.96.
Pearson AUC = 0.94. SparCC AUC = 0.95. BWMC AUC = 0.94. GLMNB AUC =
0.90. (b) Rank vs. Sensitivity/Specificity.

63



4.3.2. Biological Validation with Breast Cancer miRNAs

To identify interacting miRNA-mRNA pairs that may change due to tumor
status, we evaluated miRNA and mRNA sequencing data from the TCGA database
for breast cancer. Discordant was run with four different correlation methods
(Spearman, Pearson, BWMC and SparCC) and the model based method NBGLM.
In Table 5, the average ranks and 1 — posterior probability (1-PP) of the most
significant pairing breast cancer miRNA with a gene is shown (complete information
in Appendix D.3). We report 1-posterior probability instead of posterior probability so
differences between values are more distinct. For almost all our benchmark breast
cancer miRNA, Spearman correlation finds them to be ranked lower than any other
method. The results are similar to those in simulations except for SparCC, and
NBGLM. In the simulations, SparCC performed second to Spearman but in the
biological validation it is relatively worse. NBGLM performs better in the biological
validation than in the simulations, performing only behind Spearman and BWMC.
Also, the average p-value for NBGLM is small, but it was found in the simulations
that the distribution of p-values derived from NBGLM were generally skewed
towards 0 compared to other methods.

Table 5. Average of Ranks and 1-PP or p-value of Top Results of Feature Pairs
with Breast Cancer miRNA. Results shaded in grey indicate top performing metric.

Correlation Metric/Method Rank 1-PP or p-value
Spearman 89 0.0099
SparCC 543 0.0215
BWMC 294 0.0376
Pearson 626 0.0190
NBGLM 472 0.0037

It was also determined that the breast cancer dataset followed the same trend

of identifying more disrupted classes than cross classes. This was performed using

64



Spearman’s correlation metric. Figure 23 demonstrates that most significant
molecular feature pairs have disrupted DC instead of cross DC. The top result with a

breast cancer miRNA is hsa-miR-152 vs. TMC22 (Figure 24).

0se 085

:l cross DC [:' disrupted DC

Figure 23. Disrupted vs. Cross DC found in Breast Cancer Using Spearman’s
Correlation. Posterior probability < 0.95.

hsa-miR-152 vs. TMC22

mRNA expression

7 8 9 10

6 7 8 9

Figure 24. Top Example of Feature Pair with Breast Cancer miRNA
Differentially Coexpressed Pair in Discordant.
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4.3.3. Novel and Known Targets

Molecular feature pairs with g-value less than 0.05 were investigated for
hubs. The top hubs are summarized in Table 6. The top hub is VAMP1, which
previously has not been implicated in breast cancer. RNU11 has been found to have
significant upregulation in breast tissue before and after hormone therapy in female-
to-male transsexuals (Bentz et al., 2010). SESN3 is a subunit of a protein complex
that activates a signal cascade that turns on an influential tumor suppressor (Sanli et
al., 2012). LYPD1 has been shown to be overexpressed in bone cells that have
metastasized from breast cancer (Burnett et al., 2015).

Table 6. Summary of Gene Hubs with Most Connections in Breast Cancer
Data. g-value < 0.05.

Gene Connections Annotation
Vesicle-Associated Membrane Protein
VAMP1 32 1 (Synaptobrevin 1), part of SNARE
complex
RNU11 24 splicing
SESN3 24 Sestrin, stress-induced protein
LYPD1 23 NA

The miRNA with the most significant pairs with g-value < 0.1 is hsa-mir-664,
with 327 gene connections. DAVID enrichment analysis was performed and
identified that 19 of these genes were annotated with the keyword cell adhesion in
the SwissProt/UniProt database (Bairoch, 2004), with Bonferonni adjusted
enrichment p-value < 0.1 (Figure 25). Cell adhesion genes facilitate angiogenesis,
or a process where new blood vessels are formed from pre-existing vessels. The
new blood vessels propagate metastasis (Horak et al., 1992) and metastasis in

breast cancer patients is commonly fatal (Li and Feng, 2011).
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Figure 25. Breast Cancer Network of miRNA with Most Significant Connections
to Genes. hsa-mir-664 and significant connected genes with g-value < 0.1 are
shown. All pairs are disrupted DC. Genes involved in cell adhesion, Bonferroni p-
value < 0.1 have labels.
4.4. Extensions

4.4.1. Subsampling

The standard EM algorithm and subsampling version of the EM Algorithm
were compared to assess performance effects. The ROC curves and the
sensitivity/specificity are similar for the two versions (Figure 26). This is also evident
when looking at each class posterior probability separately for both continuous and
count simulations (Appendix C.5 and C.6).

We evaluated the results from the subsampling version on the TCGA Breast
Cancer and Glioblastome Multiforme datasets. Appendix D.4 shows that the

subsampling with EM had similar ranks for breast cancer miRNAs, but higher

posterior probabilities than the standard EM implementation. GBM had ranks that
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were close between standard EM and subsampling EM, but not as close as the

Breast Cancer analysis.
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Figure 26. Analysis of Continuous and Discrete Simulations with Subsampling
Optional Argument. Continuous (a) ROC. Standard EM AUC = 0.998, Subsampling
EM AUC =0.993. (b) Rank vs. Sensitivity/1-Specificity. Count (a) ROC. Standard

EM AUC = 0.990, Subsampling EM AUC = 0.993 (b) Rank vs. Sensitivity/1-
Specificity.

4.4.2. Three vs. Five Component Mixture Model

The 3-component normal mixture model has greater power than 5-component

mixture model for both continuous and discrete simulations (Figure 27). In Appendix

C.7. and C.8. the posterior probability distributions are plotted for each class for both

continuous and count simulations. For cross and disrupted DC, the 5-component
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mixture model produces higher posterior probabilities. In the 3-component mixture
model, 6 out of 9 of the classes are DC, whereas for 5-component mixture models
there are 20 out of 25. The posterior probabilities for 5-component mixture models
may be larger because a greater proportion of the total class posterior probabilities

are used to summarize the final DC posterior probability.
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Figure 27. Analysis of Continuous and Discrete Simulations of 3-Component
vs. 5-Component Mixture Models. Continuous (a) ROC. 3 Component Mixture
Model AUC = 0.97, 5 Component Mixture Model AUC = 0.96. (b) Rank vs.
Sensitivity/1-Specificity. Discrete (a) ROC (b) Rank vs. Sensitivity/1-Specificity.

Elevated DC is the new type of DC introduced in the 5-component mixture
model, which occurs when there is an association between feature pairs in both

groups but it is stronger in one of the groups. Elevated DC is no DC in the three
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component mixture model. In the elevated DC boxplots, we expect that the posterior
probability distributions to be closer to 0 for the 3-component mixture model, but
closer to 1 for the 5-component mixture model. From the boxplots in Appendices
C.7. and C.8. it is apparent that the 5 component mixture models are unable to make
clear distinctions between the — and — — components and the + and ++ components.
The 3-component mixture model has tight rank distributions close to O for all classes
that are elevated or no DC, but the 5-component mixture model has rank
distributions that have larger variation. Although our simulations show reduced
performance, this option is included for users interested in these types of
associations.

Appendix D.5 shows the ranks and posterior probability of the most significant
breast cancer miRNA gene pair when Discordant is run with the 3- or 5-component
mixture models. The 3-component mixture model has lower ranks but the 5-
component mixture models have higher posterior probabilities. This is the same for
both the GBM and Breast cancer data. As mentioned for the simulation results, we
expect that the final summarized posterior probabilities to be higher for 5-component
mixture model than the 3-component mixture model since a great proportion of

classes are used to summarize the posterior probability of DC.
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CHAPTER V
DISCUSSION
5.1. Conclusions

In this Chapter, we will discuss the improved performance of Discordant
compared to other methods in the continuous analysis, the comparison of correlation
metrics in the count analysis, and finally the effects of subsampling and increasing
mixture components to 5 in the mixture model. Evidence presented in Chapter 4, the
Results section, will be used to achieve this.
5.1.1. Continuous Simulations and Biological Data

A fundamental feature of Discordant is the ability to to categorize the paired
correlation scenarios, or “binning”, enabling Discordant to determine more
differentially correlated pairs than the other methods and improves power of
detecting disrupted interactions. Binning not only improves performance for the
Discordant method but also facilitates biological interpretation of results since it
categorizes the different types of dysregulation between biological groups. As seen
in Figure 18, Discordant identifies more disrupted differentially correlated pairs than
EBcoexpress and Fisher, a trend also found in the simulations (Appendix C.2).
Discordant also identifies more significant phenotype-related feature pairs in general
for both GBM and COPD.

The GBM dataset produced more significant DC results for phenotype-related
features than the COPD dataset. The GBM validation set is well curated because
there are experimentally validated miRNAs involved in GBM, whereas for COPD

there is less known about the molecular pathways. The sphingolipid-related genes

71



and metabolites were determined by annotation for being in sphingolipid pathways,
because there is limited experimental data for specific genes and metabolites.
Despite the challenges of the COPD dataset, we did observe that sphingolipid
metabolite-gene pairs were identified as more significant in Discordant than
EBcoexpress and Fisher (Table 2) and that there were more sphingolipid metabolite-
gene pairs in the top 100,000 pairs in Discordant than EBcoexpress and Fisher
(Figure 18). Also, at g-value < 0.05 all four GBM miRNAs were identified in a
significant pair by Discordant, while three were identified by EBcoexpress, and 1 by
both Fisher and linear interaction models. At g-value < 0.10, Discordant identified
146 sphingolipid pairs to be significant, while EBcoexpress identified 1 sphingolipid
pair and Fisher identified no sphingolipid pars.

Applications to both GBM and COPD have promising results of known and
novel targets from Discordant. This confirms Discordant’s ability to identify
phenotype-related biological processes and indicates the potential that Discordant
can produce further testable hypotheses.

A related method is to apply linear models with interaction terms. One of the
benefits of linear models is that it assumes conditional normality instead of joint
normality, meaning that the independent variable can be non-normal. Linear models
identified GBM-related miRNA pairs in earlier ranks than Discordant in the GBM
data, but linear models can be difficult to use since it is unclear what should be the
dependent and independent variable. We explored this by switching miRNA and
transcript as the dependent and independent variable and we found it changed the

results. We also found that the ranks of unique GBM-related miRNA pairs were
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different between the two analyses. It is highly suggested to only use linear models if
the independent and dependent variable are known in advance, such as miRNA and
transcript respectively.

In terms of run-time, Fisher is notably faster than the rest of the methods,
EBcoexpress is the slowest and Linear and Discordant only differ slightly (Table 7).
The computational complexity notation for Fisher is linear, O(n), where n is the
number of feature pairs. For the linear interaction model and Discordant it is
polynomial, O(nz) and O(2n + 3n2) respectively. The complexity for EBcoexpress is
not as simple to identify since there are nested EM algorithms. EBcoexpress
requires about about three fold the run-time as Discordant in the GBM and COPD
datasets, and it also requires a grid approach to determine hyperparameters. While
Discordant does not run faster than Fisher and its run-time is comparable to linear
interaction models, it still performs either equally or better with consistent results.

Table 7. Run-time of Methods for GBM and COPD data. Analyses run on 11 Intel(R)
Xeon(R) CPU E5-2640 0 2.50GHz processors, 90 GB of memory.

Method GBM COPD
Discord 19.26 hours | 2.16 days
EBcoexpress | 10.42 days 39.53 days

. 18.85
Fisher 6.35 seconds seconds
Linear 16.15 hours N/A

5.1.2. Count Simulations and Biological Data

The Discordant method was tested for its applicability to sequencing data and
other platforms that produce discrete or count data. Correlation metrics were
compared in simulations and TCGA breast cancer data. BWMC and Pearson have

similar ROC curves but BWMC demonstrated more power in the biological
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validations. This may be because BWMC is more robust to the presence of outliers
and non-symmetric distributions.

NBGLM has increased performance in the biological validations compared to
the simulations. In generalized linear models, the interpretation of interaction terms
can be challenging because the interaction term is modeled on the scale determined
by the link function (e.g. log scale for the negative binomial). (Tsai and Gill, 2013).
This makes the results from the NBGLM modeling different than the other correlation
metrics examined, which are not scale transformed. Other limitations of the NBGLM
modeling include pre-specifying the dependent and independent variables. In the
mMiRNA-mRNA example, this was straightforward because targeting by miRNA is
known to promote mRNA degradation and therefore miRNA can be considered the
independent variable and mRNA the dependent variable. However, for other types of
comparisons (e.g,. transcriptomics and metabolomics) the direction of the effect may
not be as straightforward to make those specifications. Furthermore, as discussed
above, we found that mis-specifying that relationship decreases performance (Siska
et al., 2015).

SparCC demonstrated better performance in the simulations compared to the
biological validation. In the simulations, the correlated mMRNAs to miRNAs were
generated based on the mean of the miRNA and the dispersion of the mRNA (Step
3 in section 3.1.2). The distributions were more similar in the correlated pairs in the
simulations than the feature pairs in the biological validation since their distributions

shared similar parameters. SparCC predicts the actual values based on the
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dispersion of the observed values; therefore using two different types of —omics with
their own unique variation may not be suitable.

Spearman’s correlation metric demonstrated the most power compared to all
other metrics in both the simulations and the biological validation. Spearman’s
correlation is a non-parametric rank-based metric that makes it well suited for non-
normal distributions. Using non-parametric methods when integrating datasets with
different variation is favorable, and may explain why Spearman has greater power in
both simulations and biological validation.

Although we found improved performance with Spearman’s correlation in our
simulations and sequencing data, the preferred correlation metric depends on the
type of data and study. For example, if the user wants a more conservative method
SparCC should be used, but for normal continuous data Pearson’s correlation is the
natural choice. For these reasons, the correlation metric is a user-defined option in
the Discordant R package.

Similar to the qualitative analysis in COPD and GBM continuous datasets,
breast cancer count data was able to identify genes that either have already been
implicated in breast cancer or were involved in pathways that are connected to
breast cancer biology. This further demonstrates Discordant’s ability to identify
phenotype-related biological processes and generate testable hypotheses in both
normally and non-normally distributed data.

5.1.3. Extensions
The Discordant R package provides additional modeling and implementation

options compared to existing software DiffCorr and EBcoexpress (Dawson et al.,

75



2012a; Fukushima, 2013). The subsampling extension to the EM algorithm makes
the model more computationally tractable (with run-time decreased by 40 fold), but
also solves the problem of dependencies between pairs. There were some
inconsistencies, such as the higher posterior probabilities for subsampling compared
to the posterior probabilities with no subsampling even though the ranks between
subsampling and no subsampling were similar. The posterior probabilities may be
larger for two reasons: the parameters for each mixture component are better
estimated since the independence assumption is no longer violated and the
parameters are averaged over 100 iterations, making the standard error very small.
GBM had similar results, but the ranks were more variable. One reason for this is
that there are less mMRNA in the Breast Cancer dataset compared to the GBM
dataset (72656 in GBM dataset compared to 17414 mRNA in breast cancer
dataset), but similar numbers of miRNA (313 in GBM dataset to 200 miRNA in
Breast Cancer dataset) making the proportion of subsampled pairs to total pairs
smaller. This demonstrates that the number of independent pairs are limited by the
dimensions of the data, and having fewer independent pairs to subsample from
hinders performance. There is also the issue of selection bias, since only correlation
coefficients that are independent of each other are used.

Users applying subsampling should also be aware of selection bias, since
only correlation coefficients that are independent of each other are used. Another
limitation of subsampling is the feature size of independent pairs is limited by the

dimensions of the data.
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Expanding the normal mixture model from 3 components to 5 components
gives the user the opportunity to explore additional and subtle types of DC. The
addition of extra classes does reduce power for Discordant and increase run time by
a factor of three, so we advise users to consider the 5-component mixture model if
elevated DC is relevant to their study and a 5-component mixture model is justifiable
based on model selection criteria such as Bayesian Information Criteria (BIC).

5.2. Limitations

There are some limitations to Discordant. We assume independence between
pairs, which is inaccurate since features show up in multiple pairs. This assumption
is critical to reducing computational complexity, and has been made by others
(Dawson et al., 2012). The subsampling extension aims to solve the problem of
dependencies between pairs, however it has issues which are outlined in section
5.1.3.

Appropriate sample size is necessary for Discordant or any other DC method
to work effectively to accurately estimate r, or the correlation coefficient, between
two features. An adequate number of samples should be available in order to
measure associations. A power analysis using function pwr.r.test from library
pwr for correlation coefficient equal to 0.5, significance level 0.05 and power 0.8
requires at least 29 samples. Unfortunately, sometimes it is difficult to acquire this
many samples. Control samples in cancer studies are hard to obtain. For example,
the control groups from breast cancer and GBM have 15 and 10 samples

respectively. Discordant is capable of handling datasets with different sample sizes
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since the initial parameters are set by b, (where v = 1,2 for Group 1 or 2), making the
mixture components comparable regardless of scale.

Lastly, the model assumes there are three Gaussian components in the
mixture model. To explore the Gaussian assumption, we measured the BIC of 1 to 5
components with normal or Pearson VII distributions using R packages mixtools
or 1cmix (Benaglia et al., 2009, Dvorkin et al., 2013). Across these three datasets,
normal mixture models had better fit than Pearson VII mixture models. Also, there
was better fit with 3 components or it was negligibly different. All three of the
biological datasets do not violate the 3 component normal mixture model, and this
may be true for many other biological datasets, but should be evaluated before
applying the method.

5.3. Interpretation and Module Building

There are not many tools to interpret feature pair lists derived from differential
correlation as compared to feature lists derived from differential expression. We
interpreted our analysis by identifying hubs, or features that have many significant
connections. This process determined features that were already implicated in the
phenotype, or could easily be related. We aim to enhance interpretation by
developing a module-building extension and incorporating it into the Discordant R
package. Since Discordant produces posterior probabilities for each feature pair, the
approach would use algorithms that add or remove one feature at a time, such as
the Fang et al. and Kostka et al. approaches, rather than using clustering methods.

Fang et al develops a score that measures differential correlation of a feature

set, and then uses the Apriori algorithm to increase the score by either removing or
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adding features (Fang et al., 2009). The Apriori algorithm uses breadth first search,
which begins at the root node of a tree. It iterates through all nodes in the tree by
searching the neighbors of the node it is currently at. Features are added or
removed based on if they meet a threshold d. Kostka et al. has a similar framework
to Fang et al. Differential correlation is measured using the mean squared
regression of an additive model. A greedy stochastic downhill search algorithm is
used, which is much like the Apriori algorithm except features are either added or
removed to reach a local minima (Kostka and Spang, 2004).

Since the Discordant algorithm produces posterior probabilities, the Kostka et
al. approach may be better suited for module building. Module building is based on
an arbitrary threshold in Fang et al. whereas Kostka et al determines feature subsets
that are locally optimal. Our future aim is to create a module building extension
based on the Kostka et al. algorithm.

5.4. Multiple Groups

Currently, Discordant only determines significant differences between two
groups (e.g. control vs. disease). In some studies, there may be multiple biological
groups examined. For example, the clinical variables for each subject in the COPD
data provides many opportunities to have more than two groups. The GOLD stages
could be separated into five groups (0, 1, 2, 3, 4) instead of two groups (0, 3/4).
Unfortunately, when trying to create a study with more than two groups in the COPD
data the sample size in at least one group was too small. Other datasets will be used

for examining Discordant’s ability to identify differences in more than one group.
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Some options are studies with time-series data, developmental profiles or with
multiple treatments.

Another approach is to treat the phenotype as a continuous variable instead
of an ordinal variable. In the COPD data, the FEV+/FVC ratios are continuous and
used to categorize subjects into GOLD stages based on thresholds. A future
direction is to modify Discordant so that it can be applied to continuous phenotypes
instead of categorical ones.

5.5. R Package

The Discordant R package is available on github at
github.com/siskac/discordant. It has been designed to be flexible to the user’s
preference, and also to be computationally efficient. For example, the EM algorithm
is contained in a C wrapper since C is faster than R. Several options have been
implemented, such as alternative correlation metrics and the subsampling and 5-
component mixture model discussed here.

5.6. Overall Summary

In this thesis, we have demonstrated that Discordant performs better than
other competing methods, can generate testable relevant hypotheses and is usable
with low computationally complexity and a released R package. For the first time in
the current literature, an R package that measures differential correlation has been
proven to be applicable to sequencing data. Also, the limitations of Discordant verify
known concerns and reveal new ones; information that will strengthen future studies.

Differential correlation is not as popular as differential expression, but it has

the same potential of generating testable hypotheses that can lead to new
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discoveries (de la Fuente, 2010). The two analyses explore different types of
biological complexity. Differential expression identifies features that have large shifts
in expression or abundance, whereas differential correlation identifies feature pairs
that have different associations between groups. Both of these analyses can provide
clues to the biological processes that affect the phenotype. Differential expression
identifies features that are the “low-hanging fruit,” or the biomarkers that are used to
validate and sometimes diagnose disease, whereas differential correlation can
reveal biological processes that are disregulated in disease and predict key players
that ignite the signal transduction to affect the expression of biomarkers. There are
many established packages and tools to analyze —omics with differential expression,
such as limma, DiffSeq, DAVID, GSEA etc. (Anders and Huber, 2010; Huang et al.,
2008b; Ritchie et al., 2015; Subramanian et al., 2007) but there are no standards for
differential correlation. In our development of Discordant, we have introduced a
method and R package that is a reliable and robust approach to perform differential

correlation.
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APPENDIX A
IDENTIFIERS AND LISTS OF VALIDATED FEATURES

A.1. TCGA GBM Sample IDs

TCGAID Type

TCGA-06-0192-01B-01R-0338-01 Tumor
TCGA-06-0216-01B-01R-0338-01 Tumor
TCGA-06-0649-01B-01R-0338-01 Tumor

TCGA-06-0673-11A-01R-0342-01 Control

TCGA-06-0675-11A-01R-0342-01 Control

TCGA-06-0676-11A-02R-0342-01 Control

TCGA-06-0678-11A-01R-0342-01 Control

TCGA-06-0680-11A-01R-0342-01 Control

TCGA-06-0681-11A-01R-0342-01 Control

TCGA-06-0686-01A-01R-0338-01 Tumor
TCGA-06-0743-01A-01R-0338-01 Tumor
TCGA-06-0744-01A-01R-0338-01 Tumor
TCGA-06-0745-01A-01R-0338-01 Tumor
TCGA-06-0747-01A-01R-0338-01 Tumor
TCGA-06-0749-01A-01R-0338-01 Tumor
TCGA-06-0750-01A-01R-0338-01 Tumor

TCGA-08-0623-11A-01R-0342-01 Control

TCGA-08-0625-11A-01R-0342-01 Control

TCGA-08-0626-11A-01R-0342-01 Control

TCGA-08-0627-11A-01R-0342-01 Control

TCGA-12-0654-01B-01R-0338-01 Tumor
TCGA-12-0656-01B-01R-0338-01 Tumor
TCGA-12-0657-01A-01R-0338-01 Tumor
TCGA-12-0688-01A-02R-0338-01 Tumor
TCGA-12-0692-01A-01R-0338-01 Tumor
TCGA-12-0703-01A-02R-0338-01 Tumor
TCGA-12-0707-01A-01R-0338-01 Tumor
TCGA-12-0772-01A-01R-0338-01 Tumor
TCGA-12-0773-01A-01R-0338-01 Tumor
TCGA-12-0775-01A-01R-0338-01 Tumor
TCGA-12-0776-01A-01R-0338-01 Tumor
TCGA-12-0778-01A-01R-0338-01 Tumor
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TCGA-12-0780-01A-01R-0338-01 Tumor

A.2. GBM miRNAs
hsa-mir-124a
hsa-mir-137
hsa-mir-326
hsa-mir-92b
A.3. Sphingolipid-Related Features

Genes

Probe Name | Gene Name
1552632 a at | ARSG
1553929 at ACER1
1554030 at ARSB
1554032 at ARSB
1554252 a at | CERS3
1554253 a at | CERS3
1554460 at ST8SIA4
1555041 a at | NAGA
1558279 a at | KDSR
1559776 at NULL
1560086 at NULL
1564274 at C9orf47
1564333 a at | PSAPL1
1567080 s at | CLNG6
200661 at CTSA
200695 at PPP2R1A
200866 s at | PSAP
200871 s at | PSAP
201289 at CYRG61
201576 s at | NULL
201765 s at | HEXA
201944 at HEXB
202278 s at | SPTLC1
202545 at PRKCD
202549 at VAPB
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202550 s at | VAPB
202944 at NAGA
203089 s at | HTRA2
203128 at SPTLC2
203269 at NSMAF
203608 at ALDH5A1
203609 s at | ALDH5A1
203768 s at | STS
203769 s at | STS
203770 s at | STS
204417 at GALC
204443 at ARSA
204458 at PLA2G15
204642 at S1PR1
204691 x at | PLA2G6
204881 s at | UGCG
205051 s at | KIT
205309 at SMPDL3B
205622 _at SMPD2
205670 at GAL3ST1
205894 at ARSE
206129 s at | ARSB
206258 at ST8SIA5
206397 x _at | NULL
206435 at B4GALNT1
206437 at S1PR4
206831 s at | ARSD
206925 at ST8SIA4
206948 at NEU3
207381 at ALOX12B
207708 _at ALOXE3
207856 _s at | NULL
208065 at ST8SIA3
208358 s at | UGT8
208381 s at | SGPL1
208478 s at | BAX
208537 at S1PR2
208780 x at | VAPA
208926 at NEU1
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209093 s at | NULL
209250 _at DEGS1
209275 s at | CLN3
209355 s at | PPAP2B
209529 at PPAP2C
209727 at GM2A
209799 at PRKAA1
209810 _at SFTPB
209857 s at | SPHK2
210073 _at ST8SIA1
210171 _s at | CREM
210401 _at P2RX1
210589 s at | GBAP1
210647 x at | PLA2G6
210764 s at | CYRG61
210859 x at | CLN3
210946 at PPAP2A
211152 s at | HTRA2
211488 s at | ITGB8
212226 _s at | PPAP2B
212321 at SGPL1
212322 at SGPL1
212442 s at | CERS6
212737 _at GM2A
213508 _at SPTSSA
213936 x at | SFTPB
214354 x at | SFTPB
214490 at ARSF
214655 at GPR6
215471 s at | MAP7
215543 s at | LARGE
215891 s at | GM2A
215938 s at | PLA2G6
216230 x at | SMPD1
218028 at NULL
218099 at TEX2
218161 s at | CLN6
218421 at CERK
218556 _at ORMDL2
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219340 s at | CLN8
219429 at FA2H
219625 s at | COL4A3BP
219695 at SMPD3
219973 at ARSJ
221285 at ST8SIA2
221368 at NEU2
221417 x_at | S1PR5
221765 at UGCG
222212 s at | CERS2
222383 s at | ALOXE3
222571 at ST6GALNAC6
222688 at ACER3
222689 at ACER3
222874 s at | CLN8
222957 at NEU4
223259 at ORMDL3
223466 x at | COL4A3BP
223695 s at | ARSD
223696 at ARSD
223912 s at | CLN8
223921 s at | GBA2
224627 at GBA2
224951 at CERSS
225095 at SPTLC2
225280 x at | ARSD
225286 at ARSD
225923 at VAPB
225950 at SAMDS8
225984 at PRKAA1
225985 at PRKAA1
226189 at ITGB8
226277 at COL4A3BP
226560 at NULL
227038 at SGMS2
227548 at ORMDL1
227752 at SPTLC3
227776 at ACER3
228457 at PPM1L
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228480 at | VAPA
228801 at | ORMDL1
228956 _at UGTS
229448 at NULL
229850 at KDSR
229958 at | CLNS
230131 x at | ARSD
230261 at | ST8SIA4
230262 at | ST8SIA3
230275 at | ARSI
230464 at | S1PR5
230482 at | STBGALNACS
230836 at | ST8SIA4
231286 _at NULL
231732 at | SMPD3
231741 at | S1PR3
231791 at | ASAH2B
232149 s at | NSMAF
232197 x at | ARSB
232423 at | ARSD
233743 x at | S1PR5
234963 s at | FA2H
235136 at | ORMDL3
235502 _at PPP2CA
235678 at GM2A
236339 _at PPM1L
236496 _at DEGS?2
238567 at | SGPP2
238702 at | SPTSSB
238719 at PPP2CA
238945 at | ACER3
239147 at | ARSK
239401 at NULL
239488 at PPM1L
239750 x at | VAPA
240180 _at NULL
242019 at | CERS6
242062 at | SAMDS
242943 at | ST8SIA4
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242963 at | SGMS2

243141 _at SGMS2

244780 _at SGPP2

35820 at GM2A

37004 at SFTPB

40273_at SPHK2

Metabolites

M/Z ratio with retention
time

Annotation

311.2821_3.1555946

(4E,8E,9Me-d19:2)sphingosine

1619.9467_1.3947561

*1-3Galalpha1-3Galalpha1-3Galalpha1-4Galbeta1-
4Glcbeta-Cer(d18:1/24:1(152))

607.5888_7.030736

Cer(d16:1/23:0

619.5897_6.868578

Cer(d18:1/22:1(132))

635.6203_7.4143705

Cer(d18:1/23:0

647.6227_7.266074

b~ [~ |~ [~

Cer(d18:1/24:1(152))

633.6054_7.086333

Cer(d18:2/23:0)

1493.1392_5.6300683

CerP(d18:1/24:1(152))

1215.8105_1.0137502

Fucalpha1-2Galalpha1-3Galbeta1-4Glcbeta-
Cer(d18:1/18:0)

1521.1075_5.171591

GlcAbeta-Cer(d18:1/18:0)

633.5257_2.2732987

N-(tetradecanoyl)-sphing-4-enine-1-(2-
aminoethylphosphonate)

1046.7281_1.9593751

NeuAcalpha2-3Galbeta-Cer(d18:1/20:0)

1643.9421_1.384165

NeuGcalpha2-3Galbeta1-4GIcNAcbeta1-3Galbeta1-
4Glcbeta-Cer(d18:1/24:1(152))

671.6187_7.5962663

N-Lignoceroylsphingosine

537.5129_5.722461

N-Palmitoylsphingosine

688.5519_4.3623652

SM(d16:1/17:0)

702.5691_4.7004237

SM(d18:0/16:1(92))

730.598_5.387554

SM(d18:0/18:1(112))

852.6434 6.297378

SM(d18:0/24:1(152))

646.5014_3.3163707

SM(d18:1/12:0

674.5371_4.01326

SM(d18:1/14:0

703.5728_4.700575

700.5533_4.1588397

SM(d18:1/16:1

756.6135_5.5130873

SM(d18:1/20:1

800.672_6.8920975

SM(d18:1/23:0

812.6755_6.5607677

SM(d18:1/24:1(152))

672.518_3.4627964

( (
( (
( (
( )
( )
SM(d18:1/16:0)
( )
( )
( )
( (
( )

SM(d18:2/14:0
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686.5328_3.8306012 SM(d18:2/15:0)
798.6601_6.4355063 SM(d18:2/23:0)
299.2832_2.9104302 Sphingosine
299.2832_2.9104302 Sphingosine
299.2832_2.9104302 Sphingosine

A.4. TCGA Breast Cancer Sample IDs

TCGAID Type

TCGA.AR.A1AH.01A | Tumor

TCGA.BH.AOBO.01A | Tumor

TCGA.BH.A0C1.01B | Tumor

TCGA.BH.AODO.01B | Tumor

TCGA.BH.AODO.11A | Tumor

TCGA.BH.AODT.01A | Tumor

TCGA.BH.AODT.11A | Control

TCGA.BH.A18F.01A | Control

TCGA.BH.A18G.01A | Tumor

TCGA.BH.A18H.01A | Tumor

TCGA.BH.A18I.01A | Tumor

TCGA.BH.A18J.01A | Tumor

TCGA.BH.A18J.11A | Tumor

TCGA.BH.A18K.01A | Control

TCGA.BH.A18K.11A | Tumor

TCGA.BH.A18L.01A | Tumor

TCGA.BH.A18L.11A | Tumor

TCGA.BH.A18M.01A | Tumor

TCGA.BH.A18M.11A | Tumor

TCGA.BH.A18N.01A | Tumor

TCGA.BH.A18N.11A | Control

TCGA.BH.A18P.01A | Control

TCGA.BH.A18P.11A | Tumor

TCGA.BH.A18Q.01A | Tumor

TCGA.BH.A18Q.11A | Tumor

TCGA.BH.A18R.01A | Tumor

TCGA.BH.A18R.11A | Tumor

TCGA.BH.A18S.01A | Tumor

TCGA.BH.A18S.11A | Control
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TCGA.BH.A18T.01A

Control

TCGA.BH.A18U.01A

Control

TCGA.BH.A18U.11A

Tumor

TCGA.BH.A18V.01A

Tumor

TCGA.C8.A12Y.01A

Tumor

TCGA.C8.A133.01A

Tumor

TCGA.E2.A14P.01A

Tumor

TCGA.E2.A14Q.01A

Control

TCGA.E2.A14S.01A

Control

TCGA.E2.A14V.01A

Tumor

TCGA.E2.A14W.01A

Tumor

TCGA.E2.A14Y.01A

Tumor

TCGA.E2.A150.01A

Tumor

TCGA.E2.A152.01A

Tumor

TCGA.E2.A153.01A

Tumor

TCGA.E2.A153.11A

Tumor

TCGA.E2.A155.01A

Tumor

TCGA.E2.A158.01A

Tumor

TCGA.E2.A158.11A

Control

TCGA.E2.A15A.01A

Tumor

TCGA.E2.A15A.06A

Tumor

TCGA.E2.A15C.01A

Tumor

TCGA.E2.A15E.06A

Tumor

TCGA.E2.A15G.01A

Tumor

TCGA.E2.A15H.01A

Control

TCGA.E2.A15L.01A

Control

TCGA.E2.A15M.01A

Control

hsa-mir-107
hsa-mir-150
hsa-mir-152
hsa-mir-191
hsa-mir-24-2
hsa-mir-374a
hsa-mir-574
hsa-mir-454

A.5. Breast Cancer miRNAs
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APPENDIX B

Tables of Model Assumptions
B.1. BIC of GBM and COPD data sets.

BIC of Normal vs. Pearson VIl distributions with 1 to 5 components in GBM and
COPD data. Pearson VIl 1-component mixture model is NA because unable to get
value.

GBM COPD
Normal Pearson VII Normal Pearson VII
1 -26284924 NA 45507901 NA
2 -26294229 | -26599590 | 45487152 44454561
3 -26280180 | -26479171 45486345 44785415
4 -26280384 | -26454494 | 45483803 44855883
5 -26278844 | -26448430 | 45485535 44876453
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B.2. BIC of Breast Cancer Datasets with Various Correlation Metrics

BIC of Normal vs. Pearson VIl distributions with 1 to 5 components in breast cancer
data. Pearson VIl 1-component mixture model is NA because unable to get value.

Spearman Pearson
Normal Pearson VII Normal Pearson VII
1 -2508345 NA -3534317 NA
2 -2490313 -2521102 -3522077 -3563371
3 -2491553 -2507935 -3522569 -3547161
4 -2491443 -2504859 -3522552 -3543296
5 -2491321 -2504034 -3522571 -3542188
BWMC SparCC
Normal Pearson VII Normal Pearson VII
1 -3310034 NA -3580273 NA
2 -3291900 -3332878 -3581509 -3610734
3 -3292002 -3315611 -3567261 -3591147
4 -3292158 -3310952 -3566941 -3587009
5 -3292426 -3309456 -3566512 -3586140
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ROC curves with changes in simulation parameters. Title tells parameter

TPR

03

2 04 a6

APPENDIX C

SIMULATIONS

C.1. ROC Curves of Adjustments of Simulation Parameters

changed from shaded red row in Table 1.
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C.2. Sensitivity/Specificity of Adjustments of Simulation Parameters

Sensitivity/1-Specificity curves with changes in simulation parameters. Title
tells parameter changed from shaded red row in Table 1.
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C.3. Boxplots of Rank Distributions of Each Class for Continuous Simulations
to Compare Competing Methods

a. Cross DC Classes
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C.4. Boxplots of Rank Distributions of Each Class for Count Simulations

Comparing Correlation Metrics
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C.5. Boxplots of Posterior Probability Distributions of Each Class for
Continuous Simulations Comparing Standard EM vs. Subsampling EM

a. Cross DC Classes
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C.6. Boxplots of Posterior Probability Distributions of Each Class for Count
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C.7. Boxplots of Posterior Probability Distributions of Each Class for
Continuous Simulations Comparing Three Components vs. Five Components
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C.8. Boxplots of Posterior Probability Distributions of Each Class for
Continuous Simulations Comparing Three Components vs. Five Components
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APPENDIX D
Tables of Biological Validation
D.1. GBM miRNAs

Summary of unique GBM-related miRNAs top ranked pair with a transcript. Shown is
rank, p-value/1 - posterior probability (1 - pp) and FDR/qg-value for Discordant,
EBcoexpress and Fisher.

. .. | hsa-miR- hsa-miR- hsa-miR- hsa-miR-
Method statistic 124a 137 326 92b
Discordant Rank 223 1081 472 83
1-pp 2.51e-7 1.16e-6 5.04e-7 1.05e-7
1-0- 149867  |239e6  [1.026 |2.02-7
value
EBcoexpress | Rank 585 1862 628 185
1-pp 3.54e-3 9.86e-3 3.84e-3 1.25e-3
1-a- 156663 | 0.184 7.03e-3 | 2.44e-3
value
Fisher Rank 799 1282 803 238
p-value | 3.61e-6 7.43e-6 3.63e-6 6.24e-7
FDR 0.109 0.139 0.109 0.629
MIRNA -Dep. | ook [ 3246 297 768 69
Linear
p-value | 5.65e-5 1.29e-6 6.34e-6 8.95e-8
FDR 0.420 0.103 0.198 0.031
Transcript - | o | 467 8807 4 1108
Dep. Linear
p-value | 1.85e-5 4.72e-4 1.97e-7 4.78e-5
FDR 0.950 1 0.578 1
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D.2. Sphingolipid Metabolites

Summary of sphingolipid metabolite top ranked pair with a sphingolipid-related gene.
Shown is rank, p-value/1 - posterior probability (1 - pp) and FDR/g-value for
Discordant, EBcoexpress and Fisher.

Discordant EBcoexpress Fisher
metabolite Rank 1-pp 1-9- Rank 1-pp 1-9- | pank p- FDR
value value value
*1-3Galalpha1-
3Galalpha1-
3Galalpha1-
4Galbetal- 27248 | 6.87e | 1.31e- 312901 0.385 | 0.496 | 998686 0.216 |1
3 -3 2
4GlIcbeta-
Cer(d18:1/24:1(1
5Z))
3-0-
Sulfogalactosylc 10563 | 2.91e | 5.54e- 0253 | 0.345 | 99173 0096 | 1
eramide 8 -3 3

(d18:1/18:1(92))

85430 | 1.96e | 3.79%e-

C18-OH Sulfatide | 5 I S 554288 | 0.452 | 0.566 | 523347 | 0.173 | 1
g:;)r)(d18:1/22:1(1 ;5893 f‘éme g.oze- 165520 | 0.314 | 0.417 | 91285 [ 0.093 | 1
Cer(a8:4/23:0) | 57039 | 1478 1 2836 579631 | 0.406 | 0517 | 384322 | 0.155 | 1
gg)r)(d18:1/24:1(1 70023 | %0%¢ | 382 | 66774 | 0226 | 0.311 | 53879 | 0.077 |1
Cer(d18:2123:0) | 3007 | 5,14 | 280% | 375960 | 0.406 | 0.517 | 102053 | 0.007 |1
&‘*1'::?/‘1"; 0 ;6178 f‘327e 2'14‘3' 321358 | 0.388 | 0.499 | 70169 | 0.085 | 1
&‘*1'::'“1";;; 0 15721 | 549¢ | 1026 I 45608 | 0.123 | 0.178 | 16451 | 0.050 | 1
&91'::'“1";;; 0 13458 _3?;62‘3 g.QOe- 137213 | 0.295 | 0.394 | 78423 0.088 | 1
fg;;‘dw”’z“:” ]6928 f‘é45e 2'49‘3' 255398 | 0.362 | 0.470 | 796240 | 0.200 | 1
gﬂ';g:'/‘:?g‘; GA1 | 20939 _9é96e 1916 1441601 | 0426 | 0538 | 944945 | 0212 | 1
g:‘:ﬁggﬂgi?m j0809 | 4426 | BA%e- | 590467 | 0.377 | 0.486 | 457741 | 0.165 | 1
gﬂ';g:'/‘:j'g‘; GM3 | 06357 | 1.5%¢ | 299~ | 733865 | 0.486 | 0509 | 423699 | 0.161 | 1
gﬂ';g:'/‘:?g‘; GM3 | 17603 | 260e | 507e- | 633445 | 0468 | 0.581 | 733809 | 0.195 | 1
g:;ﬁmtﬂ-m 8:0) 22787 | 21 | 2100 | 566084 | 0.455 | 0.568 | 1098109 | 0.224 |1
S'(:ﬁgﬂ’/'z‘,’se:'gmid 73116 | 109 | 3276 | 557497 | 0.447 | 0.560 | 676768 | 0.189 | 1
:-:1";:"15/31’;?1'?9"2;‘)’9 14743 _3é93€ 749 1217794 | 0344 | 0451 | 262888 | 0.136 |1
N-

(tetradecanoyl)-
sphing-4-enine- 37619 | 9.22e | 1.77e-
1-(2- 2 -3 2
aminoethylphosp
honate)

432036 0.423 | 0.535 | 226664 0.129 |1
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NeuGcalpha2-

3Galbeta1-

4GIcNAcbetal-

3Galbetal- 47275 | 113e | 2186~ | 545833 | 0451 | 0.564 | 1043493 | 0.220
1 2 2

4GlIcbeta-

Cer(d18:1/24:1(1

52))

N-

Lignoceroylsphi | 15711 | 4.09¢ | 805 14334581 | 0556 | 0.665 | 1877890 | 0.269

| ngosine

N-

Palmitoylsphing | 02022 | 1:24¢ | 238" 1310315 | 0.388 | 0.498 | 441743 | 0.163

osine

sM(@te:1/17:0) | 13094 | 352¢ | 8716 | 4o7537 | 0270 | 0.365 | 208258 | 0.142

SM(d18:0/24:1(15 | 12075 | 2.70e | 5.27e- | 443150 | 0590 | 0.695 | 1106829 | 0.224

2) 72 2 2

sM(d18:112:0) | 12006 | %04¢ | 298¢ | 14008 | 0417 | 0169 | 95758 | 0.095

sM(d18:1/14:0) | 3146 | [4%° | 2016 | 544 0.060 | 0.090 | 23730 | 0.057

sM(@18:1/16:1) | 1908 | 4000 | 799 | 5791990 | 0,637 | 0.735 | 2001704 | 0.276

sM(d18:1/20:1) | 59240 | 508e | 1128~ | 5090254 | 0.606 | 0.709 | 1590396 | 0.254

sM(a18:1/23:0) | 140%° | 3700 | 778 1 959316 | 0453 | 0453 | 188406 | 0.121

g)l\;l(d18:1124:1(15 (9873 | 515e | 983 | 146886 | 0.402 | 0.402 | 334705 | 0.148

sM(d18:214:0) | 5043 | 118e | 2276 | 473547 | 0.547 | 0.547 | 523556 | 0.173

sM(a18:215:0) | 31441 | 5.52¢ | 1058 | 403837 | 0527 | 0527 | 74789 | 0.087

sM(18:2123:0) | J*41% | 3850 | 7348 o06117 | 0.338 | 0444 | 75113 | 0.087

Sphingosine ;8797 f13.90e 2'34‘3' 156783 | 0.308 | 0.410 | 451307 | 0.164

Sphingosine 1- | 31919 | 7.94e | 1.52e- | aq444s | 0712 | 0524 | 554183 | 0.176

phosphate 1 -3 2

Sphingosine-1- | oq,7¢ | 2.76e | 5246~ | 409541 | 0272 | 0.367 | 461599 | 0.166

phosphocholine -3 3

Trihexosylcerami | 95479 | 2.17e | 4.21e-

do (atatetr | o % ; 536542 | 0.449 | 0.562 | 869371 | 0.206

117




D.3. Breast Cancer miRNAs

Summary of Breast cancer miRNAs top ranked pair with a transcript. Shown is rank,
p-value/1 - posterior probability (1 - pp) for correlation metrics and NBGLM.

hsa- hsa- hsa- hsa- hsa- hsa- hsa- hsa-

treatment | statistic mir- mir- mir- mir- mir- mir- mir- mir-

107 150 152 191 24-2 374a 574 454

Correlation method comparison

rank 4 1 72 135 85 7 368 40
Spearman | 1.pp | 2763 | 83e-4 | 1202 | "% | 1302 | 3963 | 2502 | 873
SparCC rank 133 3 473 1499 300 602 269 1068
P 1-PP | 1.2e-3 | 1.4e-3 | 2.3e-2 4e-2 1.8e-2 | 2.6e-2 | 2.7e-2 | 3.4e-2

rank 47 1329 220 1249 179 78 101 936
NBGLM D | 7e3 | 9e4 | 1.8e3 | 94e3 | 15e3 | 7.6e4 | 9ed | 7.2e-3

P rank 578 445 627 315 77 1996 957 9

earson ™4 pp [ 21e2 | 1962 | 2162 | 1.7e2 | 1.3e2 | 2.9e-2 | 2.3e-2 | 8.6e-3

BWMC Rank 364 2 207 408 89 342 864 79
1-PP | 4.5e-2 | 6.5e-3 | 0.037 | 4.9e-2 | 2.6e-2 | 4.6e-2 | 6.6e-2 | 2.5e-2
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D.4. Standard EM vs. Subsampling EM Rank and 1-PP

Summary of Breast cancer miRNAs top ranked pair with a transcript for Standard
EM and Subsampling EM. Shown is rank, p-value/1 - posterior probability (1 — pp).

GBM
Method | statistic | "San | hsa-mir-137 | hsa-mir-326 | hsa-mir-92b
Standard Rank 223 1081 472 83
EM 1-PP 2.51e-7 1.16e-6 5.04e-7 1.05e-7
Subsampling Rank 691 2833 648 91
EM 1-PP 5.76e-6 3.27e-5 5.41e-6 4 47e-7
Breast Cancer
hsa- | hsa- | hsa- | hsa- | hsa- | hsa- | hsa- | hsa-
Method statistic | mir- | mir- | mir- | mir- | mir- | mir- | mir- | mir-
107 | 150 | 152 | 191 | 24-2 | 374a | 574 | 454
Rank 4 1 72 135 85 7 368 40
Standard EM 1-PP 2.7e- | 8.3e- | 1.1e- | 1.5e- | 1.3e- | 3.9e- | 2.5e- | 8.7e-
i 3 4 2 2 3 3 2 3
Subsamolin Rank 4 1 81 151 50 12 398 37
e [ pp |B4e- | 15e-|3.7e- | 5.0e- | 2.86- | 1.2e- | 8.7e- | 2.4e-
4 4 3 3 3 3 3 3
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D.5. Three Component vs. Five Component Rank and 1-PP

Summary of Breast cancer miRNAs top ranked pair with a transcript for 3-
component vs. 5-component mixture models. Shown is rank, p-value/1 - posterior
probability (1 — pp).

GBM
Method | statistic hﬁaz'ﬂr' hsa-mir-137 | hsa-mir-326 | hsa-mir-92b
3 Rank 223 1081 472 83
Components 1-PP 2.51e-7 1.16e-6 5.04e-7 1.05e-7
5 Rank 2101 1360 339 433
Components 1-PP 1.54e-8 7.30e-9 6.13e-10 9.43e-10
Breast Cancer
hsa- | hsa- | hsa- | hsa- | hsa- | hsa- | hsa- | hsa-
Method statistic | mir- | mir- | mir- | mir- | mir- | mir- | mir- | mir-
107 | 150 | 152 | 191 | 24-2 | 374a | 574 | 454
Rank 4 1 72 135 | 85 7 368 | 40
3 Components 1-PP 2.7e- | 8.3e- | 1.1e- | 1.5e- | 1.3e- | 3.9¢e- | 2.5e- | 8.7e-
i 3 4 2 2 3 3 2 3
Rank | 2067 | 363 | 51 32 | 276 | 1811 | 444 | 421
5 Components 1-PP 9.5e- | 1.5e- | 1.8e- | 1.4e- | 1.1e- | 8.1e- | 1.8e- | 1.7e-
4 4 5 5 4 4 4 4
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