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ABSTRACT

In recent years many high-throughput techniques have enabled the study and produc-

tion of large amounts of biomedical data; as a result, the biomedical literature is growing

at an exponential rate and shows no sign of slowing. With this comes a significant in-

crease in knowledge that remains unreachable for many applications due to their reliance

on manually curated database or software that is unable to scale. This dissertation focuses

on benchmarking and improving performance of scalable biomedical concept recognition

systems along with exploring the utility of text-mined features for biomedical discovery.

The initial focus of my dissertation is on the task of concept recognition from free text –

identifying semantic concepts from well utilized and community supported open biomedical

ontologies. Identifying these concepts and grounding text to known ontological identifiers

allows any application to also leverage the vast knowledge associated and curated to the

concept. I establish current baselines for recognition through a rigorous evaluation and full

parameter exploration of three concept recognition systems on eight biomedical ontologies

using the CRAFT corpus as gold-standard. Additionally, I create synonym expansion rules

that show improved performance, specifically recall, of Gene Ontology concepts.

The later chapters focus on the application of text-mining features obtained from large

literature collections for biomedical discovery. The two specific problems presented are

the prediction of pharmacogenes and automated protein function prediction. Information

contained in the literature has only begun to be harnessed and incorporated into machine

learning systems to make biomedical predictions, so I explore two widely open questions:

1. What information should be mined from the literature?

2. How should it be combined with other of data, both literature and sequenced-based?
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I demonstrate that improving the ability to recognize concepts from the Gene Ontology

produces more informative functional predictions and illustrate that not only can literature

features be helpful for making prediction but offer the ability to aid in validation.

Other contributions of this dissertation include publicly available software, a fast user

friendly concept recognition and evaluation pipeline along with the hand-crafted composi-

tional rules for increasing recognition of Gene Ontology concepts.

The form and content of this abstract are approved. I recommend its publication.

Approved: Lawrence E. Hunter
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CHAPTER I

INTRODUCTION

Figure 1.1: Publications published per year for the last 100 years. Plotting the
number of articles published each year from 1914-2014; the last couple of yeas has shown
an explosion in the number of publications per year.

Currently, there are over 24 million published biomedical articles indexed in PubMed.

The biomedical literature is growing at an exponential rate and shows no sign of slowing

down (Figure 1.1). With this explosion in publications comes a great increase in knowledge.

Unfortunately, most of the knowledge is trapped within the original publication due to the

article being located behind a paywall and remain unaccessible to many readers or it could

take years for information contained to be curated into databases used by the majority of

researchers; this work is focused with the latter. It has been well documented that with this

explosion in literature, manual curation cannot keep up (Baumgartner et al., 2007b). Ad-

ditionally, Howe et al state the following about manual curation: “Extracting, tagging with

controlled vocabulary and representing data from literature are some of the most important

and time-consuming tasks”(Howe et al., 2008). As computational biologists working with

biomedical text mining, we shoulder the burden of extracting useful and relevant informa-

tion from the overbearing amount of literature and translating that biomedical knowledge

into advances in health and understanding of complex biological systems.
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The main theme that runs through this dissertation is concept normalization, tagging of

the biomedical literature with semantic annotations from community supported ontologies.

This enables the linking of text to other vast knowledge sources and is an important step in

many other more complex tasks, such as relation extraction or integration with semantic web

applications (Spasic et al., 2005). Additionally, I explore the effectiveness of features derived

from these semantic annotations mined from large literature collections in conjunction with

machine learning methods for biomedical prediction and validation – both by themselves

and in combination with complimentary biological data.

In this chapter, I introduce concepts related to the work presented in this disserta-

tion. For brevity, I cover topics and relevant work that is not discussed further within the

corresponding chapters. Many of the topics covered here are discussed with more depth

elsewhere; I provide references to this work that has proven helpful during my dissertation

work. I conclude with a description of what can be found in each of the following chapters

of my dissertation.

1.1 Biomedical ontologies

Ontologies have grown to be one of the great enabling technologies of modern computa-

tional biology, particularly in areas like model organism database curation, where they have

facilitated large-scale linking of genomic data across organisms, but also in fields like anal-

ysis of high-throughput data (Khatri and Draghici, 2005) and protein function prediction

(Krallinger et al., 2005; Sokolov et al., 2013b). Ontologies have also played an important

role in the development of natural language processing systems in the biomedical domain,

which can use ontologies both as terminological resources and as resources that provide

important semantic constraints on biological entities and events (Hunter et al., 2008). On-

tologies provide such systems with a target conceptual representation that abstracts over

variations within the text. This conceptual representation of the content of documents in

turn enables development of sophisticated information retrieval tools that organize docu-

ments based on categories of information in the documents (Muller et al., 2004; Doms and

Schroeder, 2005; Van Landeghem et al., 2012).
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There are over 420 biomedical ontologies contained within the National Center for

Biomedical Ontologies (NCBO) (Noy et al., 2009) containing a multitude of different con-

cepts. The community has come together to create, develop, and establish relationships

between ontologies in the Open Biomedical Ontologies (OBO) for scientific advancement

http://www.obofoundry.org. To help to understand the information contained within an

ontology, an entry of a concept in OBO format from the Cell Ontology is shown below (Fig-

ure 1.2). Each concept has a unique identifier and term name along with manually curated

text defining exactly what the concept represents. Alternative ways to refer to terms are ex-

pressed as synonyms; there are many types of synonyms that can be specified with different

levels of relatedness to the concept (exact, broad, narrow, and related). An ontology can

contain a hierarchy among its terms which are expressed in the “is a” or “part of” entry.

Other types of relationships between concepts within the same ontology are expressed as

a “relationship”. Some ontological concepts containing links to other ontologies, these are

referred to as “cross-products” and are mainly used for reasoning tasks.

id: GO:0006900
name: membrane budding
namespace: biological\_process
def: ‘‘The evagination of a membrane resulting in formation of a vesicle.’’
synonym: ‘‘membrane evagination’’ EXACT
synonym: ‘‘nonselective vesicle assembly’’ RELATED
synonym: ‘‘vesicle biosynthesis’’ EXACT
synonym: ‘‘vesicle formation’’ EXACT
is\_a: GO:0016044 ! membrane organization and biosynthesis
relationship: part\_of GO:0016192 ! vesicle-mediated transport

Figure 1.2: Example ontology entry for the concept “membrane budding”.

1.2 Biomedical text mining

Biomedical text mining is focused on developing automatic methods aimed at extracting

relevant and important data from the biomedical literature and performing further down-

stream tasks with the data. There are many specific tasks that fall under this umbrella term,

such as named entity recognition (Nadeau and Sekine, 2007; Leaman et al., 2008; Tanabe

and Wilbur, 2002), concept recognition (Baumgartner Jr et al., 2007; Jonquet et al., 2009;

Funk et al., 2014a; Aronson, 2001), text classification/summarization (Reeve et al., 2007;
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Donaldson et al., 2003), synonym and abbreviation extraction (Chang and Schutze, 2006;

Schwartz and Hearst, 2003; Yu et al., 2006), relationship extraction (Fundel et al., 2007;

Ananiadou et al., 2010; Björne et al., 2010; Liu et al., 2011; Kim et al., 2011), question an-

swering (Athenikos and Han, 2010; Zweigenbaum, 2003; Tsatsaronis et al., 2012), hypothesis

generation (Stegmann and Grohmann, 2003; Weeber et al., 2003; Srinivasan, 2004). Spe-

cialized solutions must be developed for the biomedical domain because methods trained

and created on traditional English text, such as newswire, do not transfer well, due to

the highly specialized terminology and complex events and relationships that are expressed

(e.g. the interaction of a chemical and domain on a protein localized to a cell compartment

type during a specific cell cycle phase within the context of a disease). For a broader view

of the field there are many wonderful reviews, some more updated than other, presented

in (Cohen and Hersh, 2005; Zweigenbaum et al., 2007; Ananiadou and McNaught, 2006;

Rodriguez-Esteban, 2009; Aggarwal and Zhai, 2012; Simpson and Demner-Fushman, 2012;

Cohen and Demner-Fushman, 2014).

The following sections describes the task of biomedical concept normalization and the

corpora that have been developed and annotated by the community to train and evaluate

current systems.

1.2.1 Concept recognition/normalization

Concept recognition or normalization1 is a subtask of biomedical text mining that is

concerned with associating specific spans of text with semantic concepts from the set of

biomedical ontologies. The task is also known by other names, such as, concept normal-

ization, named entity resolution, named entity normalization, etc. Concept normalization

imparts computer readable semantic meaning into unstructured text and by doing so, pro-

vides the ability to extract information through knowledge-directed methods (Spasic et al.,

2005). It also enables easier representation of what is contained within the literature.

Most methods for concept normalization are dictionary based. A detailed description

of current ontology driven and domain specific tools is presented in Section 2.2.1. Machine

1During the entire dissertation I refer to the task of tagging spans of text with a biomed-
ical ontology identifier as both normalization and recognition; these terms are interchange-
able.
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learning methods are used throughout the named entity recognition task, but because of

lack of enough training data, do not perform well on the concept normalization task. Com-

bination of both can be seen in the tool Neji, which is a machine learning framework for

identification of entity classes followed by normalization through dictionary lookup (Cam-

pos et al., 2013). It is unknown if the combination performs better than dictionary lookup

alone.

1.2.1.1 BioCreative

The Critical Assessment for Information Extraction in Biology (BioCreative, BC) hosts

community challenges aimed at evaluating current state-of-the-art methods for many infor-

mation extraction tasks; these challenges aim to push and advance the field. There are two

main competitions that incorporate concept normalization of Gene Ontology concepts as

part of the whole evaluation. There are corpora associated with each of these challenges,

but they are incomparable with the defined task of concept normalization presented above.

Systems were evaluated on their ability to identify concepts that appear with a span of

text, but not required to provide exact spans, only supporting sentences/paragraphs. Some

of the well performing methods could be utilized and evaluated on a gold-standard corpus,

but most solve a different problem than the focus on my dissertation

BioCreative I – task 2

Task 2 of the first BioCreative was focused on manual curation of genes function and

consisted of three subtasks (Blaschke et al., 2005): 1) identification of annotation relevant

text passages, 2) assignment of GO terms to gene products, and 3) selection of relevant

papers. The corpora consisted of 1,015 full text articles (803 training, 113 and 99 for two

sets of testing) but contained no gold-standard. For evaluation GOA curators manually

checked each submission. There were three main types of methods used: 1) those using

pattern matching of words making up GO concepts along with sentential context (Couto

et al., 2005; Ehrler et al., 2005; Verspoor et al., 2005; Krallinger et al., 2005), 2) those using

machine learning or statistical techniques (Rice et al., 2005b; Ray and Craven, 2005) and,

3) high precision phrasal matching (Chiang and Yu, 2004). Overall, the performance was
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lacking for all subtasks as the best performing system only had recall of ∼7% (78/1227) on

task 2.2.

BioCreative IV – Gene Ontology task

BC IV also had a task focused on manual curation of gene function and consists of two

different tasks (Mao et al., 2014): A) retrieving GO evidence for relevant genes and B)

predicting GO terms for relevant genes. Task B is closest to the defined task of concept

normalization of GO terms. The input for both tasks is a document-gene pair and the

expected output for task 1 is the evidence sentence and for task 2 is the relevant GO

concepts related to the genes from the paper. The BC4GO corpus consists of 200 full text

articles (100 training, 50 development, 50 testing) with fully annotated evidence sentences

by model organism database biocurators.

Overall, the best performing systems for each task utilize simple methods. The best

performing system (F-measure 0.270) for returning sentences that support a protein function

given a gene-document (task A) pair uses distant supervision from GeneRIFs along with

simple simple features extracted from the literature (bag-of-words, bigrams, section/topic

features, binary presence of genes) to train a model to recognize sentences containing a gene

mention (Zhu et al., 2014). They then utilize dictionary lookup to identify which protein

is mentioned. The best performing system (F-measure 0.134) for identifying specific GO

concepts given a gene-document pair (task B) uses a knowledgebase indexed with curated

abstracts, GOCat(Gobeill et al., 2013b), to assign the most similar GO classes, using k-

Nearest Neighbors, to the input text. They used post-processing filter to only submit the

top 10 ranked similar GO classes. It is not surprising that this performed so well, as it does

not rely on the GO terms to appear exactly in the input text (Gobeill et al., 2013a).

While performance on this assessment was much higher than the original from BC1,

with best performing team reaching recall of 10-30%, they still note that mining GO terms

from literature is challenging due to the fact that there are many GO concepts (40,000+)

and that GO terms are designed for unifying gene function rather than text mining and are

rarely found verbatim in the article (only 1/3 were found exactly represented). Additionally,

through this evaluation it is again noted that gold standard corpus data for building machine
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learning approaches is still lacking with only 1,311 GO terms represented within these 200

articles.

1.2.1.2 Corpora

There are multiple corpora manually annotated for the task of concept normalization.

They all vary in size, scope, and type of concepts identified. The GENIA corpus is anno-

tated with its own ontology and has been useful for named entity recognition tasks. The

two BioCreative, mentioned above, tasks are concerned with finding mentions of Gene On-

tology concepts and relating those to proteins. CRAFT is annotated with many different

biomedical ontologies and best resembles the semantic annotations desired by the concept

normalization task.

GENIA

The GENIA corpus is commonly used for named entity recognition tasks (Kim et al., 2003).

It is a very limited domain corpus consisting of 2,000 abstracts with the MeSH terms Human,

Blood cell, and Transcription factors. It is annotated with its own ontology of 36 biomedical

entities (Kim et al., 2003).

CRAFT

The Colorado Richly Annotated Full Text Corpus (CRAFT) consists of 97 full-text doc-

uments selected from the PubMed Central Open Access subset. Each document in the

collection serves as evidence for at least one mouse functional annotation. The “public re-

lease” consists of 21,000 sentences from 67 articles and is used in Chapters II and III of this

dissertation. There are over 100,000 concept annotations from eight different biomedical

ontologies (Gene Ontology, Sequence Ontology, NCBI Taxonomy, Entrez Gene, Sequence

Ontology, Protein Ontology, ChEBI, Cell Ontology) in this public subset. What differenti-

ates this corpus from the previous discussed is that each annotation specifies the identifier

of the concept from the respective ontology along with the beginning and end points of the

text span(s) of the annotation. Other corpora link concepts, some only entity classes, to

specific sentences, paragraphs, or abstracts.
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1.3 A brief into to automated protein function prediction

Experimentally determining the function of a protein is very time consuming and ex-

pensive. Computational approaches can help biologists gain insight into what functions

novel proteins perform. Function can be hard to define, as it tends to act as an umbrella

term for any type of activity a protein can perform. We take the generalized idea presented

in Rost et al (Rost et al., 2003) that function is everything that happens to or through a

protein. The community standard assigns the function of proteins using Gene Ontology

concepts (The Gene Ontology Consortium, 2000). The three branches of GO specify differ-

ent functions in which proteins are involved. Molecular Function (MF) describes activities

that occur at the molecular level, such as binding and catalytic activities. Biological Pro-

cess (BP) represents series of events accomplished by one or more ordered MF, such as

signal transduction or alpha-glucose transport. Cellular Component (CC) represents the

components of a cell, such as nucleus or ribosome. CC can be useful for function prediction

because shared subcellular localization can be taken as evidence of shared function.

There have been many different computational methods used to automatically predict

function. The most commonly used method is transfer of function based upon homology

(Loewenstein et al., 2009) using database search with a tool such as BLAST. The rationale

for homology-based transfer is that if two sequences are similar then they have evolved from

a common ancestor and share a similar function. Proteins that have common functions tend

to share sequence motifs such as functional domains; these motifs are important and if seen

are very indicative of having a certain function. Because the structure of proteins is more

important and more conserved than their sequence (Illerg̊ard et al., 2009), examining the

structure of a protein can identify folds that are indicative of a specific function. Gene

expression data is able to identify genes that are somehow related; individual functions

cannot be assigned, but a general pathway could be.

Machine learning techniques are able to combine many different sources of heterogeneous

data. The classification task being addressed is whether a protein should be associated

with a given GO term. Support vector machines (SVMs) (Ben-Hur et al., 2008) are one

way to address this problem. The first SVMs for function prediction built individual binary

classifiers to classify proteins either as associated or not associated with a given GO term
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(Pavlidis et al., 2002). The problem with constructing individual binary classifiers for

each GO term comes from the hierarchical nature of the Gene Ontology; a protein can

be associated with a term but not associated with its parent, which violates the hierarchy.

More recent research have used that information in their predictions (Mostafavi and Morris,

2009). GOstruct (Sokolov et al., 2013b) is a state-of-the-art SVM specifically designed for

automated function prediction; it represents the entire GO hierarchy as a binary vector.

Doing so enables prediction of all GO terms at once. The GOstruct framework will be used

throughout this dissertation in Chapters V and VI.

There have been two main critical assessments to evaluate the progress of automated

function prediction, Mousefunc (Peņa-Castillo et al., 2008) and Critical Assessment of Func-

tion Annotations (CAFA) http://biofunctionprediction.org. The goal of Mousefunc was to

provide GO predictions for a set of genes in M. Musculus. Labeled training data was pro-

vided (gene expression, PPI, protein domain information, and phylogenetic profiles) with

removed gene IDs to prevent supplementing the training data with other data. After much

evaluation, the main takeaway is we are unable to predict function well (at a recall of 20%,

they achieved 41% precision). CAFA is the most recent critical assessment. No training

data provided, only sequences with protein IDs; teams were free to use whatever data they

desired. The goal was to predict functions for sets of proteins from different organisms. The

main takeaway from CAFA is that there is still room for improvement.

During the CAFA competitions there have only been two teams to utilize text-mined

features for function prediction, they are described further within Chapters V and VI.

1.4 Dissertation goals

I now briefly describe the content, hypotheses tested, and main conclusions of each

dissertation chapter.

1.4.1 Chapter II

Chapter II presents a large-scale comparative evaluation of concept normalization in

the biomedical domain. The end goal was to establish baselines for normalization of con-

cepts from eight biomedical ontologies utilizing the Colorado Richly Annotated Full Text

(CRAFT) corpus. For most software packages, using the default parameters is common
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practice; one hypothesis tested is that ontologies would perform better under different

parameters. I performed full parameter exploration of three different dictionary lookup

systems (NCBO Annotator, MetaMap, and ConceptMapper) and reach the conclusion that

for most ontologies the defaults are not optimal. In fact, optimal parameters are different

based upon ontological characteristics. With this knowledge, I provide recommendations

for best parameter settings for use with any ontology noting specific characteristics.

Additional topics such as tuning parameters for precision or recall, exploring interacting

parameters, and tool ease of use are discussed. One thing that will become very evident

throughout the chapter is the importance of morphological variation for matching text to

a dictionary; this idea is further explored and used in Chapter III. Another important

result of the work in this chapter is a user friendly concept normalization and evaluation

pipeline. This pipeline has been utilized in all subsequent chapters along with various

projects not presented in this thesis. It is made public and freely available and presented

for the advancement of the concept normalization field.

1.4.2 Chapter III

Having established baselines for concept normalization and noting the poor performance

on the complex Molecular Function and Biological Process branches of the Gene Ontology,

Chapter III focuses on improving performance, specifically recall, of concepts from the Gene

Ontology. To achieve this goal, I manually created natural language synonym generation

rules that take into account the known compositional nature of GO concepts. First, con-

cepts are recursively decomposed into their smallest composite concepts, then synonyms

are generated for these concepts through derivational rules, finally as synonyms are com-

positionally combined, syntactic variation is introduced. Applying the rules generates ∼1.5

million new synonyms for over two-thirds of all concepts in GO. The hypothesis that over-

generation will not hinder performance due to incorrect synonyms not being found in text

was tested and confirmed.

Both intrinsic and extrinsic evaluations were performed to estimate impact of the gen-

erated synonyms on normalization of concepts. The CRAFT corpus was used for intrinsic

evaluation and an increase in F-measure performance of ∼0.2 was seen. A large collection of
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one million full text documents was used for extrinsic evaluation. Manual validation and er-

ror analysis of random representative samples reveals that synonyms generated through the

rules have reasonable accuracy (0.82) while the accuracy over all concepts is higher (0.88).

The synonyms generated help increase recall of GO concepts by bridging the gap between

representing in ontology and expression in natural language. Compositional rules are not

only useful for GO, I discuss and provide examples of how similar rules could generalize to

other biomedical ontologies.

1.4.3 Chapter IV

Chapter IV marks a shift in the thesis; moving from a focus on the task of concept

normalization to the application of concept normalization for biomedical discovery. The first

application discussed is the ability of text-mined GO concepts to predict disease related or

pharmacogenes on a genome-wide scale; genes where a variant could affect drug response or

be implicated within a disease. The hypothesis that there is a common set of functions that

known pharmacogenes share is tested and confirmed; the common set of enriched functions

shared by known pharmacogenes is analyzed. Using this as a basis for classification, I explore

multiple machine learning algorithms with combinations of curated GO functions, text-

mined GO terms, and surface linguistic features (bigrams and collocations). Using an SVM

implementation and text-mined GO terms and bigrams as features the classifier was able to

distinguish known pharmacogenes from a background set with an F-measure performance

of 0.86 and AUC of 0.860 on 5-fold cross validation. Using only information mined from

the literature, our classifier was able to predict 114 yet uncurated pharmacogenes.

The top 10 predicted pharmacogenes, ranked by similarity to the known pharmacogenes,

were manually examined with respect to other datasources. When the work was originally

done, none of the predicted genes had clinical annotations within PharmGKB, but a few had

specific variants associated with disease from OMIM. As time passes, curated annotations

within databases accrue and are able to serve as new knowledge and validate predictions

made by past experiments. In the ∼2 years since the original evaluation in this chapter

was performed, 6 of the top 10 predicted genes now have at least one clinical variant within

PharmGKB and a few have new disease variants.
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1.4.4 Chapter V

Chapter V continues the application of concept normalization for biomedical discovery;

this chapter outlines my work on the automated function prediction task. We introduce

the idea of a co-mention – co-occurrence of two entities within a predefined span of text.

These are the primary literature features utilized for function prediction. I explore different

ways to combine co-mention feature sets. They are combined with sequence- and network-

based features within the GOstruct framework, a state-of-the-art support vector machine

framework designed for prediction of Gene Ontology terms.

I begin by discussing our work pertaining to the first and second Critical Assessment

of Functional Annotation (CAFA), a community challenge for automated function predic-

tion. Each competition had slightly different goals and evaluation criteria. I highlight the

differences and discuss the impact on both protein and GO concept normalization and lit-

erature collection selection. For both systems designed for a CAFA challenge we performed

external experimentation and validation of predictions. I present two different evaluations

of literature features vs. sequence- and network-based features and the combination. I find

that literature features alone approach the performance of commonly used sequence-based

features but the combination of both produces the best predictions.

1.4.5 Chapter VI

The dissertation concludes with an in-depth study on the impact of literature features

on the function prediction task. This is the culmination of my work on concept normaliza-

tion (presented in Chapters II and III) and function prediction (presented in Chapter V).

I specifically focus on normalization of GO concepts. Two sets of co-mentions are mined

from the literature with differing Gene Ontology dictionaries: 1) using only official Gene

Ontology information and 2) using the compositional Gene Ontology synonym generation

rules presented in Chapter III. I reach the conclusion that increasing the ability to recog-

nize GO concepts from the biomedical text leads to more informative function predictions.

Additionally, simple bag-of-words features are explored and produce surprisingly good per-

formance, but I argue the extra work required to recognize co-mentions is valuable because

it offers the ability to easily verify predictions based upon the specific literature context of
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co-mentions. To aid in manual analysis of co-mentions I developed a “medium-throughput”

co-mention curation pipeline that has the possibility of speeding up the process of protein

function curation.
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CHAPTER II

LARGE SCALE EVALUATION OF CONCEPT RECOGNITION2

2.1 Introduction

All chapters of my dissertation incorporate concept recognition to some extent. Before

any other work can be presented, it is important to explore how accurately systems can

recognize concepts from text. As described in Section 1.2.1, there have been very few

linguistic oriented concept recognition evaluations – where the concept is grounded to not

only an ontological identifier but also a specific span of text. This chapter evaluates three

dictionary based concept recognition systems and performs full parameter exploration.

This evaluation is important for my dissertation through establishing baselines of per-

formance for later comparison. It also aids in the determination of which the concept

recognition system is used and provides insights into correct parameter values to set for

best performance depending on ontological characteristics. This work has received lots

attention and is important for the field of natural language processing in that it is a linguis-

tically oriented and rigorous evaluation like none performed before for biomedical concept

recognition.

2.2 Background

Ontologies have grown to be one of the great enabling technologies of modern bioin-

formatics, particularly in areas like model organism database curation, where they have

facilitated large-scale linking of genomic data across organisms, but also in fields like anal-

ysis of high-throughput data (Khatri and Draghici, 2005) and protein function prediction

(Krallinger et al., 2005; Sokolov et al., 2013b). Ontologies have also played an important

role in the development of natural language processing systems in the biomedical domain,

which can use ontologies both as terminological resources and as resources that provide

important semantic constraints on biological entities and events (Hunter et al., 2008). On-

tologies provide such systems with a target conceptual representation that abstracts over

2The work presented in this chapter is republished with permission from: Large-scale
biomedical concept recognition: an evaluation of current automatic annotators and their
parameters (BMC bioinformatics 15.1 (2014): 59).
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variations in the surface realization of terms. This conceptual representation of the content

of documents in turn enables development of sophisticated information retrieval tools that

organize documents based on categories of information in the documents (Muller et al.,

2004; Doms and Schroeder, 2005; Van Landeghem et al., 2012).

Finally, ontologies themselves can benefit from concept recognition in text. Yao et al

(Yao et al., 2011) propose new ontology quality metrics that are based on the goodness

of fit of an ontology with a domain-relevant corpus. They note that a limitation of their

approach is the dependency on tools that establish linkages between ontology concepts and

their textual representations.

However, a general approach to recognition of terms from any ontology in text remains

a very open research problem. While there exist sophisticated named entity recognition

tools that address specific categories of terms, such as genes or gene products (Settles,

2005), protein mutations (Caporaso et al., 2007), or diseases (Jimeno, 2008; Leaman et al.,

2008), these tools require targeted training material and cannot generically be applied to

recognize arbitrary terms from large, fine-grained vocabularies (Doms and Schroeder, 2005).

Furthermore, as Brewster et al (Brewster et al., 2004) point out, there is often a disconnect

between what is captured in an ontology and what can be expected to be explicitly stated

in text. This is particularly true for relations among concepts, but it is also the case

that concepts themselves can be expressed in text with a huge amount of variability and

potentially ambiguity and underspecification (Verspoor et al., 2003; Cohen et al., 2008).

The work reported in this chapter to advance the state of the art in recognizing terms

from ontologies with a wide variety of differences in both the structure and content of the

ontologies and in the surface characteristics of terms associated with concepts in the ontol-

ogy. We evaluate a number of hypotheses related to the general task of finding references

to concepts from widely varying ontologies in text. These include the following:

• Not all concept recognition systems perform equally on natural language texts.

• The best concept recognition system varies from ontology to ontology.

• Parameter settings for a concept recognition system can be optimized to improve

performance on a given ontology.
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• Linguistic analysis, in particular morphological analysis, affects the performance of

concept recognition systems.

To test these hypotheses, we apply a variety of dictionary-based tools for recognizing

concepts in text to a corpus in which nearly all of the concepts from a variety of ontologies

have been manually annotated. We perform an exhaustive exploration of the parameter

spaces for each of these tools and report the performance of thousands of combinations

of parameter settings. We experiment with the addition of tools for linguistic analysis, in

particular morphological analysis. Along with reporting quantitative results, we give the

results of manual error analysis for each combination of concept recognition system and

ontology.

The gold standard used is the Colorado Richly Annotated Full-Text (CRAFT) Corpus

(Verspoor et al., 2012; Bada et al., 2012). The full CRAFT corpus consists of 97 completely

annotated biomedical journal articles, while the “public release” set, which consists of 67

documents, was used for this evaluation. CRAFT includes over 100,000 concept annotations

from eight different biomedical ontologies. Without CRAFT, this large-scale evaluation of

concept annotation would not have been possible, due to lack of corpora annotated with a

large number of concepts from multiple ontologies.

2.2.1 Related work

A number of tools and strategies have been proposed for concept annotation in text.

These include both tools that are generally applicable to a wide range of terminology re-

sources, and strategies that have been designed specifically for one or a few terminologies.

The two most widely used generic tools are the National Library of Medicine’s MetaMap

(Aronson, 2001) and NBCO’s Open Biomedical Annotator (NCBO Annotator)(Shah et al.,

2009), based on a tool from the University of Michigan called mgrep. Other tools, in-

cluding Whatizit (Rebholz-Schuhmann, 2008), KnowledgeMap (Denny et al., 2003, 2005),

CONANN (Reeve and Han, 2007), IndexFinder (Zou et al., 2003; Chu Wesley W, 2007),

Terminizer (Hancock et al., 2009), and Peregrine (Schuemie et al., 2007; Kang et al., 2012)

have been created but are not publicly available or appear not to be in widespread use.

We therefore focus our analysis in this work on the NCBO Annotator and MetaMap. In
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addition, we include ConceptMapper (Sandbox, 2009; Tanenblatt et al., 2010), a tool that

was not specifically developed for biomedical term recognition but rather for flexible look

up of terms from a dictionary or controlled vocabulary.

The tools mgrep and MetaMap have been directly compared on several term recognition

tasks (Shah et al., 2009; Stewart et al., 2012). These studies indicate that mgrep outper-

forms MetaMap in terms of precision of matching. Both studies also note that MetaMap

returns many more annotations than mgrep. Recall is not calculated in either study because

the document collections used as input were not fully annotated. By using a completely

annotated corpus such as CRAFT, we are able to generate not only precision but recall,

which gives a complete picture of the performance of the system.

The Gene Ontology (The Gene Ontology Consortium, 2000) has been the target of

several customized methods that take advantage of the specific structure and characteristics

of that ontology to facilitate recognition of its constituent terms in text (Krallinger et al.,

2005; Verspoor et al., 2005; Ray and Craven, 2005; Couto et al., 2005; Koike et al., 2005). In

this work, we will not specifically compare these methods to the more generic tools identified

above, as they are not applicable to the full range of ontologies that are reflected in the

CRAFT annotations.

The CRAFT corpus has been utilized previously in the context of evaluating the recog-

nition of specific categories of terms. Verspoor et al. (Verspoor et al., 2012) provide a

detailed assessment of named entity recognition tool performance for recognition of genes

and gene products. As with the work mentioned in the previous paragraph, these are spe-

cialized tools with a more targeted approach than we explore in this work, typically requiring

substantial amounts of training material tailored to the specific named entity category. We

do not repeat those experiments here as they are not relevant to the general problem of

recognition of terms from large controlled vocabularies.

2.2.2 A note on “concepts”

We are aware of the controversies associated with the use of the word “concept” with

respect to biomedical ontologies, but the content of this work is not affected by the conflict-
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ing positions on this issue; we use the word to refer to the tuple of namespace, identifier,

term(s), definition, synonym(s), and metadata that make up an entry in an ontology.

2.3 Methods

2.3.1 Corpus

We used version 1.0, released October 19, 2012, of the Colorado Richly Annotated

Full Text Corpus (CRAFT) data set (Verspoor et al., 2012; Bada et al., 2012). The full

corpus consists of 97 full-text documents selected from the PubMed Central Open Access

subset. Each document in the collection serves as evidence for at least one mouse functional

annotation. For this work we used the “public release” subsection, which consists of 21,000

sentences from 67 articles. There are over 100,000 concept annotations from eight different

biomedical ontologies in this public subset. Each annotation specifies the identifier of the

concept from the respective ontology along with the beginning and end points of the text

span(s) of the annotation.

To fully understand the results presented, it is important to understand how CRAFT

was annotated (Bada et al., 2012). Here we present three guidelines. First, the text associ-

ated with each annotation in CRAFT must be semantically equivalent to the term from the

ontology with which it is annotated. In other words, the text, in its context, has the same

meaning as the concept used to annotate it. Second, annotations are made to a specific

ontology and not to a domain; that is, annotations are created only for concepts explicitly

represented in the given ontology and not to concepts that “should” be in the ontology but

are not explicitly represented. For example, if the ontology contains a concept representing

vesicles, but nothing more specific, a mention of “microvesicles” would not be annotated:

Even though it is a type of vesicle, it is not annotated because microvesicles are not ex-

plicitly represented in the ontology and annotating this text with the more general vesicle

concept would not be semantically equivalent, i.e., information would be lost. Third, only

text directly corresponding to a concept is tagged; for example, if the text “mutant vesicles”

is seen,“vesicles” is tagged by itself (i.e. without “mutant”) with the vesicle concept. Be-

cause only the most specific concept is annotated, there are no subsuming annotations; that

is, given an annotation of a text span with a particular concept, no annotations are made
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within this text span(s) with a more general concept even if they appear in the term. For

an example from the Cell Type Ontology, given the text “mesenchymal cell”, this phrase is

annotated with “CL:0000134 - mesenchymal cell” but the nested “cell” is not additionally

annotated with “CL:0000000 - cell”, as the latter is an ancestor of the former and therefore

redundant. There are very specific guidelines as to what text is included in an annotation

set out in Bada et al. (Bada et al., 2010).

2.3.2 Ontologies

The annotations of eight ontologies, representing a wide variety of biomedical termi-

nology, were used for this evaluation: 1-3) The three sub-ontologies of the Gene Ontology

(Biological Process, Molecular Function, Cellular Component) (The Gene Ontology Consor-

tium, 2000) 4) the Cell Type Ontology (Bard et al., 2005) 5) Chemical Entities of Biological

Interest Ontology (Degtyarenko, 2003) 6) the NCBI Taxonomy (Wheeler et al., 2006) 7)

the Sequence Ontology (Eilbeck et al., 2005) and 8) the Protein Ontology (Natale et al.,

2011). Versions of ontologies used along with descriptive statistics can be seen in Table 2.1.

CRAFT also contains Entrez Gene annotations, but these were analyzed in previous work

(Verspoor et al., 2012). The Gene Ontology (GO) aims to standardize the representation of

gene and gene product attributes; it consists of three distinct sub-ontologies, which are eval-

uated separately: Molecular Function, Biological Process, and Cellular Component. The

Cell Type Ontology (CL) provides a structured vocabulary for cell types. Chemical Entities

of Biological Interest (ChEBI) is focused on molecular entities, molecular parts, atoms, sub-

atomic particles, and biochemical roles and applications. NCBI Taxonomy (NCBITaxon)

provides classification and nomenclature of all organisms and types of biological taxa in the

public sequence database. The Sequence Ontology (SO) aims to describe the features and

attributes of biological sequences. The Protein Ontology (PRO) provides a representation

of protein-related entities.

2.3.3 Structure of ontology entries

The ontologies used are from the Open Biomedical Ontologies (OBO) (biomedical on-

tologies) flat file format. To help to understand the structure of the file, an entry of a
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Table 2.1: Characteristics of ontologies evaluated.

Ontology Version # Concepts Avg.
Term
Length

Avg.
Words
in
Term

Avg.
# Syn-
onyms

%
Have
Punc-
tua-
tion

%
Have
Nu-
merals

%
Have
Stop
Words

Cell Type 25:05:2007 838 20.0±9.5 3.0±1.4 0.5±1.1 11.6 4.8 3.3
Sequence 30:03:2009 1,610 21.6±13.3 3.1±1.0 1.4±1 91.9 6.6 9.3
ChEBI 28:05:2008 19,633 25.5±24.2 4.3±4.8 2.0±2.5 54.8 41.3 0
NCBITaxon 12:07:2011 789,538 24.6±10.2 3.6±2.0 N/A 53.7 56.0 0.3
GO-MF 28:11:2007 7,984 39.1±15.4 4.6±2.2 2.8±4.6 52.8 26.6 2.7
GO-BP 28:11:2007 14,306 40.1±19.0 5.0±2.7 2.1±2.5 23.5 7.0 45.7
GO-CC 28:11:2007 2,047 26.6±14.2 3.6±1.7 0.1±0.9 29.5 14.4 6.8
Protein 22:04:2011 26,807 38.4±18.5 5.5±2.5 3.1±3.2 68.4 74.8 4.3

concept from CL is shown below. The only parts of an entry used in our systems are the id,

name, and synonym rows. Alternative ways to refer to terms are expressed as synonyms;

there are many types of synonyms that can be specified with different levels of relatedness

to the concept (exact, broad, narrow, and related). An ontology contain a hierarchy among

its terms; these are expressed in the “is a” entry. Terms described as “ancestors”, “less

specific”, or “more general” lie above the specified concept in the hierarchy, while terms

described as “more specific” are below the specified concept.

id: CL:0000560

name: band form neutrophil

def: “A late neutrophilic metamyelocyte in which the nucleus is in the form of a curved
or coiled band, not having acquired the typical multi lobar shape of the mature neu-
trophil.”

synonym: “band cell” EXACT

synonym: “rod neutrophil” EXACT

synonym: “band” NARROW

is a: CL:0000776 ! immature neutrophil

relationship: develops from CL:0000582 neutrophilic metamyelocyte

2.3.4 A note on obsolete terms

Ontologies are ever changing: new terms are added, modifications are made to others,

and others are made obsolete. This poses a problem because obsolete terms are not removed
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from the ontology, but only marked as obsolete in the obo flat file. The dictionary-based

methods used in our analysis do not distinguish between valid or obsolete terms when

creating their dictionaries, so obsolete terms may be returned by the systems. A filter

was incorporated to remove obsolete terms returned (discussed more below). Not filtering

obsolete terms introduces many false positives. For example, the terms “GO:0005574 -

DNA” and “GO:0003675 - protein” are both obsolete in the cellular component branch of

the Gene Ontology and are mentioned very frequently within the biomedical literature.

2.3.5 Concept recognition systems

We evaluated three concept recognition systems, NCBO Annotator (NCBO Annota-

tor)(Jonquet et al., 2009), MetaMap (Aronson, 2001), and ConceptMapper (Sandbox, 2009;

Tanenblatt et al., 2010). All three systems are publicly available and able to produce an-

notations for many different ontologies but differ in their underlying implementation and

amount of configurable parameters. The full evaluation results are available for download

at http://bionlp.sourceforge.net/.

NCBO Annotator is a web service provided by the National Center for Biomedical

Ontology (NCBO) that annotates textual data with ontology terms from the UMLS and

BioPortal ontologies. The input text is fed into a concept recognition tool (mgrep) and

annotations are produced. A wrapper (Roeder et al., 2010) programmatically converts an-

notations produced by NCBO into xml, which is then imported into our evaluation pipeline.

The evaluations from NCBO Annotator were performed in October and November 2012.

MetaMap (MM) is a highly configurable program created to map biomedical text to

the UMLS Metathesaurus. MM parses input text into noun phrases and generates variants

(alternate spellings, abbreviations, synonyms, inflections and derivations) from these. A

candidate set of Metathesaurus terms containing one of the variants is formed, and scores

are computed on the strength of mapping from the variants to each candidate term. In

contrast to a Web service, MM runs locally; we installed MM v.2011 on a local Linux server.

MM natively works with UMLS ontologies, but not all ontologies that we have evaluated

are a part of the UMLS. The optional data file builder (Rodgers et al.) allows MM to use

any ontology as long as they can be formatted as UMLS database tables; therefore, a Perl
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script was written to convert the ontology obo files to UMLS database tables following the

specification in the data file builder overview.

ConceptMapper (CM) is part of the Apache UIMA (Ferrucci and Lally, 2004) Sandbox

and is available at http://uima.apache.org/d/uima-addons-current/ConceptMapper. Ver-

sion 2.3.1 was used for these experiments. CM is a highly configurable dictionary lookup

tool implemented as a UIMA component. Ontologies are mapped to the appropriate dic-

tionary format required by ConceptMapper. The input text is processed as tokens; all

tokens within a span (sentence) are looked up in the dictionary using a configurable lookup

algorithm.

2.3.6 Parameter exploration

Each system’s parameters were examined and configurable parameters were chosen.

Table 2.2 gives a list of each system with the chosen parameters along with a brief description

and possible values.

2.3.7 Evaluation pipeline

An evaluation pipeline for each system was constructed and run in UIMA (IBM, 2009).

MM produces annotations separate from the evaluation pipeline; UIMA components were

created to load the annotations before evaluation. NCBO Annotator is able to produce

annotations and evaluate them within the same pipeline, but NCBO Annotator annotations

were cached to avoid hitting the Web service continually. Like MM, a separate analysis

engine was created to load annotations before evaluation. CM produces annotations and

evaluates them in a single pipeline.

Evaluation pipelines for each system have a similar structure. First, the gold standard

is loaded; then, the system’s annotations are loaded, obsolete annotations are removed,

and finally a comparison is made. CRAFT was not annotated with obsolete terms, so the

obsolete terms filtered out are those that are obsolete in the version of the ontology used

to annotate CRAFT.

CM and MM dictionaries were created with the versions of the ontologies that were

used to annotate CRAFT. Since NCBO Annotator is a Web service, we do not have control
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over the versions of ontologies used; it uses newer versions with more terms. To remove

spurious terms not present in the ontologies used to annotate CRAFT, a filter was added

to the NCBO Annotator evaluation pipeline. The NCBO Annotator specific filter removes

terms not present in the version used to annotate CRAFT and ensures that the term is not

Table 2.2: System parameter description and values. Parameters that were eval-
uated for each system along with a description and possible values are listed in all capital
letters. For the most part, parameters are self-explanatory, but for more information see
documentation for each system. CM (Sandbox, 2009), NCBO Annotator (Jonquet et al.,
2009), MM (Aronson, 2001).

NCBO Annotator Parameters
Parameter Description andPossible Values
wholeWordOnly Term recognition must match whole words - (YES, NO)
filterNumber Specifies whether the entity recognition step should filter numbers - (YES,

NO)
stopWords List of stop words to exclude from matching - (PubMed- commonly found

terms from PubMed, NONE)
stopWordsCaseSensitive Whether stop words are case sensitive - (YES, NO)
minTermSize Specifies minimum length of terms to be returned - (ONE, THREE, FIVE)
withSynonyms Whether to include synonyms in matching - (YES, NO)

MetaMap Parameters
Parameter Description and Possible Values
model Determines which data model is used - (STRICT - lexical, manual, and syn-

tactic filtering are applied, RELAXED - lexical and manual filtering are used)
gaps Specifies how to handle gaps in terms when matching - (ALLOW, NONE)
wordOrder Specifies how to handle word order when matching - (ORDER MATTERS,

IGNORE)
acronymAbb Determines which generated acronym or abbreviations are used - (NONE,

DEFAULT, UNIQUE - restricts variants to only those with unique expan-
sions)

derivationalVars Specifies which type of derivational variants will be used - (NONE, ALL,
ONLY ADJ NOUN)

scoreFilter MetaMap reports a score from 0-1000 for every match, with 1000 being the
highest, those matches with scores ≤ will be returned - (0, 600, 800, 1000)

minTermSize Specifies minimum length of terms to be returned - (ONE, THREE, FIVE)

ConceptMapper Parameters
Parameter Description and Possible Values
searchStrategy Specifies the dictionary lookup strategy - (CONTIGUOUS - longest match

of contiguous tokens, SKIP ANY - returns longest match of not-necessarily
contiguous tokens and next lookup begin in next span, SKIP ANY ALLOW
OVERLAP - returns longest match of not-necessarily contiguous tokens in
the span and next lookup begin after next token)

caseMatch Specifies the case folding mode to use - (IGNORE - fold everything to lower
case, INSENSITIVE - fold only tokens with initial caps to lowercase, SEN-
SITIVE - no folding, FOLD DIGIT - fold only tokens with digits to lower
case)

stemmer Name of the stemmer to use before matching - (Porter- classic stemmer that
removes common morphological and inflectional endings from English words,
BioLemmatizer- domain specific lemmatization tool for the morphological
analysis of biomedical literature presented in Liu et al. (Liu et al., 212),
NONE)

orderIndependentLookup Specifies if ordering of tokens within a span can be ignored - (TRUE, FALSE)
findAllMatches Specifies if all matches will be returned - (TRUE, FALSE - only the longest

match will be returned)
stopWords List of stop words to exclude from matching - (PubMed- commonly found

terms from PubMed, NONE)
synonyms Specifies which synonyms will be included when creating the dictionary -

(EXACT ONLY, ALL)
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obsolete in the version used to annotate CRAFT. Because the versions of the ontologies

used in CRAFT are older, it may be the case that some terms annotated in CRAFT are

obsolete in the current versions. All systems were restricted to only using valid terms from

the versions of the ontology used to annotate CRAFT.

All comparisons were performed using a STRICT comparator, which means that ontol-

ogy ID and span(s) of a given annotation must match the gold-standard annotation exactly

to be counted correct. A STRICT comparator was chosen because it was our desire to

see how well automated methods can recreate exact human annotations. A pitfall of the

using a STRICT comparator is that a distinction cannot be made between erroneous terms

vs. those along the same hierarchical lineage; both are counted as fully incorrect in our

analysis. For example, if the gold standard annotation is “GO:0005515 - protein binding”

and “GO:0005488 - binding” is returned by a system, partial credit should be given because

“binding” is an ancestor of “protein binding”. Future comparisons could address this limi-

tation by accounting for the hierarchical relationship in the ontology by counting those less

specific terms as partially correct by using hierarchical precision/recall/F-measure as seen

in Verspoor et al (Verspoor et al., 2006).

The output is a text file for each parameter combination listing true positives (TP),

false positives (FP), and false negatives (FN) for each document as well as precision (P),

recall (R), and F-measure (F) (Calculations of P, R, and F can be seen in formulas 2.1, 2.2,

and 2.3). Precision, recall, and F-measure are calculated over all annotations across all

documents in CRAFT, i.e. as a macro-average.

P = TP

TP + FP
(2.1)

R = TP

TP + FN
(2.2)

F = 2 ∗ P ∗R
P +R

(2.3)
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2.3.8 Statistical analysis

The Kruskal-Wallis statistical method was chosen to test significance for all our com-

parisons because it is a non-parametric test that identifies differences between ranked group

of variables. It is appropriate for our experiments because we do not assume our data fol-

lows any particular distribution and desire to determine if the distribution of scores from a

particular experimental condition, such as tool or parameters, are different from the others.

The implementation built into R was used (kruskal.test). Kruskal-Wallis was applied in

three different ways:

1. For each ontology, Kruskal-Wallis was used to determine if there is a significant differ-

ence in F-measure performance between tools. The mean and variance was computed

across all parameter combinations for a given tool, calculated at the corpus level using

the macro-average F-measure and provided as input to Kruskal-Wallis.

2. For each tool, Kruskal-Wallis was used to determine if there is a difference in per-

formance between parameter values for each parameter. The mean and variance was

computed across all parameter values for a given parameter, calculated at the corpus

level using the macro-average F-measure.

3. Results from Kruskal-Wallis only determine if there is a difference between the groups

but does not provide insight into how many differences or between which groups a

difference exists. When a significant difference was seen between three or more groups,

Kruskal-Wallis was used between a post hoc test to identify the significantly different

group(s).

Significance is determined at a 99% level, α = 0.01; because there are multiple comparisons,

a Bonferroni correction was used, and the new significance level is α = 0.00036.

2.3.9 Analysis of results files

For each ontology-system pair, an analysis was performed on the maximum F-measure

parameter combination. We did not analyze every annotation produced by all systems but

made sure to account for ∼70-80% of them. By performing the analysis this way, we are

concentrating on the general errors and terms missed rather than rare errors.
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For each maximum F-measure parameter combination file, the top 50-150 (grouped

by ontology ID and ranked by number of annotations for each ID) of each true positive

(TP), false positive (FP), and false negative (FN) were analyzed by separating them into

groups of like annotations. For example, the types of bins that FPs fall into are: “errors

from variants”, “errors from ambiguous synonyms”, “errors due to identifying less specific

concepts”, etc., and are different than the bins into which TPs or FNs are categorized.

Because we evaluated all parameter combinations, we were able to examine the impact

of single parameters by holding all other parameters constant. The maximum F-measure

producing parameter combination result file and the complementary result file with varied

parameter were run through a graphical difference program, DiffMerge, to examine the

annotations found/lost by varying the parameter. Examples mentioned in the Results and

discussion are from this comparison.

2.4 Results and discussion

Results and Discussion are broken down by ontology and then by tool. For each ontology

we present three different levels of analysis:

1. At the ontology level. This provides a synopsis of overall performance for each

system with comments about common terms correct (TPs), errors (FPs), and cat-

egories missed (FNs). Specific examples are taken from the top-performing, highest

F-measure parameter combination.

2. A high-level parameter analysis, performed over all parameter combinations. This

allows for observation about impact on performance seen by manipulating parameter

values, presented as ranges of impact.

3. A low-level analysis obtained from examining individual result files gives insight into

specific terms or categories of terms that are affected by manipulating parameters.

Within a particular ontology, each system’s performance is described. The most impact-

ful parameters are explored further and examples from variations on maximum F-measure

combination are provided to show the effect they have on matching. Results presented as
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Figure 2.1: Maximum F-measure for each system-ontology pair. A wide range of
maximum scores is seen for each system within each ontology.

numbers of annotations are of this type of analysis. We end the results and discussion

section with overall parameter analysis and suggestions for parameters on any ontology.

The best-performing result for each system-ontology pair is presented in Figure 2.1.

There is a wide range of F-measures for all ontologies, from <0.10 to 0.83. Not only is

there a wide range when looking at all ontologies, but a wide range can be seen within

each ontology. Two of our hypotheses are supported by this analysis: we can see that not

all concept recognition systems perform equally, and the best concept recognition system

varies from ontology to ontology.
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2.4.1 Best parameters

Based on analysis, the suggested parameters for maximum performance for each

ontology-system pair can be seen in Tables 2.3 and 2.4.

Table 2.3: Best performing parameter combinations for CL and GO subsections.
Suggested parameters to use that correspond to best score on CRAFT. Parameters where
choices don’t seem to make a difference in performance are represented as “ANY”.

Cell Type Ontology (CL)
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model ANY searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch INSENSITIVE
stopWords ANY wordOrder ORDER

MATTERS
stemmer Porter or Bi-

oLemmatizer
SWCaseSensitive ANY acronymAbb DEFAULT

or UNIQUE
stopWords NONE

minTermSize ONE or
THREE

derivationalVariants ALL orderIndLookup OFF

withSynonyms YES scoreFilter 0 findAllMatches NO
minTermSize 1 or 3 synonyms EXACT ONLY

Gene Ontology - Cellular Component (GO CC)
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model ANY searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch INSENSITIVE
stopWords ANY wordOrder ORDER

MATTERS
stemmer Porter

SWCaseSensitive ANY acronymAbb DEFAULT
or UNIQUE

stopWords NONE

minTermSize ONE or
THREE

derivationalVariants ANY orderIndLookup OFF

withSynonyms ANY scoreFilter 0 or 600 findAllMatches NO
minTermSize 1 or 3 synonyms EXACT ONLY

Gene Ontology - Molecular Function (GO MF)
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly NO model ANY searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch ANY
stopWords ANY wordOrder ORDER

MATTERS
stemmer BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT
or UNIQUE

stopWords NONE

minTermSize ANY derivationalVariants ANY orderIndLookup OFF
withSynonyms NO scoreFilter 0 or 600 findAllMatches NO

minTermSize 1 or 3 synonyms EXACT ONLY
Gene Ontology - Biological Process (GO BP)

NCBO Annotator MetaMap ConceptMapper
Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model ANY searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch INSENSITIVE
stopWords ANY wordOrder ORDER

MATTERS
stemmer Porter

SWCaseSensitive ANY acronymAbb ANY stopWords NONE
minTermSize ANY derivationalVariants ADJ NOUN

VARS
orderIndLookup OFF

withSynonyms YES scoreFilter 0 findAllMatches NO
minTermSize 5 synonyms ALL

28



2.4.2 Cell Type Ontology

The Cell Type Ontology (CL) was designed to provide a controlled vocabulary for

cell types from many different prokaryotic, fungal, and eukaryotic organisms. Out of all

Table 2.4: Best performing parameter combinations for SO, ChEBI,
NCBITaxon, and PRO. Suggested parameters to use that correspond to best score
on CRAFT. Parameters where choices don’t seem to make a difference in performance are
represented as “ANY”.

Sequence Ontology (SO)
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model STRICT searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch INSENSITIVE
stopWords ANY wordOrder ANY stemmer Porter or Bi-

oLemmatizer
SWCaseSensitive ANY acronymAbb DEFAULT

or UNIQUE
stopWords NONE

minTermSize THREE derivationalVariants NONE orderIndLookup OFF
withSynonyms YES scoreFilter 600 findAllMatches NO

minTermSize 3 synonyms EXACT ONLY
Protein Ontology (PRO)

NCBO Annotator MetaMap ConceptMapper
Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model ANY searchStrategy ANY
filterNumber ANY gaps NONE caseMatch CASE FOLD

DIGITS
stopWords PubMed wordOrder ANY stemmer NONE
SWCaseSensitive ANY acronymAbb DEFAULT

or UNIQUE
stopWords NONE

minTermSize ONE or
THREE

derivationalVariants NONE orderIndLookup OFF

withSynonyms YES scoreFilter 600 findAllMatches NO
minTermSize 3 or 5 synonyms ALL

NCBI Taxonomy
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model ANY searchStrategy SKIP ANY or

ALLOW
filterNumber ANY gaps NONE caseMatch ANY
stopWords ANY wordOrder ORDER

MATTERS
stemmer BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT
or UNIQUE

stopWords PubMed

minTermSize FIVE derivationalVariants NONE orderIndLookup OFF
withSynonyms ANY scoreFilter 0 or 600 findAllMatches NO

minTermSize 3 synonyms EXACT ONLY
ChEBI

NCBO Annotator MetaMap ConceptMapper
Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model STRICT searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch ANY
stopWords ANY wordOrder ORDER

MATTERS
stemmer BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT
or UNIQUE

stopWords NONE

minTermSize ONE or
THREE

derivationalVariants NONE orderIndLookup OFF

withSynonyms YES scoreFilter 0 or 600 findAllMatches YES
minTermSize 5 synonyms EXACT ONLY
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Figure 2.2: All parameter combinations for CL. The distribution of all parameter
combinations for each system on CL. (MetaMap - yellow square, ConceptMapper - green
circle, NCBO Annotator - blue triangle, default parameters - red.)

ontologies annotated in CRAFT, it is the smallest, terms are the simplest, and there are

very few synonyms (Table 2.1). The highest F-measure seen on any ontology is on CL. CM

is the top performer (F=0.83), MM performs second best (F=0.69), and NCBO Annotator

is the worst performer (F=0.32). Statistics for the best scores can be seen in Table 2.5. All

parameter combinations for each system on CL can be seen in Figure 2.2.

Annotations from CL in CRAFT are heavily weighted towards the root node, “CL:0000000

- cell”; it is annotated over 2,500 times and makes up ∼44% of all annotations. To test

whether annotations of “cell” introduced a bias, all annotations of CL:0000000 were re-

moved and re-evaluated. (Results not shown here.) We see a decrease in F-measure of 0.08
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Table 2.5: Best performance for each ontology-system pair. Maximum F-measure
for each system on each ontology. Bolded systems produced the highest F-measure.

Cell Type Ontology (CL)
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.32 0.76 0.20 1169 379 4591
MetaMap 0.69 0.61 0.80 4590 3010 1170
ConceptMapper 0.83 0.88 0.78 4478 592 1282

Gene Ontology - Cellular Component (GO CC)
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.40 0.75 0.27 2287 779 6067
MetaMap 0.70 0.67 0.73 6111 2969 2341
ConceptMapper 0.77 0.92 0.66 5532 452 2822

Gene Ontology - Molecular Function (GO MF)
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.08 0.47 0.04 173 195 4007
MetaMap 0.09 0.09 0.09 393 3846 3787
ConceptMapper 0.14 0.44 0.08 337 425 3834

Gene Ontology - Biological Process (GO BP)
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.25 0.70 0.15 2592 1120 14321
MetaMap 0.42 0.53 0.34 5802 4994 11111
ConceptMapper 0.36 0.46 0.29 4909 5710 12004

Sequence Ontology (SO)
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.44 0.63 0.33 7056 4094 14231
MetaMap 0.50 0.47 0.54 11402 12634 9885
ConceptMapper 0.56 0.56 0.57 12059 9560 9228

ChEBI
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.56 0.7 0.46 3782 1595 4355
MetaMap 0.42 0.36 0.50 4424 8689 3717
ConceptMapper 0.56 0.55 0.56 4583 3687 3554

NCBI Taxonomy
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.04 0.16 0.02 157 807 7292
MetaMap 0.45 0.31 0.88 6587 14954 862
ConceptMapper 0.69 0.61 0.79 5857 3793 1592

Protein Ontology (PRO)
System F-measure Precision Recall # TP # FP # FN
NCBO Annotator 0.50 0.49 0.51 7958 8288 7636
MetaMap 0.36 0.39 0.34 5255 8307 10339
ConceptMapper 0.57 0.57 0.57 8843 6620 6751

for all systems and are able to identify similar trends in the effect of parameters when “cell”

is not included. We can conclude that “cell” annotations do not introduce any bias.

Precision on CL is good overall, the highest being CM (0.88) and the lowest being MM

(0.60), with NCBO Annotator in the middle (0.76). Most of the FPs found are due to

partial term matching. “CL:0000000 - cell” makes up more than 50% of total FPs because

it is contained in many terms and is mistakenly annotated when a more specific term cannot

be found. Besides “cell”, terms recognized that are less specific than the gold standard are

“CL:0000066 - epithelial cell” instead of “CL:0000082 - lung epithelial cell” and “CL:0000081
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- blood cell” instead of “CL:0000232 - red blood cell”. MM finds more FPs than the other

systems, many of these due to abbreviations. For example, MM incorrectly annotates the

span “ES cells” with “CL:0000352 - epiblast cell” and “CL:0000034: stem cell”. By utilizing

abbreviations, MM correctly annotates “NCC” with “CL:0000333 - neural crest cell”, which

the other two systems do not find.

Recall for CM and MM are over 0.8 while NCBO Annotator is 0.2. The low recall

seen from NCBO Annotator is due to the fact that it is unable to recognize plurals of terms

unless they are explicitly stated in the ontology; it correctly finds “melanocyte” but does not

recognize “melanocytes”, for example. Because CL is small and its terms are quite simple,

there are only two main categories of terms missed: missing synonyms and conjunctions.

The biggest category is insufficient synonyms. We find “cone” and “cone photoreceptor”

annotated with “CL:0000573 - retinal cone cell” and “photoreceptor(s)” annotated with

“CL:0000210 - photoreceptor cell”; these two examples make up 33% (400 out of 1,200)

of annotations missed by all systems. No systems found any annotations that contained

conjunctions. For example, for the text span “retinal bipolar, ganglion, and rod cells”, three

cell types are annotated in CRAFT: “CL:0000748 - retinal bipolar neuron”, “CL:0000740 -

retinal ganglion cell”, and “CL:0000604 - retinal rod cell”.

2.4.2.1 NCBO Annotator parameters

Two parameters were found to be statistically significant: wholeWordsOnly (p=2.24 ×

10−6) and minTermSize (p=9.68 × 10−15). By using wholeWordsOnly = yes precision is

increased 0.6-0.7 with no change in recall; because of low recall, F-measure is only increased

by 0-0.1. Allowing matching to non-whole words finds ∼100 more correct annotations but

also ∼7500 more FPs. Correct annotations found are mostly due to hyphenated spans:

“one-neuron” is correctly annotated with “CL:0000540: neuron” and “fibroblast-like” with

“CL:0000057 - fibroblast”. About half of the FPs found are due to plurals, “cell” is found

within “cells” and “cellular”, while “neuron” is found within “neuronal” and “neurons”.

There are FPs because the beginning and end of the text span do not match exactly.

Synonyms can be misleading when mixed with matching non-whole words. “CL:0000502

- type D enteroendocrine cell” has a synonym “D cell”, which is found in the following
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spans “shaped cells”, “elongated cells”, “Disorganized cellular”. Correct terms found do

not outweigh the errors introduced, so it is most effective to restrict matching to only whole

words.

There is no difference between filtering terms of size one or three characters. When

filtering out terms less than five characters, recall drops 0.15 and F-measure decreases

0.1-0.2. Since “cell” is less than five characters and makes up a large proportion of the

annotations, it is understandable why a large decrease in performance is seen. It is best to

only filter smaller terms, less than one or three characters.

2.4.2.2 MetaMap parameters

Three MM parameters were found to be statistically significant: scoreFilter (p=2.2 ×

10−16), minTermSize (p=1.1×10−9), and gaps (p=8.9×10−8). scoreFilter and minTermSize

act as a filter on terms and do not effect the way matching is performed. The best F-

measures on CL do not filter any terms, so a score of 0 is suggested. For the same reasons

as the NCBO Annotator parameter minTermSize seen above, one and three are best for

filtering term length.

The gaps parameter allows skipping tokens to facilitate matching. Allowing gaps in-

creases R <0.05 and decreases P 0-0.2, with a loss of 0.1 in F. Allowing gaps proved useful,

and found∼200 more correct terms. We found words of some term names were not needed to

fully express meaning: “apoptotic cell(s)” is correctly annotated with “CL:0000445 - apop-

tosis fated cell”. Allowing gaps also introduces ∼1200 more incorrect annotations. Terms

that are less specific than the annotations seen in CRAFT are incorrectly recognized, such

as: “hair cell(s)” being annotated with “CL:0000346 - hair follicle dermal papilla cell”. Mix-

ing abbreviations and gaps produced an interesting incorrect result: “ES cell(s)” is now

annotated with “CL:0000715 - embryonic crystal cell”. Due to such introduced errors, al-

though allowing gaps found an increased number of correct terms, the overall F-measure

decreased.

2.4.2.3 ConceptMapper parameters

Four CM parameters were found to be statistically significant: stemmer (p=2.2×10−16),

orderIndependentLookup (p=3.26 × 10−7), searchStrategy (p=2.2 × 10−16), and synonyms
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(p=5.24×10−3). It is not conclusive as to which stemmer to use (Porter or BioLemmatizer),

but the fact is clear that a stemmer should be used. Not using a stemmer decreases recall

by 0.6 with no change in precision. Using a stemmer allows “neuron” to be converted to

“neuronal”, “apoptosis” to be found as “apoptotic”, and most importantly allows plurals

to be found. Without a stemmer, performance is very similar to the NCBO Annotator.

The parameter searchStrategy controls the way possible matches are found in the dictio-

nary. contiguous produces highest performance, with an increase in R of 0.1-0.3 and an

increase in P of 0.2-0.4 over the other values. Allowing CM to ignore tokens converts cor-

rect annotations into incorrect annotations because the span length increases to encompass

more tokens. Using contiguous matching, the span “hair cells” is correctly annotated

with “CL:0000855 - sensory hair cell” but when skip any match is used we see a com-

pletely different annotation, “cochlear immature hair cells” is incorrectly annotated with

“CL:0000202 - auditory hair cell”. It should be noted that this is considered to be an in-

correct annotation in our analysis. By employing a comparator that takes into account the

hierarchy of the ontology, this could be given partial credit since “sensory hair cell” is a

parent of “auditory hair cell” (Verspoor et al 2006) We can also get complete nonsense when

mixing synonyms and searchStrategy: “CL:0000570 - parafollicular cell” has a synonym “C

cell” which gets annotated to “C) Positive control showing granule cells” and masks the

correct annotation of “CL:0000120 - granule cell”.

When using exact synonyms over all we see an increase in P of 0.1-0.15 with no

change in R. Using all synonyms, ∼400 more incorrect annotations are produced; broad

synonyms are the cause. “CL:0000562 - nucleate erythrocyte” and “CL:0000595 - enucleate

erythrocyte” both have broad synonyms of “red blood cell” and “RBC”, which are found

many times. Also, “CL:0000560 - band form neutrophil” has a broad synonym “band” which

is not specific; it could be talking about a band on a gel or referring to muscle. Because CL

doesn’t contain many synonyms, the meaning is contained well enough to only use exact

synonyms.
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Figure 2.3: All parameter combinations for GO CC. The distribution of all param-
eter combinations for each system on GO CC. (MetaMap - yellow square, ConceptMapper
- green circle, NCBO Annotator - blue triangle, default parameters - red.)

2.4.3 Gene Ontology - Cellular Component

The cellular component branch of the Gene Ontology describes locations at the levels

of subcellular structures and macromolecular complexes. It is useful for annotating where

gene products have been found to be localized. GO CC is similar to CL in that it is a

smaller ontology and contains very few synonyms, but the terms are slightly longer and

more complex than CL (Table 2.1). Performance from CM (F=0.77) is the best, with

MM (F=0.70) second, and NCBO Annotator (F=0.40) third (Table 2.5). All parameter

combinations for each system on GO CC can be seen in Figure 2.3.
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Just as in CL, there are many annotations to “GO:0005623 - cell”, 3,647 or 44% of all

8,354 annotations. We removed annotations of “cell” and saw a decrease in performance.

Unlike CL, removal of these annotations does not affect all systems consistently. CM sees

a large decrease in F-measure (0.2), while MM and NCBO Annotator see decreases of 0.08

and 0.02, respectively.

Precision for all parameter combinations of CM and MM are over 0.50, with the highest

being CM at 0.92. NCBO Annotator widely varies from < 0.1 to 0.85. Because precision

is high, there are very few FPs that are found. The FPs in common by all systems are due

to less specific terms being found and ambiguous terms; NCBO Annotator also finds FPs

from broad synonyms and MM specific errors are from abbreviations. Most of the common

FPs are mentions that are less specific than the gold standard, due to higher-level terms

contained within lower-level ones. For instance, “GO:0016020 - membrane” is found instead

of a more specific type of membrane such as “vesicle membrane”, “plasma membrane”, or

“cellular membrane”. All systems find ∼20 annotations of “GO:0042603 - capsule” when

none are seen in CRAFT; this is due to overloaded terms from different biomedical domains.

Because NCBO Annotator is a Web service, we have no control over versions of ontologies

used, so it used a newer version of the ontology than that which was used to annotate

CRAFT and as inputted into CM and MM. ∼42% of NCBO Annotator FPs were because

“GO:0019814 - immunoglobulin complex, circulating” has a broad synonym “antibody”

added. Because MM generates variants and incorporates synonyms, we see an interesting

error produced from MM: “hair(s)” get annotated with “GO:0009289 - pilus”. It is not

understandable why MM would assume this because “hair” is not a synonym, but in the

GO definition, pilus is described as a “hair-like appendage”.

MM achieves the highest recall of 0.73 with CM slightly lower at 0.66 and NCBO An-

notator the lowest (0.27). NCBO Annotator’s inability to recognize plurals and generate

variants significantly hurts recall. NCBO Annotator can annotate neither “vesicles” with

“GO:0031982 - vesicle” nor “autosomal” with “GO:0030849 - autosome”, which both CM

and MM correctly annotate. The largest category of missed annotations represents other

ways to refer to terms not in the synonym list. In CRAFT, “complex(es)” is annotated

with “GO:0032991 - macromolecular complex”, and “antibody”, “antibodies”, “immune
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complex”, and “immunoglobulin” are all annotated with “GO:0019814 - immunoglobulin

complex”, but no systems are able to identify these annotations because these synonyms

do not exist in the ontology. MM achieves highest recall because it identifies abbrevia-

tions that other systems are unable to find. For example, “chr” is correctly annotated

with “GO:0005694 - chromosome”, “ER” with “GO:0005783 - endoplasmic reticulum”, and

“ECM” with “GO:0031012 - extracellular matrix”.

2.4.3.1 NCBO Annotator parameters

Two parameters were found to be significant: minTermSize (p=5.9× 10−8) and whole-

WordsOnly (p=3.7× 10−9). Given that 44% of annotations in CRAFT are “cell”, filtering

terms less than five characters removes many correct annotations. There is no difference

between filtering one and three length terms. If using the combination of wholeWordsOnly

= no and synonyms = yes, which we do not recommend, it is better to filter terms less than

three. “GO:0005783 - endoplasmic reticulum” has a synonym “ER” which is a common

combination of letters seen ∼32,500 times in CRAFT in words such as “other”, “were”,

“experiments”, and “promoter”. Using wholeWordsOnly = no allows NCBO Annotator to

find ∼250 more correct annotations (e.g. “membrane-bound” is correctly annotated with

“GO:0016020 - membrane” and “collagen-related” with “GO:0005581 - collagen”), but it

also finds ∼41,000 more false positives (including erroneous annotations of “er”). Examples

of incorrect terms found that are not due to synonyms are plurals, “vesicles” incorrectly

annotated with “GO:0031982 - vesicle”. These are counted as errors because we used a

strict comparator, where beginning and end of the text span must match. If a more lenient

comparator were used, these types of errors would be considered correct.

2.4.3.2 MetaMap parameters

Three parameters were found to be statistically significant: acronymAbb (p=1.2×10−5),

scoreFilter (p=2.2×10−16), and minTermSize (p=1.4×10−11). MM offers multiple ways to

compute and use acronyms or abbreviations to help resolve ambiguous terms. We find it best

to use the parameter values default or unique. The other value, all, uses all acronyms

or abbreviations. When using all instead of unique, we see a decrease in P of 0.05-0.2

and slight decrease in R; ∼80 less TPs and ∼1,500 more FPs are found by the maximum
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F-measure parameter combination. It is unclear why using all acronymAbb finds fewer

correct annotations than using only those with unique expansions. The annotations missed

appear to have nothing to do with acronyms or abbreviations but actually derivations.

Examples of annotations that were missed by using all instead of unique are “cytoplasmic”

annotated with “GO:0005737 - cytoplasm” and “cytoskeletal” annotated with “GO:0005856

- cytoskeleton”. Errors introduced by using all do look like they came from acronyms or

abbreviations. For example, “lung(s)”, “pulmonary artery”, “pulmonary”, “pathological”,

and “pathology” are all incorrectly annotated with “GO:0000407 - pre-autophagosomal

structure”, which has a synonym “PAS”. “PAS” is an abbreviation for “periodic acid-schiff”,

a staining method commonly used to stain glycoproteins in the lungs, but it is unlikely that

MM makes this linked logical jump; it is unclear why these terms get annotated. It is best

to use default or unique for acronymAbb.

It is best to not filter out many terms and use a scoreFilter of 0 or 600, because

R decreases 0.2-0.6 when using a score of 800 or 1000. Just like the NCBO Annotator

parameter examined above, filtering terms less than 5 characters removes many correct

annotations of “cell”; it is best to filter less than 1 or 3.

2.4.3.3 ConceptMapper parameters

Four parameters were found to be statistically significant: searchStrategy (p=2.2 ×

10−16), stemmer (p=2.2× 10−16), findAllMatches (p=4.8× 10−5), and synonyms (p=1.3×

10−4). The searchStrategy contiguous produces the best performance; we see an increase

in P of 0.1 over skip any allow overlap and increase in both P of 0.1 and R of 0.05 over

skip any match. Using any other searchStrategy besides contiguous allows correct an-

notations to be masked by inclusion of surrounding tokens. The span “chromatin granules

and fusion of membranes” is incorrectly annotated with “GO:0042584 - chromatin gran-

ule membrane” when using skip any match, but the underlined sub-span is correctly

annotated with “GO:0042583 - chromatin granule” when using contiguous matching.

It is significantly better to use a stemmer, which results in an increase in P of 0.1-0.2

and R of 0.4. It is not clear which stemmer is better. Since both stemmers have similar

performance, we will only discuss one. Using Porter over none introduces ∼3,000 correct
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Table 2.6: Word Length in GO - Biological Process.

# Words in
Term

# CRAFT
annotations

% found by
CM

% found by
MM

% found by
NCBO

5 7 14.3 14.3 14.3
4 109 17.4 3.7 9.2
3 317 37.2 33.4 35.0
2 2077 49.0 50.7 43.3
1 13574 27.6 34.2 11.6

annotations while only finding ∼150 errors. Plurals and variants such as “chromosomal”

and “chromosomes” are correctly annotated with “GO:0005694 - chromosome” and “cyto-

plasmic” correctly annotated with “GO:0005737 - cytoplasm”. Not all variants generated

by stemming are valid, for example, “fibrillate(s)” and “fibrillation” get annotated with

“GO:0043205 - fibril”. Overall, the majority of variants are helpful.

Creating dictionaries using all synonyms instead of exact decreases P 0.05 with no loss

of R. Broad synonyms are the source of these errors; “GO:0035003 - subapical complex” has

a broad synonym of “SAC” which is seen ∼100 times in PMID 17608565 as an abbreviation

for “starburst amacrine cells”. “GO:0019013 - viral nucleocapsid” has a broad synonym

of “core” which is found numerous times throughout CRAFT not referring to anything

viral. Like CL, there are very few synonyms in GO CC and we can conclude other types of

synonyms are not used frequently in text.

2.4.4 Gene Ontology - Biological Process

Terms from GO BP are complex; they have the longest average length, contain many

words, and almost half contain stop words (Table 2.1). The longest annotations from

GO BP in CRAFT contain five tokens. Distribution of annotations broken down by number

of words along with performance can be seen in Table 2.6. When dealing with longer and

more complex terms, it is unlikely to see them expressed exactly in text as they are seen in

the ontology. For these reasons, none of the systems performed very well. The maximum

F-measures seen by each system can be seen in Table 2.5. All parameter combinations

for each system on GO BP can be seen in Figure 2.4. Examining mean F-measures for

all parameter combinations, there is no difference in performance between CM (F=0.37)

and MM (F=0.42), but considering only the top 25% of combinations there is a difference
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Figure 2.4: All parameter combinations for GO BP. The distribution of all param-
eter combinations for each system on GO BP. (MetaMap - yellow square, ConceptMapper
- green circle, NCBO Annotator - blue triangle, default parameters - red.)

between the two. A statistical difference exists between NCBO Annotator (F=0.25) and all

others, under all comparison conditions.

Performance by all parameter combinations for all systems are grouped tightly along the

dimension of recall. Precision for all systems is in the range of 0.2-0.8, with NCBO Annota-

tor situated on the extremes of the range and CM/MM distributed throughout. Common

categories of FPs encountered by all three systems are recognizing parts of longer/more spe-

cific terms and having different annotation guidelines. As seen in the previous ontologies,

high-level terms are seen in lower level terms, which introduces errors in systems that find all

matches. For example, we see NCBO Annotator incorrectly annotate “GO:001625 - death”
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within “cell death”, and both CM and MM annotate “development” with “GO:00032502 -

developmental process” within the span “limb development”. Different annotation guidelines

also cause errors to be introduced, e.g. all systems annotate “formation” with “GO:0009058

- biosynthetic process” because it has a synonym “formation”, but in CRAFT “formation”

may be annotated with “GO:0032502 - developmental process”, “GO:0009058 - biosynthetic

process”, or “GO:0022607 - cellular component assembly”, depending on the context. Most

of the FPs common to both CM and MM are due to variant generation, for example,

CM annotates “region(s)” with “GO:003002 - regionalization” and MM annotates “regular”

and “regulator(s)” with “GO:0065007 - biological regulation”. Even though we see errors

introduced through generating variants, many more correct annotations are produced.

In the grouping of all systems performance, recall lies between 0.1-0.4, which is low in

comparison to most all other ontologies. More than ∼7,000 (>50-60%) of the FNs are due to

different ways to refer to terms not in the synonym list. The most missed annotation, with

over 2,200 mentions, are those of “GO:0010467 - gene expression”; different surface variants

seen in text are “expressed”, “express”, “expressing”, and “expression”. There are ∼800

discontiguous annotations that no systems are able to find. An example of a discontiguous

annotation is seen in the following span: the underlined text from “localization of the Ptdsr

protein” gets annotated with “GO:0008104 - protein localization”. Many of the annotations

in CRAFT cannot be identified using the ontology alone so improvements in recall can be

made by analyzing disparities between term name and the way they are expressed in text.

2.4.4.1 NCBO Annotator parameters

Only one parameter was found to be significant, wholeWordsOnly (p=1.33× 10−7). Al-

lowing NCBO Annotator to match non-whole words, only ∼70 more correct annotations

found while allowing ∼6000 more incorrect matches, resulting in a decrease in P of 0.1-0.5

with a small increase in R. Correct annotations found are due to hyphenated text, for ex-

ample, “gene expression” from the span “target-gene expression” and “one-gene expression”

are correctly annotated with “GO:0010467 - gene expression”. A few FP found are from

finding whole terms within other words in the text, e.g. “GO:0007618 - mating” found

within “estimating”. Using synonyms with matching of non-whole words introduces the
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majority of errors seen. For instance, “GO:0031028 - septation ignition signaling cascade”

has an exact synonym “SIN”, which is found ∼2200 times in words such as “using”, “single”,

“increasingly”, and “encompassing”. We suggest using wholeWordsOnly = yes for maxi-

mum F-measure and P.

2.4.4.2 MetaMap parameters

Three parameters were found to be significant: gaps (p=1.8× 10−6), derivationalVari-

ants (p=2.8× 10−10), and scoreFilter (p=2.2× 10−16). One way to approximate variation

in complex terms is to allow MM to skip tokens to find a match. By allowing gaps, ∼75

more TPs are found but the solution isn’t optimal because ∼7,500 more FPs are also found;

P decreases 0.2-0.3 with a small increase in R. Skipping tokens helps correctly annotate

“photoreceptor morphogenesis” with “GO:0008594 - photoreceptor cell morphogenesis” and

“meiotic checkpoint” with “GO:0033313 - meiotic cell cycle checkpoint”, but because of the

structure of terms in GO BP we see many more errors. Many terms share similar token

patters and by allowing MM to skip tokens many incorrect annotations are produced. For

example “regulated process” is incorrectly annotated with 193 different GO terms, such as

“GO:0009889 - regulation of biosynthetic process”, “GO:0042053 - regulation of dopamine

metabolic process”, and “GO:0045363 - regulation of interleukin-11 biosynthetic process”.

Another way to help find variants of terms in text is to use derivational variants. It

is best to generate variants, but there is no significant difference between which type of

variants, all or adj noun only . Generating variants trades precision for recall. When

comparing none to adj noun only , we see an increase in R of 0.05-0.2 along with a

decrease in P of 0-0.1. For the best parameter combination, ∼2,000 more TPs are found

along with ∼1,700 more FPs. Not using variants correctly annotates “development” with

“GO:0032502 - developmental process” but when adding adj noun only variants, “de-

velopmental”, “developmentally”, “developing”, and “develop(s)” are also correctly anno-

tated. Generating variants does not always produce semantically similar terms because

ambiguities are introduced. For example, “GO:0007586 - digestion” refers to the process

of breaking down nutrients into components that are easily absorbed, but variants such as

“digestion(s)”, “digested”, and “digesting” also refer to the process of fragmenting DNA
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using enzymes. Even though errors are introduced, it is still best to generate variants of

terms.

2.4.4.3 ConceptMapper parameters

Four parameters were found to be statistically significant: searchStrategy (p=2.2 ×

10−16), orderIndependentLookup (p=9.8×10−11), findAllMatches (p=4.0×10−10), and syn-

onyms (p=2.4×10−9). Like MM, CM also has the ability to approach matching of complex

terms through the use of searchStrategy and orderIndependentLookup. Setting CM’s search-

Strategy = skip any match we see ∼10 more correct annotations found while allowing

∼3,000 more incorrect ones to be found. This can be seen when CM correctly annotates

“DNA damage repair” with “GO:0006821 - DNA repair” but also incorrectly annotates

the long span “photoreceptors were significantly altered in the their expression level in the

Crx-/- mouse, there are many candidates that could be important for photoreceptor mor-

phogenesis” with “GO:’0046531 - photoreceptor cell development”. It is interesting to note

that the correct and incorrect annotations found by changing MM’s gaps parameter are not

seen when making the similar change in CM and vice versa; even though the parameter

should have the same effect on matching, the same annotations are not produced because

the systems have different underlying methods.

Besides skipping tokens, another way to approach complex terms is to allow token

reordering. Allowing CM to reorder tokens decreases P 0-0.1 with varying small impact on

R. In the case of the maximum F-measure parameter combination, varying token order only

allows 1 more TP to be found but ∼200 more FPs. Word reordering only helped to find

“endoplasmic reticulum protein retention” annotated with “GO:0006621 - protein retention

in ER lumen”. Finding that single term also introduces errors such as “activated cell(s)”

incorrectly annotated with “GO:0001775 - cell activation” and “of apoptosis induction”

incorrectly annotated with “GO:0006917 - induction of apoptosis”. The benefits of finding

the single correct term do not outweigh the errors also introduced; it is best to not allow

reordering of tokens for GO BP.

Stemming is useful for accounting for variations between terms in the ontology and

their morphological variations see in text. Using Porter instead of BioLemmatizer or none,
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precision is traded for recall, but a higher F-measure is produced. Comparing Porter

to none, ∼1,300 more TPs are found, but also ∼3,500 more FPs are found. CM with

Porter, for example, correctly annotates “regulate”, “regulating”, and “regulated” with

“GO:0065007 - biological regulation” and “transcriptional” with “GO:0006351 - transcrip-

tion, DNA-dependent”. Some of the incorrect annotations seen are “transcript(s)” anno-

tated with “GO:0006351 - transcription, DNA-dependent” and “signal(s)” annotated with

“GO:0007165 - signal transduction”. It is interesting to see that for the single ontology

term, “transcription DNA-dependent”, both TPs and FPs can be generated by changing

the endings.

2.4.5 Gene Ontology - Molecular Function

The molecular function branch of the Gene Ontology describes molecular-level function-

alities that gene products possess. It is useful in the protein function prediction field and

serves as the standard way to describe functions of gene products. Like GO BP, terms from

GO MF are complex, long, and contain numerous words with 52.8% containing punctuation

and 26.6% containing numerals (Table 2.1). All parameter combinations for each system on

GO MF can be seen in Figure 2.5. Performance on GO MF is poor; the highest F-measure

seen is 0.14. Besides terms being complex, another nuance of GO MF that makes their

recognition in text difficult is the fact that nearly all terms, with the primary exception

of binding terms, end in “activity”. This was done to differentiate the activity of a gene

product from the gene product itself, for example, “nuclease activity” versus “nuclease”.

However, the large majority of GO MF annotations of terms other than those denoting

binding are of mentions of gene products rather than their activities.

A majority of true positives found by all systems (>70%) are binding terms such as

“GO:0005488 - binding”, “GO:0003677 - DNA binding”, and “GO:0036094 - small molecule

binding”. These terms are the easiest to find because they are short and do not end in

“activity”. NCBO Annotator only finds binding terms while CM and MM are able to iden-

tify other types. CM identifies exact synonym matches; in particular, “FGFR” is correctly

annotated with “GO:0005007 - fibroblast growth factor-activated receptor activity”, which

has an exact synonym “FGFR”. MM correctly annotates “taste receptor” with “GO:0008527
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Figure 2.5: All parameter combinations for GO MF. The distribution of all param-
eter combinations for each system on GO MF. (MetaMap - yellow square, ConceptMapper
- green circle, NCBO Annotator - blue triangle, default parameters - red.)

- taste receptor activity”. These annotations are correctly found because the terms have

synonyms that refer to the gene products as well as the activity. The only category of FPs

seen between all systems is nested or less specific matches, but there are system-specific er-

rors: NCBO Annotator finds activity terms that are incorrect, while MM finds many errors

pertaining to synonyms. Example of incorrect nested annotations found by all systems are

“GO:0005488 - binding” annotated within “transcription factor binding” and “GO:0016788

- esterase activity” within “acetylcholine esterase”. Because the CRAFT annotation guide-

lines purposely never included the term “activity”, some instances of annotating activity

along with the preceding word is incorrect; for example, NCBO Annotator incorrectly anno-
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tates the span “recombinase activity” with “GO:0000150 - recombinase activity”. FPs seen

only by MM are due to broad, narrow, and related synonyms. We see MM incorrectly anno-

tate “neurotrophin” with “GO:0005165 - neurotrophin receptor binding” and “GO:0005163

nerve growth factor receptor binding” because both terms have “neurotrophin” as a narrow

synonym.

Recall for GO MF is low; at best only 10% of total annotations are found. Most of

the annotations missed can be classified into three categories: activity terms, insufficient

synonyms, and abbreviations. The category of activity terms is an overarching group that

contains almost all of the annotations missed; we show performance can be improved signif-

icantly by ignoring the word activity in the next section. Terms that fall into the category

of insufficient synonyms (∼30% of all terms not found) are not only missed because they

are seen without “activity”. For instance, “hybridization(s)”, “hybridized”, “hybridizing”,

and “annealing” in CRAFT are annotated with both “GO:0033592 - RNA strand annealing

activity” and “GO:0000739 - DNA strand annealing activity”. These mentions are anno-

tated as such because it is sometimes difficult to determine if the text is referring to DNA

and/or RNA hybridization/annealing; thus, to simplify the task, these mentions are anno-

tated with both terms, indicating ambiguity. Another example of insufficient synonyms is

the inability of all systems to recognize “K+ channel” as “GO:00005267 - potassium chan-

nel activity”, due to the fact that the former is not listed as a synonym of the latter in

the ontology. A smaller category of terms missed are those due to abbreviations, some of

which are mentioned earlier in the work. For instance, in CRAFT, “Dhcr7” is annotated

with “GO:0047598 - 7-dehydrocholesterol reductase activity” and “neo” is annotated with

“GO:0008910 - kanamycin kinase activity”. Overall, there is much room for improvement

in recall for GO MF; ignoring “activity” at the end of terms during matching alone leads

to an increase in R of 0.3.

2.4.5.1 NCBO Annotator parameters

The only parameter found to be statistically significant is wholeWordsOnly (p=1.82 ×

10−6). Since most of the correct annotations found are related to binding, one can imagine

that allowing to match non-whole words leads to many incorrect instances of “GO:0005488
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- binding” being found. When allowing matching to non-whole words, precision decreases

0.1-0.4. Even though we see a decrease in P, F-measure is only decreased 0.01 because

R is so low. ∼20 more TPs are found within hyphenated text, e.g. “substrate-binding” is

correctly annotated with “GO:0005488 - binding”. But not all hyphenated nested terms

are correct. ∼70 more errors are also introduced; for instance, “phospholipid-binding” is

incorrectly annotated with “GO:005488 - binding”. We also see full terms within other

words, “GO:0003774 - motor activity” is incorrectly annotated within “locomotor activity”.

It is difficult to provide suggestions because the highest mean F-measures, 0.075, are ob-

tained by using wholeWordsOnly = no, but using wholeWordsOnly = yes produces a mean

F-measure of 0.070. There is a statistically significant difference between the two, but

practically speaking they are both poor.

2.4.5.2 MetaMap parameters

Four parameters were found to be statistically significant: gaps (p=2.2 × 10−16),

acronymAbb (p=5.2×10−5), scoreFilter (p=2.2×10−16), and minTermSize (p=1.6×10−9).

Even though these four parameters produce statistically significant mean F-measures, it is

difficult to analyze them because for most parameter combinations P, R, and F are all less

than 0.1. The gaps parameter shows the biggest difference between F-measure in parame-

ter values, 0.02. Allowing gaps introduces ∼10 more correct annotations along with ∼4,000

more incorrect ones. Of the few correct annotations found by allowing gaps, one example is,

“Ran-binding” correctly annotated with “GO:0008536 - Ran GTPase binding”. The errors

introduced from allowing gaps are due to similarities in terms in the ontology. For instance,

“D activity” is incorrectly annotated with 170 different GO terms, such as, “GO:0047816 -

D-arabinose 1-dehydrogenase activity” and “GO:00428880 - D-glucuronate transmembrane

transporter activity”. For best performance, gaps should not be allowed.

scoreFilter and minTermSize are filters on the returned annotations and do not affect

the way matching is performed. The maximum F-measures are seen when scoreFilter is set

to 0 or 600 and minTermSize is set to 1 or 3. These parameter settings return most of the

annotations found by MM.
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2.4.5.3 ConceptMapper parameters

Four parameters were found to be statistically significant: searchStrategy (p=2.2 ×

10−16), stopWords (p=5.8×10−13), findAllMatches (p=2.2×10−16), and synonyms (p=4.3×

10−16). Using contiguous searchStrategy produces the highest F-measure; an increase in

P of 0.05-0.3 and an increase in R of 0-0.05 is seen when comparing to other values. Allowing

CM to skip tokens when looking terms up converts TPs to FPs because more tokens are

included. For example, using contiguous, “GO:0005488 - binding” is correctly annotated

in the span “proteins that bind”, but when using skip any match, the same span is

incorrectly annotated with “GO:0005515 - protein binding”. We see an interaction between

searchStrategy and findAllMatches. When using a value of searchStrategy that allows gaps

along with findAllMatches = yes, recall is increased and a higher F-measure is seen.

It is recommended to not remove stop words; both P and R are decreased when remov-

ing PubMed stop words. ∼15 TPs found when not removing stop words are missed when

removing PubMed stop words because more specific annotations can be made by ignoring

a common word. For example, when stop words are not removed “bind” is correctly anno-

tated with “GO:0005488 - binding”, but when removing PubMed stop words, other binding

annotations are produced from the same span, such as, “proteins that bind” is incorrectly

annotated with “GO:0005515 - protein binding” and “receptors, which bind” is incorrectly

annotated with “GO:0005102 - receptor binding”. Besides the missed annotations seen

above, ∼1,000 more errors are introduced. Most of these errors are from synonyms with the

caseMatch parameter set to ignore or insensitive. For instance, “bind(s)”, “binding”,

“bound” are incorrectly annotated with “GO:0003680 - AT DNA binding”, which has exact

synonym “AT binding”, which contains a stop word. Along the same lines, “activity” is

incorrectly annotated with “GO:0050501 - hyaluronan synthase activity”, which has a broad

synonym “HAS activity”, where “has” is a stop word.

Creating dictionaries with all synonyms introduces ∼100 more TPs and ∼11,000

more FP. Using narrow synonyms helps to correctly identify “ryanodine receptor” with

“GO:0005219 - ryanodine-sensitive calcium-release channel activity”. But overall, using

all synonyms hurts performance. Related synonyms for some terms are common words.

For example, “GO:0004066 - asparagine synthesis activity” has a related synonym “as”,
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Figure 2.6: Improvement seen by CM on GO MF by adding synonyms to the
dictionary. By adding synonyms of terms without “activity” to the GO MF dictionary
precision and recall are increased.

which is found more than 2,000 times in CRAFT. We also see many interesting errors intro-

duced when mixing a stemmer and all synonyms. “GO:0043807 - 3-methyl-2-oxobutanoate

dehydrogenase (ferredoxin) activity” has a related synonym “VOR”, which when run though

BioLemmatizer produces the lemma “for” and is found over 4,000 times in CRAFT. We

suggest using exact synonyms.
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2.4.5.4 Improving performance on GO MF

As suggested in previous work on the GO, since the word “activity” is present in most

terms, its information content is very low (Verspoor et al., 2005). Also, when adding

“activity” to the end of the top 20 most common other words in GO MF terms (as seen in

(McCray et al., 2002)), over half are terms themselves (Ogren et al., 2004). An experiment

was performed to evaluate the impact of removing “activity” from all terms in GO MF. For

each term with “activity” in the name, a synonym was added to the ontology obo file with

the token “activity” removed; for example, for “GO:0004872 - receptor activity”, a synonym

of “receptor” was added. We tested this only with CM; the same evaluation pipeline was

run but the new obo file used to create the dictionary. Using the new dictionary, F-measure

is increased from 0.14 to 0.48 and a maximum recall of 0.42 is seen (Figure 2.6). These

synonyms should not be added to the official ontology because it contradicts the specific

guidelines the GO curators established (Verspoor et al., 2009), but should be added to

dictionaries provided as input to concept recognition systems.

2.4.6 Sequence Ontology

The Sequence Ontology describes features and attributes of biological sequences. The

SO is one of the smaller ontologies evaluated, ∼1,600 terms, but contains the highest number

of annotations in CRAFT, ∼23,500. ∼92% of SO terms contain punctuation, which is due

to the fact that the words of the primary labels are demarcated not by spaces but by

underscores. Many, but not all, of the terms have an exact synonym identical to the official

name, but with spaces instead of underscores. CM is the top performer (F=0.56) with MM

middle (F=0.50) and NCBO Annotator at the bottom (F=0.44). Statistically, looking at

all parameter combinations mean F-measures, there is a difference between CM and the

rest, while a difference cannot be determined between MM and NCBO Annotator. When

looking at the top 25% of combinations, a difference can be seen between all three systems.

All parameter combinations for each system on SO can be seen in Figure 2.7.

Most of the FPs can be grouped into four main categories: contextual dependence of

SO, partial term matching, broad synonyms, and variants generated. In all three systems,

we see the first three types, but errors from variants are specific to CM and MM. The
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Figure 2.7: All parameter combinations for SO. The distribution of all parameter
combinations for each system on SO. (MetaMap - yellow square, ConceptMapper - green
circle, NCBO Annotator - blue triangle, default parameters - red.)

SO is sequence specific, meaning that terms are to be understood in relation to biological

sequences. When the ontology is separated from the domain, terms can become ambigu-

ous. For example, “SO:0000984 - single” and “SO:0000985 - double” refer to the number

of strands in a sequence, but can also be used in other contexts, obviously. Synonyms can

also become ambiguous when taken out of context. For example, “SO:1000029 - chromoso-

mal deletion” has a synonym “deficiency”. In the biomedical literature, “deficiency” is com-

monly used when discussing lack of a protein, but as a synonym of “chromosomal deletion”

it refers to a deletion at the end of a chromosome; these are not semantically incorrect,

but incorrect in terms of CRAFT concept annotation guidelines. Because of the hierarchi-
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cal relationships in the ontology we find the high level term “SO:0000001 - region” within

other terms; when the more specific terms are unable to be recognized, “region” can still

be recognized. For instance, we find “region” incorrectly annotated inside the span “coding

region”, when in the gold standard the span is annotated with “SO:0000851 - CDS region”.

Besides being ambiguous, synonyms can also be too broad. For instance, “SO:0001091 -

non covalent binding site” and “SO:0100018 - polypeptide binding motif” both have a syn-

onym of “binding”; as seen in GO MF above, there are many annotations of binding in

CRAFT. The last category of errors are only seen in CM and MM because they are able to

generate variants. Examples of erroneous variants are MM incorrectly annotating “based”,

“foundation”, and “fundamental” with “SO:0001236 - base” and CM incorrectly annotating

“probing” and “probed” with “SO:0000051 - probe”.

Recall on SO is close between CM (0.57) and MM (0.54), while recall for NCBO An-

notator is 0.33. The ∼5,000 annotations found by both CM and MM that are missed

by NCBO Annotator are composed of plurals and variants. The three categories that

a majority of the FNs fall into are insufficient synonyms, abbreviations, and multi-span

annotations. More than half of the FNs are due to insufficient synonyms or other ways

to express a term. In CRAFT, “SO:0001059 - sequence alteration” is annotated to “mu-

tation(s)”, “mutant”, “alteration(s)”, “changes”, “modification”, and “variation”. It may

not be the most intuitive annotation, but because of the structure of the SO version used

in CRAFT, it is the most specific annotation that can be made for mutating/changing

a sequence. Another example of insufficient synonyms can be seen from the annotation

of “chromosomal region”, “chromosomal loci”, “locus on chromosome” and “chromosomal

segment” with“SO:0000830 - chromosome part”. These are more intuitive than the previ-

ous example; if different “parts” of a chromosome are explicitly enumerated the ability to

find them increases. Abbreviations or symbols are another category missed. For example,

“SO:0000817 - wild type” can be expressed as “WT” or “+” and “SO:0000028 - base pair”

is commonly seen as “bp”. These abbreviations are more commonly seen in biomedical text

than the longer terms are. There are also some multi-span annotations that no systems

are able to find; for example, “homologous human MCOLN1 region” is annotated with

“SO:0000853 - homologous region”.
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2.4.6.1 NCBO Annotator parameters

Two parameters were found to be significant: wholeWordsOnly (p=8.6 × 10−11) and

minTermSize (p=2.5 × 10−5). Allowing NCBO Annotator to match non-whole words in-

troduces ∼500 more correct annotations, but as a result, ∼40,000 more incorrect ones are

also found resulting in a decrease in P of 0.2-0.4 with a small decrease in R. Correct an-

notations found are from hyphenated spans of text. For example, “SO:0001026 - genome”

is correctly found within “genome-wide”, and “GO:0000704 - gene” is also correctly found

within “gene-based” and “receptor-gene”. Many errors are introduced given the ability to

recognize non-whole words. Smaller terms are found within other words. “SO:0000704 -

gene”; for example, is found within “morphogeneic”, “general”, and “degenerate”.

Filtering terms less than five characters decreases R by 0.2. This is due to the fact

that two commonly found correct annotations will be filtered out, “SO:0000704 - gene” and

“SO:0000352 - DNA”. For best performance, terms less then length one or three should

be filtered.

2.4.6.2 MetaMap parameters

Four parameters were found to be different: model (p=1.6 × 10−6), acronymAbb

(p=2.8 × 10−9), scoreFilter (p=2.2 × 10−16) and minTermSize (p=1.0 × 10−11). The SO

is the one of two ontologies where there is a difference between the values of MM’s model

parameter. Using the relaxed model in place of strict, decreases P 0.1-0.3 with no

change in R. We find that ∼400 more FP are introduced for the best performing parameter

combination when relaxed is used. A majority of the errors are from matching a capital

letter at the beginning or end of a token. For example, “HKI” is incorrectly annotated

with “SO:0001230 - inosine” and “SO:0001438 - isoleucince”, both of which have “I” as a

synonym. An error seen that was not due to matching capital letters is “DNA-binding” and

“DNA binding” incorrectly annotated with “SO:0000417 - polypeptide domain”, which has

a synonym “DNA bind”. We can conclude that it is better to use the strict model with

SO.

There is no difference between using default and unique values of the acronymAbb

parameter, but there is a difference when using all. Comparing default and all, P
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is decreased 0-0.2 with a slight increase in R. ∼20 more TPs and ∼4,000 more FPs are

found when using all acronyms and abbreviations. One example of a term correctly rec-

ognized is due to synonymous adjectives, “short interfering RNA” is correctly annotated

with “SO:0000646 - siRNA”, which has a synonym of “small interfering RNA”. Some ab-

breviations have more than one meaning and are not found unless all is used, e.g. “PCR

product(s)” is correctly annotated with ‘SO:0000006 - PCR product”. Unfortunately, there

are many terms that have possible ambiguous abbreviations. For instance, “protein(s)” is

incorrectly annotated with “SO:0001439 - proline”, which has the synonyms “P” and “Pro”;

Also, “states” is incorrectly annotated with “SO:0000331 - STS”.

Filtering terms based on length has the same results as with the NCBO Annotator

parameter above; filtering out terms less than 5 characters decreases R by 0.1-0.2, so it is

best to filter terms less than 1 or 3. Along the same lines, it is best to use all or most of

the annotations returned by MM, so setting scoreFilter equal to 0 or 600 is suggested.

2.4.6.3 ConceptMapper parameters

Four parameters were found to be significant: searchStrategy (p=7.4× 10−8), stemmer

(p=2.2 × 10−16), stopWords (p=1.7 × 10−4), and synonyms (p=2.2 × 10−16). As seen in

many of the other ontologies before, stemming is useful for improving recall. With the SO,

there is no difference between Porter or BioLemmatizer, but there is a difference between

a stemmer and none. When using Porter over none, ∼3,800 more TPs are found along

with ∼5,300 more FPs. Along with variants, such as “genomic” and “genomically” correctly

annotated with “SO:0001026 - genome”, using a stemmer allows plurals to be found. Not

all variants carry the same meaning as the original term. For instance, “SO:0000141 -

terminator” refers to the sequence of DNA at the end of a transcript that causes RNA

polymerase to fall off, while “terminal”, “terminally”, and “termination” all carry different

meanings. Even though using a stemmer introduces more incorrect annotations than correct

ones, F-measure is increased by 0.1-0.2.

Removing PubMed stop words has varying effects. For one group, an increase in P

of 0.05-0.2 with no change in R is seen, but for the other one, slight decreases in P and

R are seen. The maximum F-measure parameter combination falls in the latter group,
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for which ∼25 less TPs and ∼200 more FPs are found when using PubMed stop words.

The correct annotations found when not using stop words and missed by removing stop

words are masked by longer FPs. For instance, not removing stop words, “SO:0000151 -

clone” and “SO:0000756 - cDNA” are both correctly annotated in the span “clone in these

cDNA”, but when removing PubMed stop words the entire span is incorrectly annotated

with “SO:0000792 - cloned cDNA” because “in” and “these” are not considered. Errors

introduced are from the 9.3% of terms that contain stop words that are integral to their

meaning. For example, “motif” is incorrectly annotated with “SO:0001010 - i motif”. For

the best performance, it is best to not remove stop words.

Creating dictionaries with all instead of only exact synonyms allows ∼400 more TPs

to be found while introducing ∼5,000 more FPs, which leads to a decrease in P of 0.1-0.4

with an increase in R of 0-0.05. Only two examples make up all of the correct annotations

found: “domain(s)” correctly annotated with “SO:0000417 - polypeptide domain” which

has broad synonym “domain” and “signal(s)” correctly annotated with both “SO:0000725 -

transit peptide” and “SO:0000418 - signal peptide”, which both have broad synonym “sig-

nal”; both of these correct annotations are matches to broad synonyms. Of the errors intro-

duced, over half, ∼2,600, of the incorrect annotations are broad synonyms from the following

two examples: “region(s)”, “site(s)”, “position(s)”, and “positional” are incorrectly anno-

tated with “SO:0000839 - polypeptide region” (has broad synonyms “region”, “positional”,

and “site”) and “signal(s)” incorrectly annotated with “SO:0000725 - transit peptide” and

“SO:0000418 - signal peptide” (has broad synonym “signal”). It is interesting that the same

broad synonym, “signal”, produces a ∼30 TPs but many more FPs (∼1,300). We can con-

clude that the correct annotations found do not outweigh the errors introduced, so it is best

to create dictionaries with only exact synonyms.

2.4.7 Protein Ontology

The Protein Ontology (PRO) represents evolutionarily defined proteins and their natu-

ral variants. It is important to note that although the PRO technically represents proteins

strictly, the terms of the PRO were used to annotate genes, transcripts, and proteins in

CRAFT. Terms from PRO contain the most words, have the most synonyms, and ∼75% of
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Figure 2.8: All parameter combinations for PRO. The distribution of all parameter
combinations for each system on PRO. (MetaMap - yellow square, ConceptMapper - green
circle, NCBO Annotator - blue triangle, default parameters - red.)

terms contain numerals (Table 2.1). Even though term names are complex, in text, many

gene and gene product references are expressed as abbreviations or short names. These

references are mostly seen as synonyms in PRO. Recognizing and normalizing gene and

gene product mentions is the first step in many natural language processing pipelines and

is one of the most fundamental steps. CM produces the highest F-measure (0.57), followed

by NCBO Annotator (0.50), and lastly MM (0.35) produces the lowest. All parameter

combinations for each system on PRO can be seen in Figure 2.8. Unlike most of the ontolo-

gies covered above, stemming terms from PRO does not result in the highest performance.
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The best parameter combination for CM does not use any stemmer, which is why NCBO

Annotator performs better than MM.

All systems are able to find some references to the long names of genes and gene prod-

ucts, such as “PR:000011459 - neurotrophin-3” and “PR:000004080 - annexin A7”. As stated

previously, a majority of the annotations in CRAFT are short names of genes and gene prod-

ucts. For example, the long name of PR:000003573 is “ATP-binding cassette sub-family G

member 8”, which is not seen, but the short name “Abcg8” is seen numerous times. The

errors introduced by all systems can be grouped into misleading synonyms and different

annotation guidelines, while MM also introduces errors from abbreviations and variants.

Of errors common to all systems, the largest category is from misleading synonyms (>50%

for CM and NCBO Annotator, ∼33% for MM). For example, ∼3,000 incorrect annota-

tions of “PR:000005054 - caspase-14”, which has synonym “MICE”, are seen, along with

mentions of the word “male” incorrectly annotated with “PR:000023147 - maltose-binding

periplasmic protein”, which has the synonym “malE”. As seen in these errors, capitalization

is important when dealing with short names. Differing annotation guidelines also result in

matching errors, but because all systems are at the same disadvantage a bias isn’t intro-

duced. The word “protein” is only annotated with the ChEBI ontology term “protein”,

but there are many mentions of the word “protein” incorrectly annotated with a high-level

term of PRO, “PR:000000001 - protein”. This term was purposely not used to annotate

“protein” and “proteins”, as this would have conflicted with the use of the terms of PRO to

annotate not only proteins but also genes and transcripts. MM generates abbreviations and

acronyms, but they are not always helpful. For example, due to abbreviations, “MTF-1”

is incorrectly annotated with “PR:000008562 - histidine triad nucleotide-binding protein

2”; because MM is a black box, it is unclear how or why this abbreviation is generated.

Morphological variants of synonyms are also causes of errors. For example, “finding” and

“found” are incorrectly annotated because they are variants of “FIND”, which is a synonym

of “PR:000016389 - transmembrane 7 superfamily member 4”.

All systems are able to achieve recall of>0.6 on at least one parameter combination, with

CM and MM achieving 0.7 by sacrificing precision. When balancing P and R, the maximum

R seen is from CM (0.57). Gene and gene product names are difficult to recognize because
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there is so much variation in the terms — not morphological variation as seen in most

other ontologies, but differences in symbols, punctuation, and capitalization. The main

categories of missed annotations are due to these differences. Symbols and Greek letters

are a problem encountered many times when dealing with gene and gene product names (Yu

et al., 2002). These tools offer no translation between symbols so, for example, “TGF-β2”

is unable to be annotated with “PR:000000183 - TGF-beta2” by any systems. Along the

same lines, capitalization and punctuation are important. The hard part is knowing when

and when not to ignore them; any of the FPs seen in the previous paragraph are found

because capitalization is ignored. Both capitalization and punctuation must be ignored to

correctly annotate the spans “mr-s” and “mrs” with “PR:000014441 - sterile alpha motif

domain-containing protein 11”, which has a synonym “Mr-s”. As seen above, there are

many ways to refer to a gene/gene product. In addition, an author can define one by any

abbreviation desired and then refer to the protein in that way throughout the rest of the

chapter, so attempting to capture all variation in synonyms is a difficult task. In CRAFT,

for instance, “snail” refers to “PR:000015308 - zinc finger protein SNAI1” and “moonshine”

or “mon” refers to “PR:000016655 - E3 ubiquitin-protein ligase TRIM33”.

2.4.7.1 NCBO Annotator parameters

Only wholeWordsOnly (p=2.3 × 10−11) was found to be significant. Matching non-

whole words introduces ∼1,500 more TPs and ∼270,000 more FPs. The TPs that were

found contained some kind of punctuation. For example, “BRCA2” from the spans “

BRCA2-independent”, “RAD51-BRCA2”, and “BRCA2+” are correctly annotated with

“PR:000004804 - breast cancer type 2 susceptibility protein”. Many of the FPs found are

from matching smaller synonyms within longer words. An example,“PR:000008207 - synap-

tic glycoprotein SC2”, which has an exact synonym “TER”, is incorrectly found ∼7,000

times in words such as “determine”, “promoter”, and “anterior”. It is best to not allow

NCBO Annotator to match non-whole words.
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2.4.7.2 MetaMap parameters

Four parameters were found to be significant: gaps (p=2.2 × 10−16), acronymAbb

(p=2.2× 10−16), scoreFilter (p=2.2× 10−16), and minTermSize (p=7.1× 10−14). Inserting

gaps when matching decreases P by 0.2 and increases R slightly; varying gaps on maximum

F-measure parameter combinations finds ∼100 more TPs while introducing ∼12,000 more

FPs. gaps provide MM the ability to skip tokens to find matches. For example, “cyclin

5” is correctly annotated with “PR:000005258 - cell division protein kinase 5”, which has

a synonym “cyclin-dependent kinase 5”; the four tokens, “-dependent kinase”, are skipped

to allow this match. Even though skipping tokens find some TPs, many more errors are

found. Some errors are close matches, but less specific terms, such as “alpha-crystallin”

incorrectly annotated with “PR:000005908 - alpha-crystallin B chain”. Others found are

completely wrong; for instance, the span “protein-1” can be annotated with any term as

long as it contains “protein”, “-”, and “1”, in that order. “PR:000010001 - protein lyl-1”

and “PR:000009230 - multisynthetase complex auxiliary component p38”, which has the

synonym “protein JTV-1” are examples of terms incorrectly matched with “protein-1”. Not

using gaps produces the highest F-measure.

The maximum F-measure is obtained by using scoreFilter =600 and minTermSize =3

or 5. A majority of the terms matched in PR are at least 3 characters long. By filter-

ing some correct annotations will be lost, such as “Rb” annotated with “PR:000013773:

retinoblastoma-associated protein”, but for the most part it is safe to filter out terms less

than 3 characters.

2.4.7.3 ConceptMapper parameters

Four parameters were found to be significant: caseMatch (p=6.1 × 10−6), stemmer

(p=2.2× 10−16), findAllMatches (p=1.1× 10−9), and synonyms (p=5.3× 10−16). PR is the

only ontology where caseMatch is significant. The caseMatch value CASE FOLD DIGITS

produces the highest F-measure. Only text that contains digits is folded to lower case.

∼2,000 fewer TPs and ∼40,000 fewer FPs are found when comparing folding only digits

to folding everything. Some annotations are missed, for example, “MYOC”, which is a

synonym of “PR:000010873 - myocilin” is not matched with “Myoc”. Errors introduced by
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folding everything are mainly from folding synonyms that are common english terms. For

example, “TO” is a synonym of “PR:000016214 - tryptophan 2,3-dioxygenase”. Just from

looking at the synonym, it is hard to determine when and when not to fold cases. For

maximum F-measure, it is best to only fold those with digits.

Not using any type of stemmer produces the highest precision and F-measure. Using Bi-

oLemmatizer increases R by finding ∼2,000 more TPs but decreases P by finding ∼100,000

more FPs. Using a stemmer allows plurals to be found. For example, “neurotrophins” is

correctly annotated with “PR:000021998 - neurotrophin”. Also, using a stemmer folds all

text to lower cases; for example, “Shh” is correctly annotated with “PR:000014841 - sonic

hedgehog protein”, which has a synonym “SHH”. Generating morphological and derivational

variants also introduces many other errors. For instance, “PR:000008323 - general transcrip-

tion factor II-I repeat domain-containing protein 1” has a synonym “BEN”, that when put

through BioLemmatizer gets turned into “been”, “is”, “are”, “be”, “being”, “were” that

are found incorrectly ∼15,000 times in CRAFT. Folding everything also produces incorrect

annotations, such as “SAC” getting incorrectly annotated with “PR:000003752 - adenylate

cyclist type 10”, which has a synonym “sAC”. Using a stemmer finds many TPs, but the

many FPs introduced outweigh the TPs.

Using all synonyms produces the highest F-measure; ∼5,000 fewer TPs are found by

only using exact synonyms. Because all is the best performance it tells us that the

synonym list for PR is well maintained and does not contain many spurious synonyms. In

addition, many of the related synonyms are synonyms for the corresponding genes of proteins

which are equivalently annotated in CRAFT. An example of an annotation missed by

using only exact synonyms is “Car2” correctly annotated with “PR:000004918 - carbonic

anhydrase 2”; it has an exact synonym of “Ca2” and a related synonym of “Car2”. It is

best to use all synonyms for PR.

2.4.7.4 Removing FP PRO annotations

In order to show that performance improvements can be made easily, we examined and

removed the top five FPs from each system on PRO. The top five errors only affect precision

and can be removed without any impact in recall; the impact can be seen in Figure 2.9. A
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Figure 2.9: Improvement on PRO when top 5 FPs are removed. The top 5 FPs
for each system are removed. Arrows show increase in precision when they are removed.
No change in recall was seen.

simple process produces a change in F-measure of 0.03-0.09. A common category of FPs

removed from all systems are annotations made with “PR:000000001 - protein”, as the term

was found ∼1,000-3,500 times. Three out of the top five errors common to MM and NCBO

Annotator were found because synonym capitalization was ignored. For example, “MICE”

is a synonym of “PR:000005054 - caspase-14”, “FIND” is a synonym of “PR:000016389 -

transmembrane 7 superfamily member 4”, and “AGE” is a synonym of “PR:000013884 -

N-acylglucosamine 2-epimerase”. The second largest error seen in CM is from an ambiguous

synonym: “PR:000012602 - gastricsin” has an exact synonym “PGC”; this specific protein

is not seen in CRAFT, but the abbreviation “PGC” is seen ∼400 times referring to the
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Figure 2.10: All parameter combinations for NCBITaxon. The distribution of
all parameter combinations for each system on NCBITaxon. (MetaMap - yellow square,
ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red.)

protein peroxisome proliferator-activated receptor-gamma. By addressing just these few

categories of FPs, we can increase the performance of all systems.

2.4.8 NCBI Taxonomy

The NCBI Taxonomy is a curated set of nomenclature and classification for all the

organisms represented in the NCBI databases. It is by far the largest ontology evaluated,

at almost 800,000 terms, but with only 7,820 total NCBITaxon annotations in CRAFT.

Performance on NCBITaxon varies widely for each system: NCBO Annotator performs

poorly (F=0.04), MM performers better (F=0.45) and CM performs best (F=0.69). When

looking at all parameter combinations for each system, there is generally a dimension (P
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or R) that varies widely among the systems and another that is more constrained (Figure

2.10).

In CRAFT, text is annotated with the most closely matching explicitly represented

concept. For many organismal mentions, the closest match to an NCBI Taxonomy concept

is a genus or higher-level taxon. For example, “mice” and “mouse” are annotated with the

genus “NCBITaxon:10088 - Mus”. CM and MM both find mentions of “mice”, but NCBO

Annotator does not. (Why will be discussed in the next paragraph.) All systems are able to

find annotations to specific species; for example, “Takifugu rubripes” is correctly annotated

with “NCBITaxon:31033 - Takifugu rubripes”. The FPs found by all systems are from

ambiguous terms and terms that are too specific. Since the ontology is large and names of

taxa are diverse, the overlap between terms in the ontology and common words in English

and biomedical text introduces these ambiguous FPs. For example, “NCBITaxon:169495 -

this” is a genus of flies, and “NCBITaxon:34205 - Iris germanica”, a species of monocots, has

the common name “flag”. Throughout biomedical text there are many references to figures

that are incorrectly annotated with “NCBITaxon:3493 - Ficus”, which has a common name

of “figs”. A more biologically relevant example is “NCBITaxon:79338 - Codon” which is a

genus of eudicots but also refers to a set of three adjacent nucleotides. Besides ambiguous

terms, annotations are produced that are more specific than those in CRAFT. For example,

“rat” in CRAFT is annotated at the genus level “NCBITaxon:10114 - Rattus”; while all

systems incorrectly annotate “rat” with more specific terms such as, “NCBITaxon:10116 -

Rattus norvegicus” and “NCBITaxon:10118 - Rattus sp.”. One way to reduce some of these

false positives is to limit the domains in which matching is allowed, however, this assumes

some previous knowledge of what the input will be.

Recall of >0.9 is achieved by some parameter combinations of CM and MM, while the

maximum F-measure combinations are lower (CM - R=0.79 and MM - R=0.88). NCBO

Annotator produces very low recall (R=0.02) and performs poorly due to a combination

of: the way CRAFT is annotated and the way NCBO Annotator handles linking between

ontologies. In NCBO Annotator, for example, the link between “mice” and “Mus” is not

inferred directly, but goes through the MaHCO ontology (DeLuca et al., 2009), an on-

tology of major histocompatibility complexes. Because we limited NCBO Annotator to
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only using ontology directly tested, the link between “mice” and “Mus” is not used, and

therefore are not found. For this reason, NCBO Annotator is unable to find many of the

NCBITaxon annotations in CRAFT. On the other hand, CM and MM are able to find most

annotations, the annotations missed are due to different annotation guidelines or specific

species with a single-letter genus abbreviation. In CRAFT, there are ∼200 annotations

of the ontology root, with text such as “individual” and “organism”; these are annotated

because the root was interpreted as the foundational type of organism. An example of

a single-letter genus abbreviation seen in CRAFT is “D. melanogaster” annotated with

“NCBITaxon:7227 - Drosophila melanogaster”. These types of missed annotations are easy

to correct for through some synonym management or post-processing step. Overall, most of

the terms in NCBITaxon are able to be found and focus should be on increasing precision

without losing recall.

2.4.8.1 NCBO Annotator parameters

Two parameters were found to be significant: wholeWordsOnly (p=2.2 × 10−16) and

minTermSize (p=7.2× 10−5). Matching non-whole words decreases P by 0.1 with a slight

increase in R. Varying wholeWordsOnly on the maximum F-measure parameter combina-

tion finds ∼15 more TPs and ∼5,500 more FPs. All correct annotations found contain

connected punctuation that hinder recognition. For example, “Danio rerio” from the span

“(Danio rerio [Dr])” is correctly annotated with “NCBITaxon:7955 - Danio rerio”. Unfor-

tunately, many errors are introduced by matching terms within longer words. For instance,

the genus of bony fish, “NCBITaxon:385272 - Conta”, is seen within “contain” and its

variants. It is suggested to only allow matching to whole words.

Filtering terms that are less than five characters leads to the best performance on

NCBITaxon, increasing P by 0.1 with no loss of recall over other parameter values. Com-

paring lengths of one to five, ∼250 more FPs are found when not removing terms less than

five characters. For example, “lens” is incorrectly annotated with the genus of flowering

plants “NCBITaxon:3863 - Lens”. For the reasons stated in the previous paragraph on recall

of NCBITaxon, NCBO Annotator does not find any correct annotations that are less than

five characters.
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2.4.8.2 MetaMap parameters

Four parameters were found to be significant: wordOrder (p=1.4× 10−6), derivational-

Variants (p=1.0 × 10−8), scoreFilter (p=2.2 × 10−16), and minTermSize (p=2.2 × 10−16).

Allowing MM to ignore the order of tokens varies P slightly but decreases R by 0-0.3. Un-

fortunately, changing wordOrder on the maximum F-measure combination only introduces

∼5 more FPs, so the full effect of the parameter is not really seen. Even though the effect

cannot be seen, keeping the order of the tokens produces the maximum F-measure.

Generating variants of terms helps performance of most other ontologies evaluated, but

not using any derivational variants produces highest F-measure for NCBITaxon. Allowing

MM to use variants decreases P 0.05-0.1 with only slight increase in R. Using adj noun

only variants finds ∼150 more TPs along with ∼5,000 more FPs. There are some cases

where variants are valid, such as “mammalian” correctly annotated with “NCBITaxon:40674

- Mammalia”. For the the most part, nomenclature variants do not follow the same rules

for English words. For example, a genus name of birds is “NCBITaxon:189528 - Indicator”;

when variants of this are generated the words “indicate(s)”, “indicated”, “indicating”, and

“indication” are incorrectly annotated with it. Even though derivationalVariants are not

used, variants such as “mice”→ “mouse” are still correctly found; this shows that inflectional

variants are apparently handled by MM even when derivationalVariants are not used and

suggests that this behavior cannot be controlled with a parameter. For best performance

on NCBITaxon, do not use any variants.

Unlike NCBO Annotator, it is best to filter terms less than 1 or 3 characters in length.

There is no difference between removing terms less than 1 or 3, but filtering terms less

than 5 decreases R by 0.1-0.6. This is the case because many correct annotations found,

e.g. “mice”, are less than 5 characters.

2.4.8.3 ConceptMapper parameters

All but one parameter were found to be significant: searchStrategy (p=3.9×10−9), case-

Match (p=9.9×10−14), stemmer (p=2.2×10−16), stopWords (p=3.5×10−4), findAllMatches

(p=2.2× 10−16), and synonyms (p=2.9× 10−7). caseMatch is an interesting parameter; for

the best performing combinations, it does not matter because BioLemmatizer is used and
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it natively changes everything to lower case. Also, allowing CM to find all matches, instead

of only the longest one, leads to a decrease in P of 0.3-0.4 with only a slight increase in R.

The maximum F-measure by CM uses BioLemmatizer as a stemmer . An increase in R of

0.2 and varying effects on P are seen by using BioLemmatizer over none or Porter. ∼1,700

more TPs and ∼2,000 more FPs are found by varying BioLemmatizer vs none on the

maximum F-measure combination. A majority of the correct annotations found (∼1,100)

are from the variant “mouse” being correctly normalized to “NCBITaxon:10088 - Mus”.

Not all variants generated are correct. For example, “area” is incorrectly annotated with

“NCBITaxon:293506 - Areae” and the gene that controls coat color, “agouti”, is an incorrect

variant of “agoutis”, which is the common name of “NCBITaxon:34845 - Dasyprocta”. Even

though more FPs are found, the increase in R outweighs the loss of P and a total increase

in F of 0.07 is seen.

Removing PubMed stop words produces differing results; for some parameter combina-

tions there is an increase in P of 0.05-0.2 and for others there is a decrease in P of 0-0.05,

while stop words doesn’t seem to effect R. Not removing stop words finds ∼2,600 more

incorrect annotations. A majority (∼1,800) of the errors introduced by not removing stop

words are due to the word “this” being incorrectly annotated with “NCBITaxon:169495 -

This”. Not removing stop words and then allowing stemming introduces errors as well. For

example, “can”, “could”, and “cannot” are incorrectly annotated with “NCBITaxon:4627

- Canna”. Removing stop words produces the highest F-measure because these common

English words are ignored.

2.4.9 ChEBI

The Chemical Entities of Biological Interest (ChEBI) Ontology focuses on the represen-

tation of molecular entities, molecular parts, atoms, subatomic particles, and biochemical

rules and applications. The complexity of terms in ChEBI varies from the simple single-

word compound “CHEBI:15377 - water” to very complex chemicals that contain numerals

and punctuation, e.g., “CHEBI:37645 - luteolin 7-O-[(beta-D-glucosyluronic acid)-(1->2)-

(beta-D-glucosiduronic acid)] 4’-O-beta-D-glucosiduronic acid”. The maximum F-measure

on ChEBI is produced by CM and NCBO Annotator (F=0.56) with MM (F=0.42) not
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Figure 2.11: All parameter combinations for ChEBI. The distribution of all param-
eter combinations for each system on ChEBI. (MetaMap - yellow square, ConceptMapper
- green circle, NCBO Annotator - blue triangle, default parameters - red.)

performing as well. CM and MM both find ∼4,500 TPs, but because MM finds ∼5,000

more FPs its overall performance suffers (Table 2.4). All parameter combinations for each

system on ChEBI can be seen in Figure 2.11.

There are many terms that all systems correctly find, such as “protein” with “CHEBI:36080

- protein” and “cholesterol” with “CHEBI:16113 - cholesterol”. Errors seen from all systems

are due to differing annotation guidelines and ambiguous synonyms. Errors from both CM

and MM come from generating variants while MM produces some unexplained errors. Dif-

ferent annotation guidelines lead to the introduction of both FPs and FNs. For example, in

CRAFT, “nucleotide” is annotated with “CHEBI:25613 - nucleotidyl group”, but all systems
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incorrectly annotate “nucleotide” with “CHEBI:36976 - nucleotide” because they exactly

match. (Mentions of “nucleotide(s)” that refer to nucleotides within nucleic acids are not

annotated with “CHEBI:36976 - nucleotide” because this term specifically represents free

nucleotides, not those as parts of nucleic acids.) Many FPs and FNs are produced by a single

nested annotation; four gold-standard annotations are seen within “amino acid(s)”. Of these

four annotations, two are found by all systems, “CHEBI:37527 - acid” and “CHEBI:46882

- amino”, while one introduces a FP: “CHEBI:33709 - amino acid” incorrectly annotated

instead of “CHEBI:33708 - amino-acid residue”, while “CHEBI:32952 - amine” is not found

by any system. Ambiguous synonyms also lead to errors; for example, “lead” is a common

verb but also a synonym of “CHEBI:25016 - lead atom” and “CHEBI:27889 - lead(0)”.

Variants generated by CM and MM do not always carry the same semantic meaning as the

original term, such as “based” and “basis” from “CHEBI:22695 - base”. MM also produces

some interesting unexplainable errors. For example, “disease” is incorrectly annotated with

“CHEBI:25121 - maleoyl group”, “CHEBI:25122 - (Z)-3-carboxyprop-2-enoyl group”, and

“CHEBI:15595 - malate(2-)”; all three terms have a synonym of “Mal”, but we could find

no further explanations.

Recall for maximum F-measure combinations are in a similar range, 0.46-0.56. The two

most common categories of annotations missed by all systems are abbreviations and a differ-

ence between terms and the way they are expressed in text. Many terms in ChEBI are more

commonly seen as abbreviations or symbols. For instance, “CHEBI:29108 - calcium(2+)”

is more commonly seen as “Ca2+”; even though it is a related synonym, the systems evalu-

ated are unable to find it. A more complicated example can be seen when talking about the

chemicals that lie on the ends of amino acid chains. In CRAFT, “C” from “C-terminus” is

annotated with “CHEBI:46883 - carboxyl group” and “CHEBI:18245 - carboxylato group”

(the double annotation indicating ambiguity among these), which all systems are unable

to find; The same principle also applies for the N-terminus. One simple annotation that

should be easy to get is “mRNA” annotated with “CHEBI:33699 - messenger RNA”, but

CM and NCBO Annotator miss it. There is not always an overlap between the term names

and their expression in text. For instance, the term “CHEBI:36357 - polyatomic entity” was

chosen to annotate general “substance” words like “molecule(s)”, “substances”, and “com-
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pounds” and “CHEBI:33708 - amino-acid residue” is often expressed as “amino acid(s)”

and “residue”.

2.4.9.1 NCBO Annotator parameters

Only wholeWordsOnly (p=2.3 × 10−11) was found to be significant. Like all other

ontologies above, it is best to only match whole words. When allowing to match non-whole

words, P decreases 0.4-0.6 with a slight decrease in R.∼500 more TPs and∼36,000 more FPs

are found when NCBO Annotator recognizes non-whole words. Correct annotations found

by matching non-whole words contain punctuation. For example, “CHEBI:37527 - acid”

and “CHEBI:30879 - alcohol” are correctly found in “Fekete’s acid-alcohol-formalin fixative”.

ChEBI contains small terms that are found within longer words such as “CHEBI:24870 -

ion”, which is found incorrectly ∼17,000 times in words such as “proliferation”, “mutation”,

and “localization”. Also many errors are introduced from mixing synonyms and matching

non-whole words. For instance, “CHEBI:27007 - tin atom” has a synonym “tin”, which is

found ∼4,000 times within words like “blotting”, “continious”, and “intestinal”. Both of

these examples are small and would be filtered out if minTermSize =five was used, but

there are also examples that are longer; for example, “CHEBI:35701 - ester” is incorrectly

found within “cholesterol” and “western”. Overall, it is best to not match non-whole words.

2.4.9.2 MetaMap parameters

Four parameters were found to be significant: model (p=2.4 × 10−10), acronymAbb

(p=2.2 × 10−16), scoreFilter (p=2.2 × 10−16), minTermSize (p=7.2 × 10−14). ChEBI is

one of two ontologies where a difference is seen between values of the model parameter.

Using the strict model instead of relaxed increases P 0-0.5 with no change in R, which

leads to an increase in F-measure of 0-0.1. Changing the best parameter combination’s

model to relaxed finds ∼200 more FPs with no more TPs. It is unclear why the errors

seen are thought to be correct by MM. For example, the text “Ndrg1”, which looks to

be a protein name, is incorrectly annotated with terms like “CHEBI:30226 - azanldylidene

group”, “CHEBI:33268 - monoatomic nitrogen”, and “CHEBI:36934 - nitrogen-15 atom”.

The only thing in common between those three ChEBI terms is they all have a synonym of

“N”. To achieve the best performance, the strict model should be used.
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For best performance, terms less than 5 characters should be filtered out. By doing

this P is increased 0.3-0.5, but R is decreased by 0.2; F-measure is increased by 0.05.

Comparing the lengths of terms filtered (3 vs. 5), we find that ∼1,000 TPs are missed but

∼8,000 FPs are avoided. It makes sense that the TPs missed are terms and abbreviations

that are 3-4 characters in length such as “CHEBI:37527 - acid”, “CHEBI:33290 - food”,

and “EDTA”, which is a synonym of “CHEBI:42191 - ethylenediaminetetraacetic acid”.

The errors filtered out are mostly due to synonyms that contain ambiguous abbreviations.

For example “PGC” is incorrectly annotated with “CHEBI:26336 - prostaglandins C” and

“male” is incorrectly annotated with “CHEBI:30780 - maleate(2-)”. Along the same lines,

the acronymAbb parameter can introduce many more erroneous abbreviations if the value

is set to all. In order to minimize errors introduced through abbreviations, it is best to

use set acronymAbb to default or unique and to also set minTermSize to filter out 5 or

less characters.

2.4.9.3 ConceptMapper parameters

Only one parameter was found to be statistically significant, synonyms (p=2.2×10−16).

This does not mean that this parameter is the only one that matters and that any combina-

tion will perform well. What we see happening is that the synonyms parameter separates

the data into two distinct groups and that the effect of other parameters on each group is

widely different. For example, we find that stemmer performance is directly tied to which

synonyms are used. When all synonyms are used, there is no difference between any of

them, but when using exact synonyms, the stemmers cluster into three distinct groups,

with BioLemmatizer achieving the best performance.

Using all synonyms decreases P by 0.4-0.6 with varying effects on R. Examining the

highest F-measure performing combination, ∼1,000 more TPs and ∼365,000 more FPs are

introduced by creating the dictionary with all synonyms instead of exact. Correct annota-

tions found are mostly from abbreviations. For example “NaCl” is correctly annotated with

“CHEBI:26710 - sodium chloride”, “MgSO4” is correctly annotated with “CHEBI:32599 -

magnesium sulfate”, and “mRNA” is correctly annotated with “CHEBI:33699 - messenger

RNA”. Abbreviations for chemicals can introduce many errors; for example, “CHEBI:30430
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- indium atom” and “CHEBI:30433 - indium(1+)” both have a synonym of “In”, which is

a common English word and seen ∼56,000 times in CRAFT. Mixing all synonyms and

any stemmer produces interesting errors also. For example, “CHEBI:33783 - beryllium(0)”

has a synonym “Be”, which is incorrectly annotated to “am”, “is”, “are”, “was”, “been”,

etc... We can conclude that the non-exact synonyms for ChEBI are not helpful for concept

recognition.

2.4.10 Overall parameter analysis

Here we present overall trends seen from aggregating all parameter data over all on-

tologies and explore parameters that interact. Suggestions for parameters for any ontology

based upon its characteristics are given. These observations are made from observing which

parameter values and combinations produce the highest F-measures and not from statistical

differences in mean F-measures.

2.4.10.1 NCBO Annotator

Of the six NCBO Annotator parameters evaluated, only three impact performance of the

system: wholeWordsOnly, withSynonyms, and minTermSize. Two parameters, filterNumber

and stopWordsCaseSensitive, did not impact recognition of any terms, while removing stop

words only made a difference for one ontology (PRO).

A general rule for NCBO Annotator is that only whole words should be matched;

matching whole words produced the highest F-measure on seven out of eight ontologies and

on the eighth, the difference was negligible. Allowing NCBO Annotator to find terms that

are not whole words greatly decreases precision while minimally, if at all, increasing recall.

Using synonyms of terms makes a significant difference in five ontologies. Synonyms

are useful because they increase recall by introducing other ways to express concepts. It is

generally better to use synonyms, as only one ontology performed better when not using

synonyms (GO MF).

minTermSize does not effect the matching of terms but acts as a filter to remove matches

of less than a certain length. A safe value of minTermSize for any ontology would be one

or three because only very small words (< 2 characters) are removed. Filtering terms less
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than length five is useful, not so much for finding desired terms, but for removing unde-

sired terms. Undesired terms less than five characters can be introduced either through

synonyms or small ambiguous terms that are commonly seen and should be removed to

increase performance. (e.g. “NCBITaxon:3863 - Lens” and “NCBITaxon:169495 - This”)

2.4.10.2 Interacting parameters - NCBO Annotator

Because half of NCBO Annotator’s parameters do not affect performance, we only see

interaction between two parameters: wholeWordsOnly and synonyms. The interactions be-

tween these parameters come from mixing wholeWordsOnly = no and synonyms = yes.

As noted in the discussion of ontologies above, using this combination of parameters in-

troduces anywhere from 1,000 to 41,000 FPs, depending on the test scenario and ontology.

These errors are introduced because small synonyms or abbreviations are found within other

words.

2.4.10.3 MetaMap

We evaluated seven MM parameters. The only parameter value that remained constant

between all ontologies was gaps; we have come to the consensus that gaps between tokens

should not be allowed when matching. By inserting gaps, precision is decreased with no or

slight increase in recall.

The model parameter determines which type of filtering is applied to the terms. The

difference between the two values for model is that strict performs an extra filtering step

on the ontology terms. Performing this filtering increases precision with no change in recall

for ChEBI and NCBITaxon with no differences between the parameter values on the other

ontologies. Because it is best performing on two ontologies and in MM documentation is

said to produce the highest level of accuracy, the strict model should be used for best

performance.

One simple way to recognize more complex terms is to allow the reordering of tokens

in the terms. Reordering tokens in terms helps MM to identify terms as long as they

are syntactically or semantically the same. For example, “GO:0000805 - X chromosome”

is equal to “chromosome X”. Practically, the previous example is an exception, as most

reorderings are not syntactically or semantically similar; by ignoring token order, precision
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is decreased without an increase in recall. Retaining the order of tokens produces highest

F-measure on six out of eight ontologies, while there was no difference on the other two.

We conclude for best performance it is best to retain token order.

One unique feature of MM is that it is able to compute acronym and abbreviation vari-

ants when mapping text to the ontology. MM allows the use of all acronym/abbreviations

(-a), only those with unique expressions (-u) and the default (no flags). For all ontologies,

there is no difference between using the default or only those with unique expressions,

but both are better than using all. Using all acronyms and abbreviations introduces

many erroneous matches; precision is decreased without an increase in recall. For best

performance, use default or unique values of acronyms and abbreviations.

Generating derivational variants helps to identify different forms of terms. The goal

of generating variants is to increase recall without introducing ambiguous terms. This

parameter produces the most varied results. There are three parameter values (all, none,

and adj noun only), and each of them produces the highest F-measure on at least one

ontology. Generating variants hurts the performance on half of the ontologies. Of these

ontologies, variants of terms from PRO and ChEBI do not make sense because they do

not follow typical English language rules while variants of terms in NCBITaxon and SO

introduce many more errors than correct matches. all variants produce highest F-measure

on CL, while adj noun only variants are best-performing on GO BP. There is no difference

between the three values for GO CC and GO MF. With these varied results, one can decide

which type of variants to use by examining the way they expect terms in their ontology to

be expressed. If most of the terms do not follow traditional English rules, like gene/protein

names, chemicals, and taxa, it is best to not use any variants. For ontologies where terms

could be expressed as nouns or verbs, a good choice would be to use the default value and

generate adj noun only variants. This is suggested because it generates the most common

types of variants, those between adjectives and nouns.

The parameters minTermSize and scoreFilter do not affect matching but act as a post-

processing filter on annotations returned. minTermSize specifies the minimum length, in

characters, of annotated text; text shorter than this is filtered out. This parameter acts

exactly like that of the NCBO Annotator parameter with the same name presented above.
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MM produces scores in the range of 0 to 1000, with 1000 being the most confident. For all

ontologies, a score of 1000 produces the highest P and the lowest R, while a score of 0 returns

all matches and has the highest R with the lowest P, with 600 and 800 somewhere between.

Performance is best on all ontologies when using most of the annotations found by MM, so

a score of 0 or 600 is suggested. As input to MM, we provided the entire document; it is

possible that different scores are produced when providing a phrase, sentence, or paragraph

as input. The scores are not as important as the understanding that most of the annotations

returned by MM are used.

2.4.10.4 ConceptMapper

We evaluated seven CM parameters. When examining best performance, all parameter

values vary but one: orderIndependentLookup = off, which does not allow the reordering

of tokens when matching, is set in the highest F-measure parameter combination for all

ontologies. As for MM, it is best to retain ordering of tokens.

searchStrategy affects the way dictionary lookup is performed. contiguous matching

returns the longest span of contiguous tokens, while the other two values (skip any match

and skip any allow overlap) can skip tokens and differ on where the next lookup begins.

Performance on six out of eight ontologies is best when only contiguous tokens are returned.

On NCBITaxon, the behavior of searchStrategy is unclear and unintuitive: By returning non

contiguous tokens, precision is increased without loss of recall. For most ontologies, only

selecting contiguous tokens produces the best performance.

The caseMatch parameter tells CM how to handle capitalization. The best performance

on four out of eight ontologies uses insensitive case matching while there is no difference

between the values of caseMatch on three ontologies. There is no difference on those three

because the best parameter combination utilizes the BioLemmatizer, which automatically

ignores case. Thus, best performance on seven out of eight ontologies ignores case. PRO is

the exception; its best-performing combination only ignores case on those tokens containing

digits. For most ontologies, it is best to use insensitive matching.

Stemming and lemmatization allow matching of morphological term variants. Perfor-

mance on only one ontology, PRO, is best when no morphological variants are used; this is
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the case because PRO terms annotated in CRAFT are mostly short names which do not

behave and have the properties of normal English words. The best-performing combination

on all other ontologies use either the Porter stemmer or the BioLemmatizer. For some on-

tologies, there is a difference between the two variant generators, and for others there was

not. Even ontologies like ChEBI and NCBITaxon perform best with morphological variants

because they are needed for CM to identify inflectional variants such as plurals. For most

ontologies, morphological variants should be used.

CM can take a list of stop words to be ignored when matching. Performance on seven

out of eight ontologies is better when stop words are not ignored. Ignoring PubMed stop

words from these ontologies introduces errors without an increase in recall. An example of

one error seen is the span “proteins that target” incorrectly annotated with “GO:0006605

- protein targeting”. The one ontology, NCBITaxon, where ignoring stop words results in

best performance is due to a specific term, “NCBITaxon:169495 - this”. By ignoring the

word “this”, ∼1,800 FPs are prevented. If there is not a specific reason to ignore stop words,

such as the terms seen in NCBITaxon, we suggest not ignoring stop words for any ontology.

By default CM only returns the longest match; all matches can be returned by setting

findAllMatches to true. Seven out of eight ontologies perform better when only the longest

match is returned. Returning all matches for these ontologies introduces errors because

higher-level terms are found within lower-level ones and the CRAFT concept annotation

guidelines specifically prohibit these types of nested annotations. CHEBI performs best

when all matches are returned because it contains such nested annotations. If the goal is

to find all possible annotations or it is known that there are nested annotations we suggest

to set findAllMatches to true, but for most ontologies, only the longest match should be

returned.

There are many different types of synonyms in ontologies. When creating the dictionary

with the value all, all synonyms (exact, broad, narrow, related, etc...) are used; the value

exact creates dictionaries with only the exact synonyms. The best performance on six

out of eight ontologies uses only exact synonyms. On these ontologies, using only exact

instead of all synonyms increases precision with no loss of recall; use of broad, related, and

narrow synonyms mostly introduce errors. Performance on PRO and GO BP is best when
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Figure 2.12: Two CM parameter that interact on CHEBI Synonyms (left) and
stemmer (right) parameter interact. The stemmer produce distinct clusters when only
exact synonyms are used. When all synonyms are used, it is hard to distinguish any
patterns in the stemmer .

using all synonyms. On these two ontologies, the other types of synonyms are useful for

recognition and increase recall. For most ontologies using only exact synonyms produces

the best performance.

2.4.10.5 Interacting parameters - ConceptMapper

We see the most interaction between parameters in CM. There are two different interac-

tions that are apparent in certain ontologies: 1) stemmer and synonyms and 2) stopWords

and synonyms. The first interaction found is in ChEBI. We find the synonyms parameter

partitions the data into two distinct groups. Within each group, the stemmer parameter

has two completely different patterns (Figure 2.12). When only exact synonyms are used

all three stemmers are clustered, with BioLemmatizer performing best, but when all syn-

onyms are used it is hard to find any difference between the three stemmers. The second

interaction found is between the stopWords and synonyms parameters. In GO MF several

terms have synonyms that contain two words, with one being in the PubMed stop word

list. For example, all mentions of “activity” are incorrectly annotated with “GO:0050501 -
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hyaluronan synthase activity”, which has a broad synonym “HAS activity”; “has” is con-

tained in the stop word list and therefore is ignored.

Not only do we find interactions within CM, but some parameters also mask the ef-

fect of other parameters. It is already known and stated in the CM guidelines that the

searchStrategy values skip any match and skip any allow overlap imply that or-

derIndependentLookup is set to true. Analyzing the data, it was also discovered that

BioLemmatizer converts all tokens to lower case when lemmas are created, so the param-

eter caseMatch is effectively set to ignore. For these reasons, it is important to not only

consider interactions but also the masking effect that a specific parameter value can have

on another parameter.

2.4.11 Substring matching and stemming

Through our analysis we have shown that accounting for morphology of ontological

terms has an important impact on the performance of concept annotation in text. Normal-

izing morphological variants is one way to increase recall by reducing the variation between

terms in an ontology and their natural expression in biomedical text. In NCBO Annota-

tor, morphology can only be accommodated in the very rough manner of either requiring

that ontology terms match whole (space or punctuation-delimited) words in the running

text, or allowing any substring of the text whatsoever to match an ontology term. This

leads to overall poorer performance by NCBO Annotator for most ontologies, through the

introduction of large numbers of false positives. It should be noted that some substring

annotations may appear to be valid matches, such as the annotation of the singular “cell”

within “cells”. However, given our evaluation strategy, such an annotation would be counted

as incorrect since the beginning and end of the span do not directly match the boundaries of

the gold CRAFT annotation. If a less strict comparator were used, these would be counted

as correct, thus increasing recall, but many FPs would still be introduced through substring

matching from e.g., short abbreviation strings matching many words.

MM always includes inflectional variants (plurals and tenses of verbs) and is able to

include derivational variants (changing part of speech) through a configurable parameter.

CM is able to ignore all variation (stemmer = none), only perform rough normalization
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Figure 2.13: Differences between maximum F-measure and performance when
optimizing one dimension. Arrows point from best performing F-measure combination
to the best precision/recall parameter combination. All systems and all ontologies are
shown.

by removing common word endings (stemmer = Porter), and handle inflectional variants

(stemmer = BioLemmatizer). We currently do not have a domain-specific tool available for

integration into CM to handle derivational morphology, as well, but a tool that could handle

both inflectional and derivational morphology within CM would likely provide benefit in

annotation of terms from certain ontologies. If NCBO Annotator were to handle at least

plurals of terms, its recall on CL and GO CC ontologies would greatly increase because

many terms are expressed as plurals in text. For ontologies where terms do not adhere to

traditional English rules (e.g.,ChEBI or PRO), using morphological normalization actually

hinders performance.

2.4.12 Tuning for precision or recall

We acknowledge that not all tasks require a balance between precision and recall; for

some tasks high precision is more important than recall, while for others the priority is

high recall and it is acceptable to sacrifice precision to obtain it. Since all the previous

results are based upon maximum F-measure, in this section we briefly discuss the tradeoffs

between precision and recall and the parameters that control it. The difference between the
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Table 2.7: Best parameters for optimizing performance for precision or recall.

High precision annotations
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly YES model STRICT searchStrategy CONTIGUOUS
filterNumber ANY gaps NONE caseMatch SENSITIVE
stopWords ANY wordOrder ORDER

MATTERS
stemmer NONE

SWCaseSensitive ANY acronymAbb DEFAULT
or UNIQUE

stopWords NONE

minTermSize THREE or
FIVE

derivationalVariants NONE orderIndLookup OFF

withSynonyms NO scoreFilter 1000 findAllMatches NO
minTermSize 3 or 5 synonyms EXACT ONLY

High recall annotations
NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value
wholeWordOnly NO model RELAXED searchStrategy SKIP ANY or

ALLOW
filterNumber ANY gaps ALLOW caseMatch IGNORE or

INSENSITIVE
stopWords ANY wordOrder IGNORE stemmer Porter or Bi-

oLemmatizer
SWCaseSensitive ANY acronymAbb ALL stopWords PubMed
minTermSize ONE or

THREE
derivationalVariants ALL or ADJ

NOUN
orderIndLookup ON

withSynonyms YES scoreFilter 0 findAllMatches YES
minTermSize 1 or 3 synonyms ALL

maximum F-measure parameter combination and performance optimized for either precision

or recall for each system-ontology pair can be seen in Figure 2.13. By sacrificing recall,

precision can be increased between 0 and 0.45. On the other hand, by sacrificing precision,

recall can be increased between 0 and 0.38.

The best parameter combinations for optimizing performance for precision and recall

can be seen in Table 2.7. Unlike the previous combinations seen above, parameters that

produce the highest recall or precision do not vary widely between the different ontologies.

To produce the highest precision, parameters that introduce any ambiguity are minimized;

for example, word order should be maintained and stemmers should not be used. Likewise,

to find as many matches as possible, the loosest parameter settings should be used; for

example, all variants and different term combinations should be generated along with using

all synonyms. The combination of parameters that produce the highest precision or recall

are very different from the maximum F-measure-producing combinations.
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2.5 Conclusions

After careful evaluation of three systems on eight ontologies, we can conclude that

ConceptMapper is generally the best-performing system. CM produces the highest F-

measure on seven out of eight total ontologies, while NCBO Annotator and MM both

produce the highest F-measure on only one ontology (NCBO Annotator and MM produce

equal F-measures on ChEBI). Out of all systems CM balances precision and recall the

best; it produces the highest precision on four ontologies and the highest recall on three

ontologies. The other systems perform well in one dimension but suffer in the other. MM

produces the highest recall on five out of eight ontologies but precision suffers because it

finds the most errors; the three ontologies for which it did not achieve highest recall are

those where variants were found to be detrimental (SO, ChEBI, and PRO). On the other

hand, NCBO Annotator produces the highest precision for four ontologies but falls behind

in recall because it is unable to recognize plurals or variants of terms. Overall, CM performs

best out of all systems evaluated on the concept normalization task. For this reason, for

the rest of the dissertation I utilize the ConceptMapper pipeline described here along with

best parameters discovered for concept recognition.

Besides performance, another important thing to consider when using a tool is the ease

of use. In order to use CM, one must adopt the UIMA framework. Transforming any

ontology for matching is easy with CM with a simple tool that converts any OBO ontology

file to a dictionary. MM is a standalone tool that works only with UMLS ontologies natively;

getting it to work with any arbitrary ontology can be done but is not straightforward. MM

is the most like a black box of all the systems, which results in some annotations that are

unintuitive and cannot be traced to their source. NCBO Annotator is the easiest to use

as it is provided as a Web service, with large retrieval occurring through a REST service.

NCBO Annotator currently works with any of the 330+ BioPortal ontologies. Drawbacks

of NCBO Annotator are due to it being provided as a Web service, they include changes in

the underlying implementation, resulting in different annotations returned over time; there

is also no control over the version of the ontologies used or the ability to add an ontology.

Using the default parameters for any tool is a common practice, but as seen here, the

defaults often do not produce the best results. We have discovered that some parameters
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do not impact performance, while others greatly increase performance when compared to

defaults. As seen in the Results and Discussion section, we have provided parameter sug-

gestions for not only the ontologies evaluated but also provide general suggestions that can

be applied to any ontology. We can also conclude that parameters cannot be optimized

individually. If we didn’t generate all parameter combinations and instead examined pa-

rameters individually, we would be unable to see these interacting parameters and could

have chosen a non-optimal parameter combination as the best.

Complex multi-token terms are seen in many ontologies and are more difficult to nor-

malize than the simpler one- or two-token terms. Inserting gaps, skipping tokens, and

reordering tokens are simple methods currently implemented in both CM and MM. These

methods provide a simple heuristic but do not always produce valid syntactic structures or

retain the semantic meaning of the original term. From our analysis above, we can conclude

that more sophisticated, syntactically valid methods need to be implemented to recognize

complex terms seen in ontologies such as GO MF and GO BP. Chapter III focuses on the

improvement of these types of complex Gene Ontology concepts through the implementation

of synonym generation rules.

Our results demonstrate the important role of linguistic processing, in particular mor-

phological normalization of terms, during matching. Several of the highest-performing sets

of parameters take advantage of stemming or handling of morphological variants, though

the exact best tool for this job is not yet entirely clear. In some cases, there is also an

important interaction between this functionality and other system parameters, leading to

some spurious results. It appears that these problems could be addressed in some cases

through more careful integration of the tools and in others through simple adaptation of

the tools to avoid some common errors that have occurred.

In this work, we established baselines for performance of three publicly available

dictionary-based tools on eight biomedical ontologies, analyzed the impact of parameters

for each system, and made suggestions for parameter use on any ontology. We can con-

clude that of the tested tools, the generic ConceptMapper tool generally provides the best

performance on the concept normalization task, despite not being specifically designed for

use in the biomedical domain. The flexibility it provides in controlling precisely how terms
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are matched in text makes it possible to adapt it to the varying characteristics of different

ontologies.
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CHAPTER III

IMPROVING PERFORMANCE OF CONCEPT RECOGNITION3

3.1 Introduction

One of the trends seen in Chapter II was that complex multi-token terms are more

difficult to recognize due to increasing variation within natural text. Simple heuristics

such as inserting gaps, skipping tokens, and reordering tokens are built into some of the

concept recognition systems, but they can only help to a certain point. The most complex

terms are those from the Gene Ontology, specifically Molecular Function and Biological

Process branches; F-measure performance supports that with 0.14 and 0.42, respectively.

The motivating idea behind this chapter is to increase the performance in recognizing these

concepts, by expanding their synonym list with both syntactic and derivational variants, by

exploiting their underlying compositional nature. The synonym generation rules presented

are evaluated both intrinsically on the CRAFT gold-standard corpus along with extrinsically

validated on a large collection of 1 million full text articles via manual inspection of random

sampling. If these complex processes and functions could be recognized with higher accuracy

and recall, automatic methods for both aiding in manual curation and biomedical prediction

would greatly be improved.

3.2 Background

The Gene Ontology (GO) represents the standard by which we refer to functions and

processes that genes/gene products participate in. Due to its importance in biology and

the exponential growth in the biomedical literature over the past years, there has been

much effort in utilizing GO for text mining tasks (Hirschman et al., 2005; Mao et al., 2014).

Performance on these recognition tasks is lacking; it has been previously seen that there is a

large gap between the way concepts are represented in the ontology and the many different

ways they are expressed in natural text (Verspoor et al., 2003; Cohen et al., 2008; Brewster

et al., 2004).

3The work presented in this chapter was submitted to Journal of Biomedical Semantics
in April 2015 under the title Gene Ontology synonym generation rules lead to increased
performance in biomedical concept recognition.
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There have been very few evaluations assessing the ability to recognize and normalize

Gene Ontology concepts from the literature; this is mostly due to lack of gold-standard anno-

tations. Previous work evaluated concept recognition systems utilizing the Colorado Richly

Annotated Full Text Corpus (CRAFT). (Funk et al., 2014a) evaluated three prominent

dictionary-based systems (MetaMap, NCBO Annotator, and ConceptMapper) and found

Cellular Component was able to be recognized the best (F-measure 0.77). The more com-

plex terms from Biological Process (F-measure 0.42) and Molecular Function (F-measure

0.14) were much more difficult to recognize in text. Campos et al. present a framework

called Neji and compare it against Whatizit on the CRAFT corpus (Campos et al., 2013);

they find similar best performance (Cellular Component 0.70, Biological Process/Molecular

Function 0.35). Other work explored the impact of case sensitivity and information gain on

concepts recognition and report performance in the same range as what has previously been

published (Cellular Component 0.78, Biological Process/Molecular Function 0.40) (Groza

and Verspoor, 2015). Since all methods utilized dictionary based systems it appears that

a plateau has been reached utilizing the information contained within the Gene Ontology

itself. For further progress to be made, the gap between concept representation and their

expression in literature needs to be reduced, which serves as major motivation for the work

presented in this manuscript. There have also been sub-tasks within the BioCreative I

and IV (Blaschke et al., 2005; Mao et al., 2014) community challenges that involve a task

similar, but more difficult, to GO term recognition – relating relevant GO concepts given

protein-document pairs – these are not addressed further here, but methods presented here

could also be applied to that task.

There are two main applications of biomedical literature mining where improved perfor-

mance of the GO can greatly help. 1) It is well known that manual curation can no longer

keep up with the annotation of gene and protein function (Baumgartner et al., 2007a).

Automatic annotation is not our direct goal, but utilizing automatic methods to highlight

functions could provide input to curators to help speed up manual curation. 2) The mining

of GO concepts from large collections of biomedical literature has been show to be useful for

biomedical discovery, for example, pharmacogenomic gene prediction (Funk et al., 2014c)

and protein function prediction (Sokolov et al., 2013b; Funk et al., 2015). We hypothesize
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that we can utilize the compositional nature of the Gene Ontology (Ogren et al., 2004) to

develop a small number of language generation rules that will have a large impact on the

ability to recognize concepts from biomedical text. We are aware that our method might

overgenerate, but we also hypothesize that those synonyms probably will not be found in

the biomedical literature, and therefore, will not hinder performance.

In this work we present a number of manually created recursive syntactic and deriva-

tional rules to facilitate generation of synonyms for Gene Ontology terms. We evaluate

these generated synonyms both intrinsically on a gold standard corpus to show these rules

increase performance over any published results for recognition of GO concepts and extrin-

sically through manual validation of annotations produced on a large collection of literature

to illustrate the accuracy and impact of the rules have at a larger scale.

3.2.1 Natural language generation sub-task

We can view this problem as a subset of natural language generation (NLG) field. NLG

is the task of automatically generating language from some knowledge source. A good

review of NLG and its use in the semantic web space can be seen in Bouayad-Agha et

al. (Bouayad-Agha et al., 2012). NLG has been used in the biomedical domain to write

genetic counseling letters (Green, 2005), question answering (Athenikos and Han, 2010;

Chaudhri et al., 2013), and creating textual summaries from knowledgebases (Banik et al.,

2013). Language generation has also been applied specifically to ontologies for tasks such as

populating an allergen ontology and generating it in multiple languages (Karkaletsis et al.,

2006) and presenting textual summaries or descriptions of groups or individual ontological

classes (Davies et al., 2008; Karakatsiotis et al., 2008).

Most NLG tasks must be very specific in the language and content they provide to the

reader and have to decipher both ‘what to say’ and ‘how to say it’ before they can generate

language (Mitkov, 2005; Dale et al., 2000), i.e. what information should be conveyed from

the input text, how should sentences/phrases be ordered, and what specific syntax and words

convey the information the clearest. Our task is more simple than many other NLG tasks, as

we are only focused on the generation of all variability within a phrase with the caveat that

everything generated by the system should have the same semantics as the original input.
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Additionally, the output of our system is not intended for human interpretation, although

it can be read, and may contain some syntactically incorrect entities. The designed goal is

to use the output to modify a dictionary which is fed into a concept recognition system.

3.2.2 Difficulties in identifying phrasal lexicons

The identification of Gene Ontology terms is more difficult than many other types of

named entities such as genes, proteins, or species mainly due to the length (Funk et al.,

2014a) and complexity of the concepts along with the many variations that can occur in

natural language. To help illustrate this we explore the length of terms along with the

ability to recognize them in Figure 3.1. Overall, performance decreases as the complexity

increases; additionally, the occurrence of terms decreases significantly after a length of two.

In CRAFT there are about 100 unique single token concepts annotated, which can

be recognized with macro-averaged F-measure of about 0.70 (performance is taken from

best performing parameter combination from Funk et al (Funk et al., 2014a). The highest

number of annotations (∼500) is of concepts with a length of two, we see a dramatic

decrease in performance when examining these terms (F-measure = 0.33). This decreasing

trend continues until spikes in performance are seen due to recognition of a single complex

term with only a few total instances.

3.2.3 Compositionality of the Gene Ontology

The structure of concepts from the Gene Ontology has been been noted by many to be

compositional (Ogren et al., 2004, 2005; Hill et al., 2002). A term such as “GO:1900122 -

positive regulation of receptor binding” contains another concept “GO:0005102 - receptor

binding”; not only do the strings overlap, but the terms are also connected by relationships

within the ontology. Ogren et al. explore more in detail terms as proper substring of other

terms (Ogren et al., 2004). Additionally, previous work examined the compositionality of

the GO and employed finite state automata (FSA) to represent sets of GO terms (Ogren

et al., 2005). An abstracted FSA described in that work can be seen in Figure 3.2. This

example shows how terms can be decomposed into smaller parts and how many different

terms share similar compositional structure.
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Figure 3.1: Complexity of terms in CRAFT. Plotting performance and number of
terms vs the number of tokens within a GO concept name in the CRAFT corpus. Blue bars
correspond to macro-averaged F-measure performance broken down by complexity of terms
in number of tokens. Red line corresponds to the number of unique GO terms annotated
in the CRAFT.

To facilitate generation of meaning (cross-product definitions) and consistency within

the ontology, a system called Obol (Mungall, 2004) was developed. This work involved an-

alyzing the structure of terms through the creation of grammars to decompose and under-

stand the formal language underlying the GO. An example grammar describing the positive

regulation of a molecular function term follows: process(P that positively regulates(F)) ⇒

[positive],regulation(P),[of],molecular function(F). These grammars serve as templates for

the decompositional rules utilized in this work. Recently, GO has been moving away from

pre-computed term, towards post-computed on-the-fly creation of terms for annotations

using cross-products (Huntley et al., 2014). Additionally, TermGenie (Dietze et al., 2014)

was developed, using a pattern-based approach, to automatically generate new terms and

place them appropriately within the Gene Ontology. This work dealt with the analysis and

generation of new terms for curation, but no work has been focused on synonym generation.

It is evident that compositionality is a prevalent phenomenon within the Gene Ontology.

There has been previous work using the compositional nature and common syntac-

tic patterns within the Gene Ontology itself to automatically generate lexical elementary

synonym sets (Hamon and Grabar, 2008). This method generates a total of 921 sets of syn-

onyms with a majority being generated from 1-3 terms; 80% of the sets refer to orthographic
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Figure 3.2: Finite state automata representing activation, proliferation, and
differentiation GO terms. An abstracted FSA adapted from a figure in Ogren et al.
(Ogren et al., 2005) that shows how a particular term can be decomposed into its smaller
components; where “cell type” can be any specific type of cell.

{synthase, sythetase}, chemical products {gallate, gallic acid}, or Latin inflection {flagella,

flagellum}. We believe this method is complementary to what we present here. We manu-

ally created these sets through analysis of Gene Ontology annotations in unstructured text.

Additionally we go beyond and incorporate derivational variants, i.e. flagella⇒flagellar,

which have been shown to be very useful for capturing the natural language of concepts.

We were currently unable to find them publicly available, but if we should, they could be

seamlessly integrated within the synonym generation rules we present here.

Other work takes advantage of the structure of the Gene Ontology and relationships

between GO terms to show that these properties can aid in the creation of lexical semantic

relationships for use in natural language processing applications (Verspoor et al., 2003).

Besides compositionality, previous work tries to identify GO terms that express similar

semantics that use distinct linguistic conventions (Verspoor et al., 2009). They find that, in

general, concepts from the Gene Ontology are very consistent in their representation (there

are some exceptions but are quality issues that the consortium would like to avoid or fix).

This signifies that the Gene Ontology is an excellent starting point for rule-based synonym

generation. The consistency of term representation along with the underlying compositional

structure suggests the effective generation of synonyms for many terms using only a small

number of rules.

3.2.4 Objectives of this work

The goal of this work is to take advantage of the consistency and compositionality

underlying Gene Ontology concepts to create the fewest rules that have the largest impact

on recognition recall, thus the rules presented here take into account the largest classes of
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concepts. We leave creation of rules that affect smaller classes of concepts for future work.

Also, it is possible that some synonyms generated are not linguistically or syntactically

correct; this should not impact performance because they are being recognized from a

dictionary and then should not appear in free text. Is is the goal to generate and release these

synonyms for the larger biomedical natural language processing community. Currently, we

do not suggest that all generated synonyms be considered for addition to GO or for other

uses, but we have ideas on ways that we can filter them to suggest the best generated terms

as synonyms.

3.3 Methods

3.3.1 Structure of the Gene Ontology

The ontologies used were obtained from the Open Biomedical Ontology (obo) To help

to understand the structure of the obo file, an entry of a concept from GO is shown in

Figure 3.3. The only parts of an entry used in our systems are the id, name, and synonym

rows. Alternative ways to refer to terms are expressed as synonyms; there are many types

of synonyms that can be specified with different levels of relatedness to the concept (exact,

broad, narrow, and related). Currently, we treat all synonyms as equal, but can alter that

thinking quite easily. An ontology specification can express a hierarchy among its terms;

these are expressed in the “is a” entry. Terms described as “ancestors”, “less specific”, or

“more general” lie above the specified concept in the hierarchy, while terms described as

“more specific” are below the specified concept.

id: GO:0001764

name: neuron migration

namespace: biological process

def: “The characteristic movement of an immature neuron from germinal zones to specific positions
where they will reside as they mature.”

synonym: “neuron chemotaxis” EXACT

synonym: “neuron guidance” RELATED

is a: GO:0016477 ! cell migration

relationship: part of GO:0048699 ! generation of neurons
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Within this work we utilize the id, name, namespace, and synonym directly. Indirectly,

we use the is a and relationships through decomposition and matching of the name field.

3.3.2 CRAFT corpus

The gold standard used is the Colorado Richly Annotated Full-Text (CRAFT) Corpus

(Bada et al., 2012; Verspoor et al., 2012). The full CRAFT corpus consists of 97 completely

annotated biomedical journal articles, while the “public release” set, which consists of 67

documents, was used for this evaluation. CRAFT includes over 100,000 concept annotations

from eight different biomedical ontologies. Even though the collection is small, there is no

other corps that has text-level annotations of Gene Ontology concepts.

3.3.3 Large literature collection

To test generalization and for further analysis the impact our concept recognition can

have, we utilized a large collection of one million full-text articles from Elsevier. This

is a private collection of full-text documents from a wide variety of biomedical Elsevier

journals. We are aware of the difficulties associated with obtaining or even accessing full-

text documents from subscription journal publishers in a machine readable format, primarily

XML. This collection of articles was procured negotiating a licensing deal mediated through

on campus librarians, a possible solution and lessons learned from that process is described

in Fox et al. (Fox et al., 2014).

3.3.4 Concept recognition pipeline and baselines

The baseline for GO recognition was established in previous work (Funk et al., 2014a)

through parameter analysis of three different concept recognition systems. The top per-

forming system, ConceptMapper (CM), is used for the following test because it produced

highest F-measures on 7 out of 8 ontologies in the CRAFT corpus. CM takes an obo file and

converts it to an xml dictionary, which is used to recognize concepts in free text. In analyz-

ing the results there are two different baselines that were provided, 1) using best parameter

combination and only information contained within the ontology obo file and 2) using best

parameter combination and modifying the dictionary to account for the “activity” terms.

Both baseline numbers are presented for comparison.
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For the intrinsic evaluation pipeline, we use the version of GO used to annotate CRAFT

from November 2007. We are aware of the great number of changes made, but this was

purposefully done to keep the concepts available to the dictionary the same that were

available to the annotators when they marked up the gold standard. To show that the rules

created are able to generalize and apply to much more of the Gene Ontology terms added

since 2007, for the extrinsic evaluation on large collection we use an updated version of the

GO from 09/25/2014.

3.3.5 ConceptMapper

ConceptMapper (CM) is part of the Apache UIMA Sandbox (Ferrucci and Lally, 2004)

and is available at http://uima.apache.org/d/uima-addons-current/ConceptMapper. Ver-

sion 2.3.1 was used for these experiments. CM is a highly configurable dictionary lookup

tool implemented as a UIMA component. Ontologies are mapped to the appropriate dic-

tionary format required by ConceptMapper. The input text is processed as tokens; all

tokens within a span (sentence) are looked up in the dictionary using a configurable lookup

algorithm.

For each branch of GO we used the highest performing parameter combination pre-

viously identified (Funk et al., 2014a). Table 3.1 provides a summation of the different

type of ConceptMapper parameters and shows the exact parameter combinations used for

recognition of each sub-branch of the Gene Ontology.

3.3.6 Evaluation of generated synonyms

To evaluate the synonyms given we use the same pipelines described in (Funk et al.,

2014a). Synonyms are generated by each method and then only those that are unique

(both within the generated synonyms and GO itself) are inserted into a temporary obo file.

The temporary obo file is then used to create an xml dictionary used by ConceptMapper

(Tanenblatt et al., 2010) for concept recognition. The CRAFT corpus is used as the gold

standard and precision, recall, and macro-averaged F-measure are reported for each branch

of the GO.
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Table 3.1: Summarization of ConceptMapper parameters.

Parameter Description MF BP CC

Search
strategy

CONTIGUOUS - returns longest
match of contiguous tokens in
the span, SKIP ANY - returns
longest match of not-necessarily
contiguous tokens in the span,
SKIP ANY ALLOW OVERLAP -
returns longest match of not-
necessarily contiguous tokens in
the span, this implies orderInd-
Lookup

CONTIGUOUS CONTIGUOUS CONTIGUOUS

Case
match

IGNORE - fold everything to low-
ercase more matching, INSENSI-
TIVE - fold only tokens with ini-
tial caps to lowercase, SENSI-
TIVE - performs no case fold-
ing, FOLD DIGIT -fold only (and
only) tokens with a digit

IGNORE INSENSITIVE INSENSITIVE

Stemmer
specifics which stemmer to use -
PORTER, BIOLEMMATIZER, or
NONE

BIOLEMMATIZER PORTER PORTER

Stop
words

a list of stopwords to remove -
PUBMED or NONE NONE NONE NONE

Order
inde-
pendent
lookup

if set to TRUE token ordering
within the sentence is ignored
(”box top” would match“top box”)
- TRUE or FALSE

FALSE FALSE FALSE

Find all
matches

If TRUE all dictionary matches
within the sentence are returned,
otherwise only the longest is re-
turned - TRUE or FALSE

FALSE TRUE FALSE

Synonyms
specifies which synonyms will be
included when making the dictio-
nary - EXACT ONLY or ALL

EXACT ONLY ALL EXACT ONLY

3.3.7 Manually created rules

Each of our rules was manually created through the analysis of concept annotations

within the gold standard CRAFT corpus and through discussions with an ontologist and

biologist about how they most frequently represent certain concepts. Every corpus will

have its set of annotation guidelines that are specific The set of derivational rules has been

tuned, through error analysis, to produce high performance on the CRAFT corpus. We

show that these rules are able to recognize many different terms not only in CRAFT but

also in a large collection of the biomedical literature, but it is possible that depending on

the task these rules should be modified.
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3.4 Results and discussion

3.4.1 Current synonyms are not sufficient for text-mining

To illustrate that current synonyms are insufficient for text mining we utilize the

CRAFT corpus and present both a specific example of variability within a single GO concept

and follow by presenting insufficiency at a the corpus level.

3.4.1.1 Evaluation of an individual concept synonyms

We examined all variations in the CRAFT corpus of the concept “GO:0006900 - mem-

brane budding”; the entry for the concept in the ontology file is inserted below. Like most

other terms, the concept name appears as a noun and the entry contains a few synonyms

(Figure 3.3).

id: GO:0006900
name: membrane budding
namespace: biological\_process
def: ‘‘The evagination of a membrane resulting in formation of a vesicle.’’
synonym: ‘‘membrane evagination’’ EXACT
synonym: ‘‘nonselective vesicle assembly’’ RELATED
synonym: ‘‘vesicle biosynthesis’’ EXACT
synonym: ‘‘vesicle formation’’ EXACT
is\_a: GO:0016044 ! membrane organization and biosynthesis
relationship: part\_of GO:0016192 ! vesicle-mediated transport

Figure 3.3: Example ontology entry for the concept “membrane budding”.

There were eight varying expressions of “membrane budding” in all of CRAFT, five of

which are contained within a single article about expression and localization of Annexin

A7 (Herr et al., 2003). In Table 3.2 we list the CRAFT annotations along with sentential

context. The first two examples can be identified with context from the ontology file, but

the others cannot.

By analyzing the different ways “membrane budding” is expressed in CRAFT, we find

that a majority of the annotations are phrased around the end product, the vesicle. To help

recognize these (currently) un-recognizable annotations we can reorder words and change

the syntax (“budding of vesicles”). We can also generate derivational variants of “vesicle”

(“vesiculation” and “vesiculate”). This one example illustrates that a rather simple term
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can be expressed in natural language in many different ways, that convey identical semantic

meaning. We also illustrate how a few simple rules can help create synonyms to recognize

them.

Table 3.2: Examples of the “membrane budding” concept within a single doc-
ument.

Lipid rafts play a key role in membrane budding. . .
Having excluded a direct role in vesicle formation. . .
. . . involvement of annexin A7 in budding of vesicles
. . . Ca2+-mediated vesiculation process was not impaired
Red blood cells which lack the ability to vesiculate cause. . .

3.4.1.2 Full corpus evaluation of concept synonyms

The overlap between Gene Ontology concepts and their synonyms and the how concepts

appear in the entire CRAFT corpus can be seen in Table 3.3, broken down by sub-ontology.

There are a total of 1,108 unique GO terms annotated within CRAFT. Of those 1,108

terms, 353 (31.9%) contain at least one synonym in the ontology. Of those 353 terms

that contain synonyms, only 126 (36% of those that have synonyms, 11.4% of all terms

in CRAFT) terms have synonyms that appear in CRAFT. The numbers presented should

be taken with consideration that CRAFT is a small collection of 67 full text articles, but

26.3% (291 unique terms) of the terms annotated in CRAFT cannot be mapped back to

the official term name or a synonym, indicating that even in a small coherent corpus that

the ontologies themselves do not contain enough information to accurately identify concepts

within biomedical text; this problem will be magnified when scaled to the entire biomedical

literature.

Table 3.3: Synonym analysis using CRAFT version of the Gene Ontology
(11/2007).

Ontology Unique
GO terms

Term name
matched

Contain
synonym(s)

Matched
synonym(s)

No syn-
onyms
& not
matched

Cellular Component 205 114 (55.6%) 84 (40.9%) 17 (10.2%) 52 (25.4%)
Molecular Function 270 12 (4.4%) 176 (65.2%) 16 (9.1%) 89 (33.0%)
Biological Process 633 228 (36.0%) 93 (14.7%) 93 (100.0%) 150 (23.7%)
Total 1,108 354 (31.9%) 353 (31.9%) 126 (35.7%) 291 (26.3%)

We performed the same synonym analysis after we applied our compositional rules to

the CRAFT version of the Gene Ontology (Table 3.4). Our compositional rules, described

in detail below, introduce almost three times as many synonyms that are contained in the
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original version of the ontology. Additionally, utilizing the synonym generate rules, almost

half of concepts contain synonyms that are seen in the text. These two facts lead to a large

increase in terms that are able to be mapped back to the text; with our rules only 10%

of unique terms in CRAFT are unable to be mapped by to their identifier. From this, we

briefly show that our compositional rules help to decrease the gap between the ontological

concepts and the many ways they can be expressed in natural text.

Table 3.4: Synonym analysis using compositional rules applied to CRAFT ver-
sion of the Gene Ontology (11/2007).

Ontology Unique
GO terms

Term name
matched

Contain
synonym(s)

Matched
synonym(s)

No syn-
onyms
& not
matched

Cellular Component 205 98 (47.8%) 164 (80.0%) 77 (47.0%) 29 (14.1%)
Molecular Function 270 12 (4.4%) 259 (95.9%) 126 (48.6%) 11 (4.1%)
Biological Process 633 221 (34.9%) 528 (83.4%) 215 (40.7%) 77 (12.2%)
Total 1,108 331 (29.8%) 951 (85.8%) 418 (44.0%) 117 (10.6%)

Because the version of GO used to annotated CRAFT is from November 2007 and we

wanted to explore the changes made over the years, the same analysis was performed using

a more recent version of GO from September 2014 (Table 3.5). Examining the differences

between the tables using only information from GO (Table 3.3 and 3.5) we see the vast

amount of work the Gene Ontology Consortium and curators have put into the Gene On-

tology. We find that over a 7 year period, almost twice as many terms have at least one

synonym, with major contribution in the Biological Process branch. We also find that the

official name of some concepts have changed over time. This is evident by the decrease

in term name matched and an increase in number of matched synonyms; most likely the

name was made a synonym and a new official name was added. Despite the improvements

made, there are still 200 unique terms (vs. 291 in the CRAFT version of GO) annotated

in CRAFT with something other than their term name or synonym. This analysis of syn-

onyms supports the notion that there is still a large gap in the way terms are represented

in the ontology and the way they are expressed in natural language.

Even though we see great strides by the GO Consortium over the past seven years,

our use of the Gene Ontology for text-mining differs from its intended use for functional

annotation. It is apparent that work is needed to help recognize GO concepts from the
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Table 3.5: Synonym analysis using most recent version of the Gene Ontology
(09/2014).

Ontology Unique
GO terms

Term name
matched

Contain
synonym(s)

Matched
synonym(s)

No syn-
onyms
& not
matched

Cellular Component 205 110 (53.7%) 109 (53.1%) 28 (25.9%) 25 (12.2%)
Molecular Function 270 12 (4.4%) 198 (73.3%) 17 (8.6%) 61 (22.6%)
Biological Process 633 210 (33.2%) 398 (62.9%) 117 (29.4%) 114 (18.0%)
Total 1,108 332 (30.0%) 705 (63.6%) 152 (17.3%) 200 (18.1%)

biomedical text and is a major motivation for this synonym generation rules presented in

this work.

3.4.2 Sources of synonyms

We explore three different methods for generating synonyms for concepts in the Gene

Ontology: 1) Importing synonyms from other biomedical resources through curated map-

pings, 2) using recursive rules to dissect GO concepts into their most basic forms then

combining utilizing syntactic rules, and 3) using derivational variant rules to generate syn-

onyms of the most basic composite terms. The overall results for all methods performance

on CRAFT can be seen in Table 3.6 with more detailed analysis of each of methods fol-

lowing. More details about how we evaluated performance of each method can be seen in

Evaluation of generated synonyms.

Table 3.6: Micro-averaged results for each synonym generation method on the
CRAFT corpus.

Method TP FP FN Precision Recall F-measure
Baseline (B1) 10,778 6,280 18,669 0.632 0.366 0.464
Baseline (B2) 12,217 7,367 17,230 0.624 0.415 0.498
All external synonyms 12,747 11,682 16,704 0.522 0.433 0.473
Recursive syntactic rules 12,411 7,587 17,036 0.621 0.422 0.502
Recursive syntactic and derivational rules 18,611 10,507 10,836 0.639 0.632 0.636

We present two different baselines for comparison: 1) B1, a dictionary containing only

the information within in the GO obo file and 2) B2, a dictionary that takes into account

a known property of molecular function terms to counteract the separation of the protein

and the function of the protein; for example, for term “GO:0016787 - hydrolase activity” a

synonym of “hydrolase” is added.

The best results are obtained by using both syntactic recursive and derivational rules;

an increase in F-measure of 0.112 is seen (0.610 vs 0.498). This increase is the result of a
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large increase in recall (0.225) with only a modest decrease in precision (0.049). Examining

the overall performance we find that all synonyms generation methods perform better than

B1, while all but the external synonyms perform better than B2. Overall, all generation

methods trade precision for recall, which is to be expected when adding synonyms. We now

discuss each method of synonym generation individually.

3.4.3 Mappings between ontologies and other biomedical resources

The first source of synonyms we used were those linked directly to Gene Ontology

concepts through manually curated external mappings. We imported synonyms from four

different sources, the Brenda database (Enzyme Commission numbers), UniProt knowl-

edgebase, UniProt subcellular localization, and Wikipedia. Each of these resources contains

classes or entities that are manually assigned indexes to identical, similar, or related GO

terms (http://geneontology.org/page/download-mappings). It is noted by the GO Consor-

tium that the mappings should not be taken as exact or complete. For both UniProt and

Wikipedia, the official mappings were downloaded from the GO mapping website while

Brenda was accessed through the provided SOAP server; all synonyms linked to the GO

concepts were added as synonyms and re-evaluated on the CRAFT corpus.

The results of each external synonym source, broken down by sub-branch of GO, can be

seen in Table 3.7. Overall, for the CC and MF branches, we find that the baselines provide

the best performance because of a large decrease in precision (P) without a corresponding

increase in recall (R) when using external mappings. With respect to the BP branch, we

find a slight, 0.01, improvement in overall performance when using synonyms from UniProt.

This slight improvement comes from a 0.03 increase (483 more true positives) in R and a

0.03 decrease (1,438 more false positives) in P. An error analysis was performed on the

many false positives introduced through using external mappings but unfortunately no sys-

tematic method to improve or filter them was discovered (data not shown). Overall, based

upon these results, external mappings introduce significantly more errors than correctly

recognized concepts and are not suggested to be useful as a whole for concept recognition.

With more analysis, it is possible that filters could be created to reduce the false positives

before external synonyms are inserted into the dictionary, but we leave that towards future
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Table 3.7: Results for each external mapping source on the CRAFT corpus.

Cellular Component

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 5,532 452 2,822 0.925 0.662 0.772
Baseline (B2) X X 5,532 452 2,822 0.925 0.662 0.772
Brenda (EC) 0 0 5,532 452 2,822 0.925 0.662 0.772
UniProt 348 330 5,547 709 2,807 0.887 0.664 0.759
Wikipedia 210 210 5,519 1,014 2,835 0.845 0.661 0.742
All Combined 471 419 5,534 1,271 2,820 0.813 0.662 0.730

Molecular Function

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 337 146 3,843 0.698 0.081 0.145
Baseline (B2) X X 1,772 964 2,408 0.648 0.424 0.512
Brenda (EC) 22,158 2,870 1,768 2,773 2,412 0.389 0.423 0.406
UniProt 111 105 1,773 2,608 2,407 0.404 0.424 0.414
Wikipedia 31 31 1,772 2,666 2,408 0.399 0.424 0.411
All Combined 22,258 3,006 1,773 3,015 2,411 0.370 0.424 0.395

Biological Process

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 4,909 5,682 12,004 0.464 0.290 0.357
Baseline (B2) X X 4,913 5,951 12,000 0.452 0.291 0.354
Brenda (EC) 0 0 4,913 5,951 12,000 0.452 0.291 0.354
UniProt 361 346 5,392 7,120 11,521 0.431 0.319 0.367
Wikipedia 343 338 4,969 6,227 11,944 0.444 0.294 0.354
All Combined 660 600 5,440 7,396 11,473 0.424 0.322 0.366

All Gene Ontology

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 10,778 6,280 18,669 0.632 0.366 0.464
Baseline (B2) X X 12,217 7,367 17,230 0.624 0.415 0.498
Brenda (EC) 22,158 2,870 12,213 9,176 17,234 0.571 0.415 0.480
UniProt 720 781 12,712 10,437 16,735 0.549 0.432 0.483
Wikipedia 584 579 12,260 9,907 17,187 0.553 0.416 0.475
All Combined 23,389 4,025 12,747 11,682 16,704 0.522 0.433 0.473

work. Additionally, we are aware that there are many other sources of external mappings

that each need to be examined individually to evaluate their usefulness as synonyms.

3.4.4 Recursive syntactic rules

The idea behind the recursive rules is to decompose a larger term to its smallest com-

ponents, then compositionally combine the components utilizing varying recursive syntac-

tic rules to generate synonyms for the original term. The recursive rules were developed

through studying the grammars used in Obol (Mungall, 2004) and examining common pat-

terns within Gene Ontology concepts. The syntactic recombination and common phrase

enumeration rules were obtained by studying the gold standard annotations in CRAFT and

through discussion with biologists on variations in the expression of the same concept. We

have identified 11 specific cases when terms can be broken down into smaller composite
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terms; we acknowledge that there are many more, but we focused on the ones that affected

the highest number of concepts, and leave the rest for future work. Through our analysis

we have developed an ordering for rule application, to generate the most possible synonyms.

The 11 cases and the order in which they are applied are presented below;

We name our rules based upon the type of concepts they apply to. The first step in all

these rules is to decompose the concept further by making sure the left and right hand side

do not match any other rules. When no more rules are matched, syntactic synonyms are

generated and then compositionally combined. The words or phrases on the left hand side

of the concept are now referred to as LHS and words on the right hand side are referred to

as RHS ; these can be replaced by both generated synonyms and the current synonyms in

the ontology.

1. Terms containing prepositions

1.1. if preposition is “via”

1.1.1. LHS via conversion to RHS

1.2. if preposition is “involved in”

1.2.1. LHS associated RHS

2. “regulation of” terms

2.1. if preceded by “positive”

2.1.1. positive regulation of RHS

2.1.2. up(-)regulation of RHS

2.1.3. activation of RHS

2.1.4. RHS activation

2.1.5. stimulation of RHS

2.1.6. RHS stimulation

2.1.7. promotion of RHS

2.1.8. promote RHS

2.1.9. RHS promotion

2.1.10. induction of RHS

2.1.11. RHS induction
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2.1.12. enhancement of RHS

2.1.13. enhance RHS

2.1.14. RHS enhancement

2.2. if preceded by “negative”

2.2.1. negative regulation of RHS

2.2.2. down(-)regulation of RHS

2.2.3. RHS down regulation

2.2.4. anti(-)RHS

2.2.5. repression of RHS

2.2.6. RHS repression

2.2.7. inhibition of RHS

2.2.8. RHS inhibition

2.2.9. suppression of RHS

2.2.10. suppress RHS

2.2.11. RHS suppression

3. “response to” terms

3.1. if only RHS

3.1.1. response to RHS

3.1.2. RHS response

3.2. if both LHS and RHS

3.2.1. LHS response to RHS

3.2.2. RHS responsible for LHS

3.2.3. RHS resulting in LHS

3.3. if RHS is an ion

3.3.1. RHS(-)responsive

3.3.2. RHS(-)response

3.3.3. RHS sensitivity

3.3.4. RHS resistance

3.3.5. RHS ion(-)responsive
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3.3.6. RHS ion(-)response

3.3.7. RHS ion sensitivity

3.3.8. RHS ion resistance

4. “signaling” terms

4.1. if LHS contains “receptor” RHS equals “pathway”

4.1.1. LHS pathway

4.1.2. LHS signaling

4.1.3. LHS signalling

4.1.4. LHS signaling pathway

4.1.5. LHS signalling pathway

4.1.6. LHS signaling process

4.1.7. LHS signalling process

4.1.8. LHS receptor signaling

4.1.9. LHS receptor signalling

4.1.10. LHS receptor signaling process

4.1.11. LHS receptor signalling process

4.1.12. LHS receptor pathway

4.1.13. LHS receptor signaling pathway

4.1.14. LHS receptor signalling pathway

4.2. if RHS equals “patway”

4.2.1. LHS pathway

4.2.2. LHS signaling

4.2.3. LHS signalling

4.2.4. LHS signaling pathway

4.2.5. LHS signalling pathway

4.2.6. LHS signaling process

4.2.7. LHS signalling process

4.2.8. LHS receptor signaling

4.2.9. LHS receptor signalling
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4.2.10. LHS receptor signaling process

4.2.11. LHS receptor signalling process

4.2.12. LHS receptor pathway

4.2.13. LHS receptor signaling pathway

4.2.14. LHS receptor signalling pathway

5. “biosynthetic process” terms

5.1. if both LHS and RHS

5.1.1. LHS biosynthesis RHS

5.1.2. LHS biosynthesis pathway RHS

5.1.3. biosynthesis of LHS RHS

5.1.4. LHS synthesis RHS

5.1.5. synthesis of LHS RHS

5.1.6. LHS production RHS

5.1.7. LHS production pathway RHS

5.1.8. production of LHS RHS

5.1.9. LHS generation RHS

5.1.10. generation of LHS RHS

5.1.11. LHS formation RHS

5.1.12. formation of LHS RHS

5.2. if only LHS

5.2.1. LHS biosynthesis

5.2.2. LHS biosynthesis pathway

5.2.3. biosynthesis of LHS

5.2.4. LHS synthesis

5.2.5. synthesis of LHS

5.2.6. LHS production

5.2.7. LHS production pathway

5.2.8. production of LHS

5.2.9. LHS generation
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5.2.10. generation of LHS

5.2.11. LHS formation

5.2.12. formation of LHS

5.3. if only RHS

5.3.1. biosynthesis RHS

5.3.2. biosynthesis pathway RHS

5.3.3. synthesis RHS

5.3.4. production RHS

5.3.5. generation RHS

5.3.6. formationRHS

6. “metabolic process” terms

6.1. if both LHS and RHS

6.1.1. LHS metabolism RHS

6.1.2. metabolism of LHS RHS

6.2. if only LHS

6.2.1. LHS metabolism

6.2.2. metabolism of LHS

6.3. if only RHS

6.3.1. metabolism RHS

6.4. if only “metabolic process”

6.4.1. metabolism

7. “catabolic process” terms

7.1. if both LHS and RHS

7.1.1. LHS catabolism RHS

7.1.2. catabolism of LHS RHS

7.1.3. LHS degradation RHS

7.1.4. degradation of LHS RHS

7.1.5. LHS breakdown RHS

7.1.6. breakdown of LHH RHS
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7.2. if only LHS

7.2.1. LHS catabolism

7.2.2. catabolism of LHS

7.2.3. LHS degradation

7.2.4. degradation of LHS

7.2.5. LHS breakdown

7.2.6. breakdown of LHH

7.3. if only RHS

7.3.1. catabolism RHS

7.3.2. degradation RHS

7.3.3. breakdown RHS

7.4. if only “catabolic process”

7.4.1. catabolism

8. “binding”

8.1. if LHS and RHS equals “complex”

8.1.1. complex that bind LHS

8.2. if only LHS

8.2.1. binding of LHS

8.2.2. binds LHS

8.2.3. if LHS contains “receptor”

8.2.3.1. LHS(-)binding receptor

9. “transport” terms

9.1. if LHS contains “transmembrane” and RHS equals “activity”

9.1.1. LHS transporter

9.1.2. transporter of LHS

9.1.3. transporting LHS transmembrane

9.1.4. transporting LHS across a membrane

9.1.5. transporting LHS across the membrane

9.1.6. transportation of LHS transmembrane
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9.1.7. transportation of LHS across a membrane

9.1.8. transportation of LHS across the membrane

9.1.9. LHS

9.2. LHS and RHS equals “activity”

9.2.1. LHS transporter

9.2.2. transporter of LHS

10. “differentiation” terms

10.1. if only LHS

10.1.1. differentiation into LHS

10.1.2. differentiation into LHS cell

10.2. if LHS is found within Cell Ontology, grab all synonyms, CLSYNS

10.2.1. differentiation into CLSYNS

10.2.2. differentiation into CLSYNS cell

10.2.3. CLSYNS differentiation

11. “activity” terms

11.1. if comma after “activity”

11.1.1. LHS - RHS

11.1.2. LHS that RHS

11.1.3. RHS LHS

11.2. if only LHS

11.2.1. LHS

3.4.4.1 Example of recursive syntactic rules applied

A decomposed concept along with varying syntactic rules applied can be seen in Figure

3.4. We begin with the original term at the top. In this example it is “GO:0032332 - positive

regulation of chondrocyte differentiation”. As it is run through the specific rules in the order

listed above, the first one it matches is the regulation of rule. This causes the term to be

decomposed into two parts, 1) “positive regulation of” and 2) “chondrocyte differentiation”,

the latter is another GO term. This causes the recursive synonym generation process to start

on the new term. The rules are followed in order the new term “GO:0002062 - chondrocyte
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differentiation” and the first one it matches is the differentiation terms rule. This term

can then be decomposed into two smaller concepts: 1) chondrocyte and 2) differentiation.

Neither of these are GO terms therefore, we are finished with the recursive breakdown and

begin combining the pieces using syntactic rules. “Chondrocyte” is a cell type and we can

link the word to the cell type ontology (Bard et al., 2005) through derivational variant

synonyms, as described in the next section. There are many different syntactic ways that

“X differentiation” can be expressed, which are listed in the figure; there are 2 synonyms

generated for “chondrocyte” and 2 synonyms generated for “X differentiation”. When we

combinatorially combine them we generate 4 synonyms of “chondrocyte differentiation”

(i.e. “differentiation into chondrocyte”). We then combine those 4 synonyms with the 17

different ways enumerated to express “positive regulation of”, resulting in 68 synonyms for

the original term “positive regulation of chondrocyte differentiation”. This example utilized

3 specific decompositional rules along with the syntactic rules to re-compose the original

concept (full enumeration is in Additional File 3).

Briefly exploring the literature, we have identified instances of these newly generated

synonyms in a paper on disease “ACVR1 R206H receptor has a milder stimulation of

cartilage cell differentiation compared to caACVR1 Q207D.” (Shore, 2012) and, inter-

estingly, within a patent “The DNA of the present invention can be used in the antisense

RNA/DNA technique or the triple helix technique to inhibit type II collagen expression

promotion and/or chondrocyte differentiation promotion mediated by the protein of

the present invention.” (Goichi et al., 2003). From this example, some of the ‘odd’ syn-

onyms generated, that we hypothesized wouldn’t affect performance, could be applicable to

certain sublanguages, like the large collection of biomedical patents.

3.4.4.2 Impact of recursive syntactic rules on CRAFT

We apply only the recursive syntactic rules to all terms within the Gene Ontology

and evaluate on the full-text CRAFT corpus using our dictionary based lookup system

ConceptMapper; performance can be seen in Table 3.8. For Cellular Component, only a

few new synonyms are generated, which is not surprising because concepts from this branch
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Figure 3.4: Decomposition and syntactic synonym generation of a biological
process. A single GO concept broken down into its composite parts (bolded and under-
lined), synonyms generated for each part (text underneath the part), then combination of
all synonyms from all composite parts to form complete synonym of the original concept.

normally do not appear compositional in nature. These new CC synonyms do not impact

performance compared to the baselines.

86% (7,353 out of 8,543) of terms within Molecular Function had at least one new

synonym added by the recursive syntactic rules. Unexpectedly, performance on MF slightly

decreases; this occurs when a true positive in the baseline is converted to a false positive

and false negative(s) are introduced because a longer term is identified through one of the

new synonyms. It is possible that these are missing annotations within the gold standard.

For example, one of the new synonyms generated for “GO:0019838 - growth factor binding”
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is “binding growth factor”. In the gold standard, the text text “bound growth factor” is

annotated with both “GO:0005488 - binding” and “GO:0008083 - growth factor activity”.

With our new synonyms added to the dictionary, the same text span is only annotated with

“GO:0019838 - growth factor binding” which results in the removal of two true positives and

the introduction of one false positive, thus reducing overall performance. If we recognize

this as a wide-spread issue, we can change the parameters for our dictionary and allow it

to find all concepts, which would identify all three annotations instead of only the longest

one.

Unlike Molecular Function, the performance on Biological Process slightly increases

with the addition of the recursive syntactic rules. BP sees the largest increase in the num-

ber of new synonyms generated, with over 180,000 new synonyms for 46% (6,847 out of

14,767) of concepts. The syntactic and enumerated rules are helpful in generating syn-

onyms that match instances within CRAFT. For example, 74 more correct instances of

“GO:0016055 - Wnt receptor signaling pathway”, expressed in the gold standard as “Wnt

signaling” and “Wnt signaling pathway”, are able to be identified with the new synonyms;

these are generated through the signaling terms rule which found that both the words “re-

ceptor” and “pathway” were uninformative. Another example of syntactic rules helping is

in identification of the term “GO:0046686 - response to cadmium ion”, which is seen 14

times in CRAFT as “cadmium response” and “cadmium-responsive”. Like the MF false

positives, some of the FPs introduced in the BP look accurate. For example, a synonyms

of “helicase activation” is generated for term “GO:0051096 - positive regulation of helicase

activity”, which is seen in the text spans “The extent of helicase activation depends

on the sequence context of the 3‘-tail. . . ” and “. . . replacement of thymines with guanines

abolished the helicase activation.”. Some of the rules introduce FPs that are obviously

incorrect. e.g. from “GO:0032781 - positive regulation of ATPase activity” a synonym

of “ATPase activation” is generated; due to our dictionary lookup algorithm utilizing a

stemmer, the text “ATPase activities” is incorrectly annotated with “positive regulation of

ATPase activity”. Additionally, similar false positives are introduced for both “GO:0009896

- positive regulation of catabolic process” (catabolic activation) and “GO:0009891 - positive

regulation of biosynthetic process” (anabolism activation).
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Overall, despite the decrease in performance in the Molecular Function branch, the

recursive syntactic rules slightly improve concept recognition of the Gene Ontology on the

CRAFT corpus over baseline 2 (∼200 more TPs and ∼200 more FPs introduced). Because

the CRAFT corpus contains only a small portion of the whole GO (1,108) and these rules

only account for reordering of tokens and enumeration of common phrases within GO, we

did not expect to see a large increase in concept recognition performance.

Table 3.8: Performance of Gene Ontology syntactic recursion rules on CRAFT
corpus.

Cellular Component

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline
(B1) X X 5,532 452 2,822 0.925 0.662 0.772

Baseline
(B2) X X 5,532 452 2,822 0.925 0.662 0.772

Syntactic
recursion
rules

23 21 5,532 452 2,822 0.925 0.662 0.772

Molecular Function

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline
(B1) X X 337 146 3,843 0.698 0.081 0.145

Baseline
(B2) X X 1,772 964 2,408 0.648 0.424 0.512

Syntactic
recursion
rules

11,637 7,353 1,759 977 2,421 0.643 0.421 0.509

Biological Process

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline
(B1) X X 4,909 5,682 12,004 0.464 0.290 0.357

Baseline
(B2) X X 4,913 5,951 12,000 0.452 0.291 0.354

Syntactic
recursion
rules

182,617 6,847 5,120 6,158 11,793 0.454 0.303 0.363

All Gene Ontology

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline
(B1) X X 10,778 6,280 18,669 0.632 0.366 0.464

Baseline
(B2) X X 12,217 7,367 17,230 0.624 0.415 0.498

Syntactic
recursion
rules

194,277 14,221 12,411 7,588 17,036 0.621 0.422 0.502

3.4.5 Derivational variant rules

Once the original concept is broken down to its most basic components, through the

rules presented above, we can apply derivational variant generation rules to help generate
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synonyms beyond what is expressed within the Gene Ontology. There are a total of 7

different specific cases when we apply these derivational generation rules. These rules were

developed by examining the transformations needed to create the text spans annotated in

the CRAFT gold standard from the information contained within the GO.

We follow similar naming trends for the derivational rules. For these rules we do not sub-

stitute phrases, but rather generate derivational variants for individual words. We slightly

modify the terminology since we are assured these will be the most basic concepts, we sub-

stitute X for capturing specific words and we can additionally specify which word in the

concept we change w1 or w2 for the first and second word, respectively. Any of these can

be substituted for the base form of the word, most likely a noun, or any of the derivational

variants generated through WordNet (Fellbaum, 1998a) or lexical variant generator (LVG)

(of Medicine, 2012), adjective or verb.

1. Single word terms

1.1. {NN} ⇒ {VB}

1.2. {NN} ⇒ {JJ}

2. Double word terms

2.1. {NN 1 NN 2} ⇒ {NN 1}, {VB 2 NN 1}, {JJ 1 NN 2}, {NN 1 JJ 2}

2.1.1. w2 of w1

2.1.2. w2 of a(n) w1

2.1.3. if w2 equals “development”

2.1.3.1. specific development term ending in -genesis or -ization

2.1.4. if w2 is not a broad functional category(“binding”, “transport”, “secre-

tion”,etc. . . )

2.1.4.1. w1

2.2. {NN 1 JJ 2} ⇒ {NN 1}

2.2.1. if w2 equals “complex” and w1 is not one of “mediator”, “receptor”, or

“integrator”

2.2.1.1. w1

2.2.2. if w2 equals “complex” and w1 equals “immunoglobulin”
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2.2.2.1. antibody

2.2.2.2. antibodies

2.2.2.3. Ab

2.3. {JJ 1 NN 2} ⇒ {JJ 1}, {JJ 1 JJ 2}

2.3.1. w1 w2

2.3.2. if w2 equals “perception”, “response”, “region”, “process” and w1 does

not equal “cellular”

2.3.2.1. w1

3. Triple word terms

3.1. {NN 1 NN 2 NN 3} ⇒ {NN 1 NN 3}, {NN 3 NN 1}, {VB 3}

3.1.1. w3 of w1 w2

3.1.2. if w2 equals “cell” or “nerve” and w3 equals “morphogenesis” or “devel-

opment”

3.1.2.1. w1 w3

3.1.2.2. w3 of w1

3.1.3. if w1 equals “cell” and w3 does not equal specific terms associated with

cells such as “site”, “determination”, “formation”, “assembly”, etc. . .

3.1.3.1. w3

3.1.3.2. w1 w3

3.1.3.3. w3 of w1

4. “cell part” terms

4.1. if concept has parent of “cell part” or “organelle part”, RHS corresponds to

specific part of cell

4.1.1. LHS RHS

4.1.2. RHS of LHS

5. “sensory perception” terms

5.1. generate other forms of w4, i.e. “taste”⇒“gustory”

6. “transcription, X -dependent” terms

6.1. X(-)reverse transcription
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6.2. X(-)RT

6.3. X(-)dependent reverse(-)transcription

6.4. X(-)dependent RT

6.5. if X equals RNA

6.5.1. reverse(-)transcription

6.5.2. RT

7. “X strand annealing activity” terms

7.1. X annealing

7.2. X hybridization

7.3. annealing

7.4. hybridization

3.4.5.1 Examples of derivational rules applied
In Figure 3.5 we walk through the synonyms generation process through recursive de-

composition and derivational variant generation of “GO:00507678 - negative regulation of

Figure 3.5: Syntactic and derivational synonyms generation example. A single
GO concept broken down into its composite parts (bolded and underlined), synonyms gen-
erated for each part (text underneath the part), then combination of all synonyms from all
composite parts to form complete synonym of the original concept.
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neurogenesis”. It is first decomposed into “positive regulation of” and “GO:0022008 - neuro-

genesis”. We cannot decompose any of these terms further, so we begin to generate synonyms

then combinatorially combine all synonyms. We generate derivational variants for the term

“neurogenesis” utilizing the single word term rule; we see if any verb or adjective forms

exist in WordNet (Fellbaum, 1998a) or can be generated through LVG (lexical variant gen-

erator) (of Medicine, 2012). We take the three ways to express “neurogenesis” and combine

them with the 12 different enumerations of “negative regulation of” to form 36 synonyms

for the original term; the Gene Ontology currently only has 4 synonyms for this concept.

It is important to generate and include derivational variants because many times a stem-

mer/lemmatizer is not sufficient for dictionary lookup. In this example, using the Porter

stemmer (Porter, 1980) different stems are produced depending on if the noun or adjec-

tive form are stemmed: “neurogenesis”⇒“neurogenesi” and “neurogenetic”⇒“neurogenet”.

These new generated synonyms are found throughout the biomedical literature many times;

we identify mentions of “negative regulation of neurogenesis” within “This suggests that

TNF-α would in fact have an anti-neurogenetic effect when allowed to act on a func-

tional receptor.” (Van der Borght et al., 2011) and “The COX-2 inhibitors, meloxicam and

nimesulide, suppress neurogenesis in the adult mouse brain” (Goncalves et al., 2010).

In Figure 3.6 we provide another example of utilizing our rules for a more complex and

difficult to recognize term, “GO:0061005 - cell differentiation involved in kidney develop-

ment”. The original concept is first decomposed through the recursive terms containing

preposition rule; both sides of the prepositional phrase, “involved in”, will be decomposed

further if possible. The left hand side, “GO:0030154 - cell differentiation”, can be decom-

posed using the syntactic differentiation terms rule and other synonyms will be generated

using the double word derivational rule; the first three synonyms listed in the example are

from “differentiation” while the last three are generated from derivations of the words “cell”

and “differentiation”. The right hand side, “GO:0001822 - kidney development”, synonyms

are generated solely from the double word rule. All synonyms generated for the left and

right side are compositionally combined with the varying ways to express “involved in” to

generate 60 synonyms for the original concept.
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Figure 3.6: Syntactic and derivational synonyms generation example. A single
GO concept broken down into its composite parts (bolded and underlined), synonyms gen-
erated for each part (text underneath the part), then combination of all synonyms from all
composite parts to form complete synonym of the original concept.

Unfortunately, none of the generated synonyms or original term can be recognized

within the literature because of the constrained syntax contained in the original concept.

Although, we believe that the newly generated synonyms can be helpful in creating new

rules for synonyms generation and could be useful for concept recognition utilizing seman-

tic similarity, such as GOCat (Gobeill et al., 2013b). For example, the following sentences

express the concept “cell differentiation involved in kidney development”: “A question of

central importance is whether differentiation into different cell types occurs during

the earliest stages of nephrogenesis” (Bacallao and Fine, 1989) and “Canonical Wnt9b

signaling balances progenitor cell expansion and differentiation during kidney de-

velopment” (Karner et al., 2011). Examining these sentences, it appears that we can
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express “involved in” as “during”. This new expression would be added to the terms with

prepositions rule and be applied to all other terms that share that pattern. Even though

we generate these synonyms, they are unable to be identified in the literature and therefore

will not hinder the performance of the system. We’ve shown how the derivational rules can

lessen the gap between the ontology and concepts expressed in text through examples and

sentences directly from the literature. There is certainly more literature to be analyzed and

rules to be crafted to help generate synonyms that will more likely appear in the literature.

Table 3.9: Performance of derivational variant and recursive Gene Ontology
rules on CRAFT corpus.

Cellular Component

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 5,532 452 2822 0.925 0.662 0.772
Baseline (B2) X X 5,532 452 2822 0.925 0.662 0.772
Both Rules 4,083 724 6,585 969 1,769 0.872 0.788 0.828

Molecular Function

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 337 146 3,843 0.698 0.081 0.145
Baseline (B2) X X 1,772 964 2,408 0.648 0.424 0.512
Both Rules 14,413 7,401 2,422 1,074 1,758 0.693 0.579 0.631

Biological Process

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 4,909 5,682 12,004 0.464 0.290 0.357
Baseline (B2) X X 4,913 5,951 12,000 0.452 0.291 0.354
Both Rules 272,535 8,675 9,604 8,464 7,309 0.532 0.568 0.549

All Gene Ontology

Method Synonyms
added

Affected
terms TP FP FN P R F

Baseline (B1) X X 10,778 6,280 18,669 0.632 0.366 0.464
Baseline (B2) X X 12,217 7,367 17,230 0.624 0.415 0.498
Both Rules 291,031 16,800 18,611 10,507 10,836 0.640 0.632 0.636

3.4.5.2 Impact of derivational rules on CRAFT

The performance of both recursive and derivational synonym generation rules on

CRAFT can be seen in Table 3.8 (Note that we do not evaluate the derivational rules

on their own, due to dependencies on the concepts being decomposed fully). When aggre-

gated over the entire Gene Ontology, an increase in F-measure of 0.14 (0.498 vs. 0.636) is

seen; this comes from both an increase in recall (0.22) and precision (0.02). Our rules gen-

erate ∼291,000 new synonyms which cover 66% (16,800 out of 25,471) of all terms within

GO. Evaluating all branches individually, we see an increase in F-measure for all. This

increase is due to a large increase in recall (up to 0.27). For both Biological Process and
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Molecular Function, precision also increases, while precision slightly decreases for Cellular

Component.

We now explore which synonyms contribute to the increase in performance seen on the

gold standard corpus. The top 5 concepts that impact these performance numbers are pre-

sented in 3.10. For Cellular Component, the most helpful synonym “immunoglobulin”⇒“antibody”

is seem many times within CRAFT and is enumerated within the double word rule. The

other four are generated using the single word rule, specifically converting from the noun

form seen within the ontology to the adjective form. Through examining Molecular Function

terms, it became clear that “hybridize” and “anneal” did not have adequate representation

within the Gene Ontology; this is changed using the annealing rule. Two of the next most

helpful synonyms are due to low information containing words and derivational variations.

Through analysis, it was identified that “protein” can be omitted within terms to produce

correct annotations; for some of these it appears that more false positives are introduced,

but with more work we can refine our current rules or create filters to remove some of the

common false positives. It should be noted that within Molecular Function an even larger

increase in in performance is seen between baseline 1 and 2 (Table 3.8), which takes into

account the many “activity” terms. These types of synonyms are also accounted for in

our rules and are compositionally combined into other terms. For Biological Process we

observe that the most helpful synonyms are generated using the double word and single

word derivational rules. Like the word “protein” from MF, “gene” and “cell” occur with

numerous terms in BP and therefore, contain low information content and can most likely

be omitted. We also find that generating different lexical forms of both single word concepts

and within longer terms helps to introduce many true positive annotations.

From examining the top most helpful synonyms, we provide evidence that the deriva-

tional synonyms improve performance on a manually annotated corpus through the in-

troduction of more linguistic variability, which decreases the gap between the concepts in

the ontology and the way they are expressed in natural language. These variants are also

included when generating the compositional synonyms mentioned in the previous section.

Overall, the top synonyms that improve performance are not too interesting by themselves

because they don’t take into account much of the compositional nature of GO terms. We
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Table 3.10: The top 5 derivational synonyms that improve performance on
the CRAFT corpus. The GO terms that increase performance the most on CRAFT are
along with the change(∆) in number of true positives(TP), false positives(FP), and false
negatives(FN) from the the baseline. The generated synonyms that result in this increase
are shown under ‘Helpful synonyms’.

Cellular Component
GO ID Term name ∆TP ∆FP ∆FN Helpful synonyms
GO:0019814 immunoglobulin complex +548 +0 -548 antibody, antibodies
GO:0005634 nucleus +218 +35 -218 nuclear, nucleated
GO:0005739 mitochondrion +135 +0 -135 mitochondrial
GO:0031982 vesicle +11 +3 -11 vesicular
GO:0005856 cytoskeleton +15 +0 -15 cytoskeletal

Molecular Function
GO ID Term name ∆TP ∆FP ∆FN Helpful synonyms

GO:0000739 DNA strand annealing activity +327 +1 -327 hybridized, hybridization,
annealing, annealed

GO:0033592 RNA strand annealing activity +327 +1 -327 hybridized, hybridization,
annealing, annealed

GO:0031386 protein tag +6 +79 -6 tag
GO:0005179 hormone activity +1 +0 -1 hormonal
GO:0043495 protein anchor +1 +10 -1 anchor

Biological Process
GO ID Term name ∆TP ∆FP ∆FN Helpful synonyms

GO:0010467 gene expression +2235 +361 -2235 expression, expressed,
expressing

GO:0007608 sensory perception of smell +445 +1 -445 olfactory

GO:0008283 cell proliferation +97 +71 -97 cellular proliferation,
proliferative

GO:0007126 meiosis +93 +2 -93 meiotic, meiotically
GO:0006915 apoptosis +173 +2 -173 apoptotic

believe this is due to two aspects 1) The annotation guidelines used to define what consti-

tutes a correct mention of a GO concept in CRAFT (Bada et al., 2010) and 2) the small

representation of what is contained within the entire biomedical literature. This small repre-

sentation is due to the paper content (only mouse papers resulting in functional annotation

of at least one protein), small corpus size (67 full text documents), and appearance of only

a small subsection of the Gene Ontology (only 1,108 unique GO terms). To fully evaluate

our rules without the aforementioned drawbacks, in the next section, we explore the impact

our rules make on a large collection of the biomedical literature.

3.4.6 Evaluation of annotations on a large full text collection

Besides the intrinsic evaluation presented above, we evaluated the impact that both syn-

tactic decompositional and derivational rules have on the ability to recognize GO concepts

within a large collection of one million full text documents. Unlike the previous evaluation,

these documents do not have any manual annotation or markup of Gene Ontology terms so

we are unable to calculate precision/recall/F-measure. However, we can provide calculate
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descriptive statistics and provide manual evaluation of a random sample of the differences

in annotations produced when our rules are applied. For these we used a version of GO

from Oct 9th, 2014. Applying our rules generates ∼1.5 million new synonyms for 66% of

all GO concepts (27,610 out of 41,852).

Table 3.11: Statistics of annotations produced on the large literature collection
by information content. Shows the number of unique terms and total number of anno-
tations produced through only OBO information, both derivational and syntactic recursive
rules applied, and the impact the rules have overall. The change is percent change in total
annotations.

Only OBO information With rules Impact of rules on concepts recognized

IC #
Terms

# Anno-
tations

#
Terms

# Anno-
tations

New
concepts

New An-
notations Change

undefined 3,548 16,929,911 4,303 23,653,066 755 6,723,155 +39.7%

[0,1) 7 3,202,114 7 3,177,333 0 -24,781 -0.1%
[1,2) 16 2,655,365 17 2,801,431 1 146,066 +0.1%
[2,3) 43 7,332,003 44 8,016,573 1 684,570 +0.1%
[3,4) 94 4,474,422 101 5,188,968 7 714,546 +0.2%

[4,5) 178 4,185,438 191 9,340,757 13 5,155,319 +123.8%

[5,6) 354 13,547,423 373 22,284,670 19 8,737,247 +64.4%

[6,7) 666 9,533,940 715 12,060,499 49 2,526,559 +26.3%

[7,8) 1,044 18,354,299 1,154 21,251,834 110 2,897,535 +16.8%

[8,9) 1,465 7,932,937 1,648 15,316,476 183 7,383,539 +92.4%

[9,10) 1,551 4,813,153 1,813 7,671,601 262 2,858,448 +58.3%
[10,11) 1,396 2,390,061 1,690 4,291,831 294 1,901,770 +79.1%
[11,12) 942 1,246,758 1,162 2,279,005 220 1,032,247 +83.3%

[12,13) 732 578,501 953 1,257,956 221 679,455 +117.2%

Total 12,036 97,176,325 14,171 138,592,000 2,135 41,415,675 +42.5%

Since one of the primary focuses of the Gene Ontology is functional annotation of

proteins, we imparted some of that knowledge into the large scale analysis by calculating

information content of each concept with respect to the experimental UniProt GOA annota-

tions (Camon et al., 2004). We calculated the information content (IC) described in Resnik

et al. (Resnik, 1995). IC scores range from 0-12.25; a lower score corresponds to a term that

many proteins are annotated with and should appear many times in the literature while a

high scoreing term is much more specific and might have only one or two annotations in

GOA. For example, a common term such as “GO:0005488 - binding” has a score of 0.80

while a more informative term “GO:0086047 - membrane depolarization during Purkinje

myocyte cell action potential” has a score of 12.25. A score of “undefined” corresponds to a
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concept that is not currently annotated to any protein with GOA. It is our hypothesis that

the most informative terms (higher IC) would be more difficult to identify text due to their

complicated syntactic construction and that our rules, described above, would help increase

the frequency at which we can recognize correct mentions of these highly informative terms.

Descriptive statistics for both the concepts recognized using the ontology (baseline 2

presented above) and rules applied along with the differences broken down by information

content can be seen in Table 3.11. Utilizing only the information contained within the Gene

Ontology we find that ∼97 million mentions of ∼12,000 unique GO concepts are identified.

When we apply both the recursive syntactic and derivational rules, our system is able to

identify ∼138 million mentions of ∼14,100 unique GO concepts; they aid in the recognition

of ∼41 million more mentions for all GO concepts (∼42% increase) along with the ability

to recognize ∼2,000 unique GO concepts (∼18% increase) that are not previously identified

using the ontology information alone. There were a total of ∼2.5 million mentions associated

with the 2,135 unique concepts that were only found when the synonym generation rules

were applied. The other ∼39 million new mentions are associated with the ∼12,000 concepts

both dictionaries recognize.

Next, we show that our rules aid most in recognition of those concepts that are highly

informative for functional annotation. We find that the distribution of mentions per concept

is skewed. When our rules are applied there are an average of 9,700±14,500 mentions

per concept (without rules 8,000±14,500). For example, the top 10 concepts, in terms

of counts, represent ∼1/3 of the total number of mentions. The term “GO:0005623 -

cell” is found around 13 million times and despite its higher IC score of 7, contains little

information; this unexpected and high IC score is due to not many proteins being annotated

in GOA with this concept. Other concepts found many times, but containing much lower

IC scores, are “GO:0010467 - gene expression” (5 million), “GO:0004872 - receptor activity”

(2.8 million), and “GO:0032502 - developmental process” (2.6 million). While we keep all

concepts and instances of them for this analysis, for practical applications, these highly

recognized concepts should be discarded or weighted using a frequency based metric.

Examining the overall numbers of concepts and mentions recognized provides some in-

sights into how useful the synonyms generated are. Since most mentions identified using
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only the ontology information were also found when the rules were applied, this indicates

that our rules aid in identification of many new concepts along with new mentions of con-

cepts, thus leading to an increase in recall. We saw in evaluation on CRAFT that both

precision and recall were increased; we explore through manual validation the accuracy on

a large scale in the following section, Manual validation of Gene Ontology mentions. An

exception to this is the concept “GO:0005215 - transporter activity”, where our genera-

tion rules identify ∼75,000 fewer instances, but instead are able to recognize more specific

types of transporters and their activity. For instance, in the following sentence, the bold

text corresponds to the concept recognized using the baseline, while the underlined text is

identified through the use of our rules: “The present study was aimed to evaluate whether

intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria. . . .”

(Rajasekar and Anuradha, 2007). This illustrates that expressing GO terms in language

that resembles natural language more closely helps to capture more specific concepts in

the text. This suggests their potential usefulness for practical applications such as protein

function prediction (Sokolov et al., 2013b).

Table 3.12: Results of manual inspection of random samples of annotations.
Accuracy of random subsets of concepts recognized from the large literature collections. We
sampled 1% of concepts, with up to 15 randomly sampled specific text spans per concept,
from concepts identified using only OBO information. We sampled 10% of concepts, with up
to 15 randomly sampled text spans per concept, from the new concepts recognized through
the presented synonym generation rules.

Only OBO information With rules Overall
IC # Terms # Annotations Accuracy # Terms # Annotations Accuracy Accuracy
undefined 35 231 0.98 75 363 0.70 0.81
[0,1) 1 15 0.20 0 0 0.00 0.20
[1,2) 1 15 1.00 1 4 1.00 1.00
[2,3) 1 15 1.00 1 4 1.00 1.00
[3,4) 1 4 1.00 1 1 0.00 0.80
[4,5) 2 30 0.60 2 24 0.88 0.72
[5,6) 4 60 0.97 2 13 0.23 0.84
[6,7) 7 79 0.99 5 41 0.49 0.82
[7,8) 10 136 0.89 11 116 0.65 0.78
[8,9) 15 197 0.98 19 163 0.83 0.91
[9,10) 16 175 0.97 26 205 0.79 0.87
[10,11) 14 119 0.83 30 217 0.80 0.81
[11,12) 10 103 0.97 22 141 0.77 0.86
[12,13) 8 93 0.98 22 156 0.72 0.82
Total 125 1272 0.94 217 1448 0.74 0.83
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3.4.6.1 Manual validation of Gene Ontology mentions

Although we found an improvement in performance on the CRAFT corpus and on

the larger corpus a significant number of additional concepts and mentions were identified

through our synonym generation rules, we are hesitant to reach any further conclusions

without some manual validation of the accuracy of these introduced synonyms. There

are too many concepts and annotations produced to manually validate them all, so we

performed validation of a randomly distributed subset of concepts and instances of those

concepts within text. For cases where the validity of the term was unclear from the matched

term text alone we went back to the original paper and viewed the annotation in sentential

context. For a baseline of performance, we validated a random sample of 1% of baseline

concepts (125 concepts with ∼1,200 randomly sampled mentions) from each IC range and

a random sample of 10% of all new concepts (217 terms with ∼1,450 randomly sampled

mentions) recognized through our rules; these results are presented in Table 3.12. Examining

the results, we find that overall accuracy is very high (0.94) for the concepts recognized only

utilizing the ontology information. A majority of these text spans identified are exact, or

very near, matches to the official ontological name or current synonyms. The only variation

introduced is through a stemmer or lemmatizer used in the concept recognition pipeline

(see Additional File 1 for more details). The annotations produced through our synonym

generation rules do not have as high of accuracy (0.74) but still produce reasonable results.

While performing the manual evaluation we noted common errors and explore them in the

following section.

When describing the rules (in section Examples of derivational rules applied) we pro-

vide examples mostly having to do with regulation of a function. To give the reader more

exposure to the breadth of the synonyms generated, we provide a few more examples of

mentions with sentential context that would not be recognizable without our compositional

rules. The concept “GO:0036473 - cell death in response to oxidative stress” is identified

within the text “LLC-PK 1, a renal-tubular epithelial cell line, is susceptible to oxida-

tive stress, resulting in cell death or injury” (Park and Han, 2013). Another concept,

“GO:0097153 - cysteine-type endopeptidase activity involved in apoptotic process”, would

most likely never be seen exactly as it is represented within the ontology and the only syn-
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onyms are broad or narrow; these are not helpful. Our rules generate synonyms that aid in

the identification of this concept within the following text: “Cytokines. . . can be particularly

toxic, however, by initiating activation of apoptotic-associated caspases and produc-

tion of reactive nitrogen species. . . ” (Williams et al., 2005) and “. . . reported role of NO

in the negative regulation of caspase activities involved in apoptotic responses, we

hypothesize. . . ” (authors, 2001). Additionally, for both sentences we are able to recognize

the positive and negative regulation terms.

One conclusion reached from this manual validation addressed our previously mentioned

hypothesis on overgeneration of synonyms. Based upon these results, we do not believe that

the 1.5 million new synonyms generated introduce many false positives from overgeneration;

a majority of the errors introduced come from the process of dictionary lookup. Synonyms

that contain incorrect syntactic format and those that are not lexically sound do not appear

within the text we are searching. An interesting observation we have made is that sometimes

generating a phrase or synonym that initially appears incorrect due to using uncommon

forms of words. An example is the different adjective forms of “protein”; most would use

the form “proteinaceous”, but another form is generated through Lexical Variant Generator,

“protenic”. This appears multiple times within translated articles, for example, the concept

“GO:0042735 - protein body” is seen within the following sentence “The activity is exhibited

through a protenic body of NBCF. . . ” (Miwa, 1990).

3.4.6.2 Error analysis of Gene Ontology mentions

There were three main types of errors introduced by our synonym generation rules.

Some of these are also seen in the baseline evaluation. We explain and provide examples of

each type then re-evaluate after a simple fix.

1. Stemming/lemmatization creating incorrect concepts

2. Incorrect level of specificity due to information loss

3. Inclusion of incorrect punctuation

The most common type of error makes up 60% (225 out of 377) of all errors and is

introduced through stemming during the concept recognition step. One of our syntactic
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recursive rules, regulation of terms, has a syntactic variant of X activation, which keeps

the same semantics as the original concept. The error is introduced by using a stem-

mer within our concept recognition pipeline, that has been shown to increase performance

(Funk et al., 2014a), but because both the words “activation” and “activity” stem to “activ”

there are many incorrect spans of X activity normalized to the positive regulation concept

identifier. For example, our rules add a synonym of “collagen binding activation” to the

concept “GO:0033343 - positive regulation of collagen binding”. Because of the stemmer,

many spans of “collagen binding activity” are grounded to GO:0033343, which is incor-

rect. “activation”⇒“activity” makes up a majority of the errors, but we also find the text

span “importance of glycine” grounded to “GO:0036233 - glycine import” due to the rule

generated synonym “import of glycine”. These errors could be removed by not including

the stemmer in the dictionary lookup or employing a stemmer that handles these words

in a more linguistically sensitive manner. It is unclear what other effects that would have

on the other concepts identified. We plan on exploring the impact of different parameter

combinations with these new synonym generation rules.

The second most common type of error, making up 25% (95 out of 377), is due to

synonyms being generated at differing levels of specificity; this can occur during information

loss or recursively using narrow/broad defined synonyms within the ontology. Currently our

rules treat all synonyms for a concept the same (this can be changed quite easily) and when

these other types of related synonyms are incorporated through the recursive syntactic

rules they can introduce varying levels of specificity. For example, the text spans in the

large corpus “anti-ryanodine receptor” and “inhibition of ryanodine receptors” are identified

to be of concept “GO:0060315 - negative regulation of ryanodine-sensitive calcium-release

channel activity”. We believe that these errors are due to incorporating current synonyms

of different specificities, i.e. broad or narrow synonyms within the Gene Ontology. All of

these mentions are related to the concept identifier they are normalized to, but not an exact

synonym. Many of these errors can be judged as partially correct; the use of a hierarchical

precision and hierarchical recall metric in a comparison to a gold standard would give such

partial credit (Verspoor et al., 2006; Clark and Radivojac, 2013; Bada et al., 2014).
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The least common type of error seen at only 15% (57 out of 377) is due to incorrect

punctuation being incorporated into the text span. These are most likely due to our tok-

enizer performing poorly in the parsing of particular situations. Some errors appear to come

from information derived from tables. These could be removed through a post-processing

filter – e.g. any mentions with semicolons or colons, unmatched parenthesis or quotes could

be removed as these are often tokenized incorrectly. The more difficult types of punctuation

to filter are those containing commas. For example, the concept “GO:2001170 - negative

regulation of ATP biosynthetic process” is recognized within the sentence “These include

cessation of ATP synthesis, inhibition of respiration, and a drop in ∆Ψ.” (Garlid et al.,

2009); it is evident to a human that this is incorrect, but without the comma the span

“ATP synthesis inhibition” appears to be correct. Since punctuation other than sentence

boundaries is ignored during matching, such sentence can result in false positive matches.

To help reduce these errors we implemented two simple strategies. 1) Removed all

text-spans that mentions containing unmatched parenthesis, semicolons, or colons and 2)

removed the specific rule within the regulation of rule that generates the X activation

synonyms; we refer to this new set of mentions produced as the corrected set. In total there

were ∼850,000 erroneous mentions removed through these two observations. Additionally,

we performed manual validation of the same concepts randomly sampled from the corrected

mentions in the “With rules” column from Table 3.12. After manual re-validation we found

that accuracy increased from 0.74 to 0.82 for these 217 concepts and increased from 0.83

to 0.88 when aggregated over all 342 concepts manually examined. Through error analysis

we have shown that the accuracy of our rules can be improved using only very simple

techniques, however, we believe we can achieve much higher accuracy through future work

by incorporating syntactic parses along with more detailed analysis and refinement of the

current rules.

3.4.7 The impact of supercomputing on concept recognition tasks

We ran the our concept recognition pipeline over the large full text collection on the

Pando supercomputer located at the University of Colorado, Boulder campus. It has 60

– 64 core systems with 512GB each along with 4 – 48 core systems with 1TB ram each,
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for a total of 4,032 compute nodes. We utilized a quarter of the machine and ran our

pipeline over 1,000 directories with 1,000 full text documents in each. We were able to

produce GO annotations for all one million documents in around 10 minutes. Granted,

no components are particularly complicated. They consist of a sentence splitter, tokenizer,

stemmer/lemmatizer, followed by dictionary lookup, but we have performed similar tasks

on a large memory machine, with 32 cores and the complete task has taken 3-4 weeks.

Given that Pubmed consists of over 24 million publications, if it was possible to obtain all

documents and performance is linear to the number of documents, we could recognize GO

concepts from the entirety of the biomedical literature in around 4 hours. More complex

and time consuming tasks, such as relation extraction, will take longer but will still be on

the order of days or weeks utilizing the power of a supercomputer, since these tasks are

“embarrassingly parallel”.

3.4.8 Generalization to other biomedical ontologies

The methodology presented here, of breaking down complex concepts into their most

basic parts, generating synonym for the parts, then recursively combining to form syn-

onyms of the original concept is one that can generalize to many other ontologies. The

Gene Ontology contains very complex and lengthy worded concepts; the rules required to

implement compositional synonyms in other ontologies might not need as many syntactic

and derivational rules as we present here.

A great example of an ontology that could have its synonyms extended by this method-

ology is the Human Phenotype Ontology (HPO) (Robinson et al., 2008). For example, there

is a high level HPO term that corresponds to “phenotypic abnormality”. There are just over

1,000 terms (∼10% of all HPO concepts) that are descendants of “phenotypic abnormal-

ity” that can be decomposed into: “abnormality of [the] other concept” (e.g. HP:0000818

- abnormality of endocrine system). Not only can we add syntactic rules to reorder words,

semantic synonyms of “abnormality”, such as “malformation” or “deformity”, can be added

to express the concepts in similar ways. There are many other concepts that could benefit

from recursively generating synonyms as the HPO appears to have compositional charac-

teristics as well. There could also be subsets of rules depending on the context; recognizing
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concepts in doctor’s notes or EMR notes will be expressed differently than those within the

biomedical literature.

A great example of an ontology that could have its synonyms extended by this method-

ology is the Human Phenotype Ontology (HPO) (Robinson et al., 2008). For example,

there is a high level HPO term that corresponds to “phenotypic abnormality”. There are

just over 1,000 terms (∼10% of all HPO concepts) that are descendants of “phenotypic

abnormality” that can be decomposed into: “abnormality of [the] other concept”. Not only

can we add syntactic rules to reorder words, semantic synonyms of “abnormality”, such

as “malformation” or “deformity”, can be added to express the concepts in similar ways.

There are many other concepts that could benefit from recursively generating synonyms as

the compositional nature of underlies HPO as well. There could also be subsets of rules

depending on the context; recognizing concepts in doctor’s notes or EMR notes will be

expressed differently than those within the biomedical literature.

3.5 Conclusions

In this work, we present a set of simple language generation rules to automatically

generate synonyms for concepts in the Gene Ontology. These rules take into account the

compositional nature of GO terms along with manually created syntactic and derivational

variants derived from discussions with biologists, ontologists, and through analyzing Gene

Ontology concepts as they are expressed within the literature. The 18 hand-crafted rules

automatically generate over ∼1.5 million new synonyms for ∼66% of all concepts within

the Gene Ontology. The approach overgenerates synonyms, but we find that many such

synonyms do not appear within biomedical text, thus not hindering performance.

We argue that current synonyms in structured ontologies are insufficient for text-mining

due to the vast degree of variability of expression within natural language; our methods do

not propose to solve this problem, but make a step in the right direction. This claim is

supported through the examination of specific examples of concept variation in biomedical

text and an empirical evaluation of the overlap of current GO synonyms and their expression

in the CRAFT corpus.
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We evaluate our synonym generation rules two both intrinsically and extrinsically. Uti-

lizing the CRAFT corpus for intrinsic evaluation, we evaluate three different sources of

automatically generated synonyms 1) external ontology mappings, 2) recursive syntactic

rules and 3) derivational variant rules. External mappings introduce many false positives

and are currently not recommended for use. The recursive syntactic rules added many new

synonyms but did not significantly affect performance. Using a combination of recursive

syntactic rules and derivational variant rules we saw an increase in F-measure performance

of 0.14, mostly due to greatly increased recall. This illustrates the importance of derivational

variants for capturing natural expression.

Our rules were extrinsically evaluated on a large collection of one million full text

documents. The rules aid in the recognition of ∼2,000 more unique concepts and increase

the frequency in which all concepts are identified by 41% over the baseline, using only current

information contained within the Gene Ontology. Specifically, the synonyms generated aid

in the recognize of more complex and informative concepts. Manual validation of random

samples conclude accuracy is not as high as desirable (74%). An error analysis produced

concrete next steps to increase the accuracy; simply removing one generation sub-rule, and

filtering mentions with unmatched punctuation, increases accuracy of a random sample of

217 newly recognized concepts (∼1,400 mentions) to 82%. Overall, manual analysis of 342

concepts (∼2,700 mentions) leads to an accuracy of 88%. We find that our rules increase

the ability to recognize concepts from the Gene Ontology by incorporating natural language

variation.

Even though we chose a specific dictionary based-system, ConceptMapper, to evaluate

our rules, the synonyms can also be useful for many other applications. Any other dictionary

based system can supplement its dictionary with the generated synonyms. Additionally,

any machine learning or statistical based methods will be able to utilize the synonyms

we generate to try to normalize the span of text identified as a specific entity type to an

ontological identifier; this will provide a richer feature representation for target concepts.

In addition, we provide examples of how these rules could generalize to other biomedical

ontologies and discuss the impact of supercomputing on scaling this work.
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Not only have our rules proven to be helpful for recognition of GO concepts, but there

are also other applications separate from the evaluated task. They could be used to identify

inconsistencies within the current Gene Ontology synonyms. Concepts that share similar

patterns, i.e. regulation of X, should all contain synonyms that correspond to a certain

syntactic pattern. While performing this work we identified a few concepts that should

contain synonyms but do not (Verspoor et al., 2009). Additionally, a certain conservative

subset of our rules could easily be incorporated into TermGenie (Dietze et al., 2014), a web

application that automatically generates new ontology terms. Our rules would be help to

generate synonyms of the automatically generated concepts.

Not only are these rules presented and evaluated in this chapter, but we also apply and

evaluate their impact on the automated function prediction task in Chapter VI.
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CHAPTER IV

PHARMACOGENOMIC AND DISEASE GENE DISCOVERY FROM

TEXT4

4.1 Introduction

This chapter marks a transition in my dissertation from focus on the task of concept

recognition to the application of text-mining for biomedical predictions. In this chapter, I

focus on the ability to predict pharmacogenes – genes where variants could affect drug effi-

cacy and metabolism or disease related genes. To address the question of what information

should be mined from the literature, I begin by exploring the use curated GO annotations

along with simple features mined from the literature, such as, Gene Ontology concepts,

bigrams, and collocations. I re-evaluate the original predictions and show that 6 of the top

10 hypothesized pharmacogenes in May 2013 now have curated support within PharmGKB,

indicating that literature features are useful for making biologically insightful predictions.

4.2 Background

One of the most important problems in the genomic era is identifying variants in genes

that affect response to pharmaceutical drugs. Variability in drug response poses problems

for both clinicians and patients (Evans and Relling, 1999). Variants in disease pathogenesis

can also play a major factor in drug efficacy (Poirier et al., 1995; Kuivenhoven et al., 1998).

However, before variants within genes can be examined efficiently for their effect on drug

response, genes interacting with drugs or causal disease genes must be identified. Both of

these tasks are open research questions.

Databases such as DrugBank (Wishart et al., 2006) and The Therapeutic Target DB

(Chen et al., 2002) contain information about gene-drug interactions, but only The Pharma-

cogenomics Knowledgebase (PharmGKB)(Hewett et al., 2002) contains information about

how variation in human genetics leads to variation in drug response and drug pathways.

Gene-disease variants and relationships are contained in Online Mendelian Inheritance in

4The work presented in this chapter is republished with permission from: Combining
heterogenous data for prediction of disease related and pharmacogenes In Pacific Symposium
on Biocomputing 19:328-339, 2014.
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Man (OMIM) (Hamosh et al., 2005), the genetic association database (Becker et al., 2004),

and the GWAS catalog (Hindorff et al., 2009). Curated databases are important resources,

but they all suffer from the same problem: they are incomplete (Baumgartner et al., 2007b).

One approach to this problem is the development of computational methods to aid in

database curation; this type of systems needs high accuracy and should extract informa-

tion from text and provide evidence to a curator. A different approach would be a system

to provide hypotheses based upon current knowledge and would direct biologist possibly

where to focus their next efforts. We present here a method that takes advantage of the

large amount of information in the biomedical literature to make predictions over all sets

of genes.

Having a classifier that is able to predict as-yet-uncurated pharmacogenes would allow

researchers to focus on identifying the variability within the genes that could affect drug

response or disease, and thus, shorten the time until information about these variants is

useful in a clinical setting. (We use the term “pharmacogene” to refer to any gene such that

a variant has been seen to affect drug response or is implicated in a disease.) Computational

methods have been developed to predict the potential relevance of a gene to a query drug

(Hansen et al., 2009). Other computational methods have been developed to identify genetic

causes underlying disorders through gene prioritization, but many of these are designed to

work on small sets of disease-specific genes (Aerts et al., 2006; Vanunu et al., 2010; Hutz

et al., 2008; Chen et al., 2009; Tranchevent et al., 2008; Gonzalez et al., 2007). The method

which is closest to the one that we present here is described in Costa et al.(Costa et al.,

2010); they create separate classifiers to predict morbidity-associated and druggable genes

on a genome-wide scale. A majority of these methods use sequence-based features, network

topology, and other features from curated databases while only a few use information from

literature (Aerts et al., 2006; Tranchevent et al., 2008; Gonzalez et al., 2007).

In the work presented here, the goal is to predict pharmacogenes at genome-wide scale

using a combination of features from curated databases and features mined from the biomed-

ical literature. We evaluate a number of hypotheses:
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1. There is a set of GO concepts that are enriched when comparing the functions of

important pharmacogenes and the rest of the human genome and by examining this

set of enriched GO concepts, a classifier can be created to provide hypotheses regarding

further genes in which variants could be of importance.

2. Text-mined features will increase performance when combined with features from

curated databases.

4.3 Methods

4.3.1 Pharmacogenes

By pharmacogene, we mean any gene such that a variant of that gene has been seen

to affect drug response or such that variants have been implicated in disease. PharmGKB

contains over 26,000 genes, with only a few having annotations that signify their importance

in disease or drug response. For the experiments reported here, only those genes in which

a variant exists in the PharmGKB relationship database, specifically gene-disease or gene-

drug relationships, are considered to be gold-standard pharmacogenes. By this definition,

1,124 genes meet the criteria for classification as pharmacogenes and are positively labeled

training instances; these make up <5% of all genes in PharmGKB. PharmGKB is constantly

being updated, so a snapshot of PharmGKB on May 2, 2013 was taken and is used as the

gold standard.

4.3.2 Background genes

The rest of the 25,110 genes in PharmGKB, which do not contain disease or drug re-

lationships, are considered to be background genes and will be used as negatively labeled

training instances. We acknowledge the fact that PharmGKB is incomplete and that a

missing annotation is not indicative of a gene not being involved in disease or drug relation-

ships, but the fact that they have not been discovered or curated yet. (This is an obvious

motivation for the work reported here.) Two data sets were created from the background

genes. One consists of all 25,110 genes. This is referred to as the unbalanced set. The

second consists of 1,124 background genes that have similar numbers of publications as the
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known pharmacogenes. This is referred to as the balanced set. That is, the two sets differ

in whether or not they result in a balanced set of positive and negative exemplars.

4.3.3 Functional annotations from curated databases

Links within PharmGKB were used to obtain Entrez Gene (EG) identifiers for both

pharmacogenes and background genes. To extract all Gene Ontology (GO) (Consortium,

2001) annotated functions associated with these genes, the NIH’s gene2go file was used.

Only curated evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, and ISS) were used, in

order to ensure high-quality annotations. This dataset will be referred to as the curated

dataset. It contains many EGID to GO ID mappings obtained solely from curated GO

annotations.

4.3.4 Functional annotations from biomedical literature

Entez Gene IDs and the NIH’s gene2pubmed file were used to relate genes to documents

of which they are the primary subject. By using the gene2pubmed file, we assume that all

information retrieved from the article is associated with the gene that is the primary subject.

Note that this is not always true and could introduce noise.

The 26,234 genes are mapped to 379,978 unique PubMed/MEDLINE articles. From

these ∼380,000 articles, two different textual datasets were created, one consisting only of

abstracts and the other containing full text. The abstract dataset consists of all abstracts

from all articles. For ∼26,000 articles, we were only able to download XML or plain text,

because PMC articles are available in any format, with some, such as PDF, not being

suitable for natural language processing. The ∼26,000 full-text articles constitute our full-

text dataset. All full-text documents come from the PubMed Open Access Subset.

To extract gene functions (GO concepts) from these corpora, ConceptMapper, a

dictionary-based concept recognizer (Tanenblatt et al., 2010), was used with parameters

tuned for each branch of the Gene Ontology (Molecular Function, Biological Process, and

Cellular Component), as seen in the previous chapter (Funk et al., 2014a). Descriptive

statistics of the documents and the functional annotations retrieved from them and from

the curated database are shown in Table 4.1.
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Table 4.1: Summary of gene-document and gene-annotation associations. The
number of genes within each dataset along with the mean number of biomedical literature
documents associated with each set of genes and mean number of GO annotations per
gene. (+) denotes that this set of genes is the positive labeled set while (–) denotes the
negative training sets. The row labelled “Total Numbers” gives the count, not means, of
documents and GO annotations.

Mean # Docs Mean # GO Annotations

# Genes Abstracts Full-text GOA
curated

NLP
abstracts

NLP
full-text

All genes 26,234 35.5 3.1 8.8 80.1 122.0
Known pharmacogenes (+) 1,124 215.2 15.5 16.3 227.5 220.7
All background genes (–) 25,110 26.7 2.5 8.2 72.8 128.7
Small background genes (–) 1,124 211.1 17.1 20.4 310.0 298.9
Total Numbers 26,234 379,978 25,987 112,356 1,891,566 1,951,982

4.3.5 Enrichment of Gene Ontology concepts

FatiGO (Al-Shahrour et al., 2004) was used to test whether there are functional concepts

that are enriched when pharmacogenes are compared to background genes. FatiGO is a tool

that uses Fisher’s exact test to extract over- or under-represented GO concepts from two

lists of genes and provides a list of enriched GO concepts and their respective p-values

as output. The p-values are corrected for multiple testing as described in Ge et al.(Ge

et al., 2003). The gene lists and all three sets of annotations—curated, and text-mined–

were provided to FatiGO as custom annotations. Fisher’s exact test was conducted between

GO concepts annotated to pharmacogenes and those annotated to background genes for all

three sets of Gene Ontology concepts (curated, mined from abstracts, and mined from full

text).

4.3.6 Binary classification

All classifiers were implemented in the Weka toolkit, version 3.6.9. Three different

baselines were used: OneR, a one node decision tree; Naive Bayes; and randomly as-

signing class labels. Against these, we compared three systems: Random Forests and

two different Support Vector Machine implementations. Random Forests provide fast

decision-tree training. Support Vector Machines (SVM) are currently the most popu-

lar classifier. The built-in classifiers for OneR (weka.classifiers.rules.OneR), Naive Byes

(weka.classifiers.bayes.NaiveBayes), Random Forest (weka.classifiers.trees.RandomForest),

and Support Vector Machine (weka.classifiers.functions.SMO) were used with default pa-

rameters. LibSVM (weka.classifiers.functions.LibSVM) was used with all but one default
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parameter. By default LibSVM maximizes accuracy; with the unbalanced dataset, this is

not optimal, so weights of 90.0 and 10.0 were assigned to the pharmacogene and background

classes, respectively. When using LibSVM with the balanced dataset, equal weights were

given to both classes. All numbers reported are from five-fold cross-validation.

Table 4.2: Machine learning features per dataset. A breakdown of the type and
number of unique features for each dataset.

Dataset # Genes # Fea-
tures Type

GOA curated 12,704 39,329 Curated GO annotations from the GOA
database.

NLP abstract 23,849 39,329 GO annotations recognized from MEDLINE
abstracts.

NLP full-text 15,168 39,329 GO annotations recognized from full-text
journal articles.

Abstract GO + Bigrams 23,849 858,472 GO annotations and bigrams from
MEDLINE abstracts.

Full-text GO + Bigrams 15,168 906,935 GO annotations and bigrams from full-text
journal articles.

Combined GO + Bigrams 23,867 1,189,175
Curated and NLP GO annotations and all
bigrams.

Abstract GO + Collocations 23,849 346,878 GO annotations and collocations from
MEDLINE abstracts.

Full-text GO + Collocations 15,168 54,951 GO annotations and collocations from
full-text journal articles.

Combined GO + Collocations 23,867 349,243 Curated and NLP GO annotations and all
collocations.

4.3.7 Features derived from natural language processing

Additional features were extracted from the abstract and full-text document collections

using natural language processing. (This is in addition to the automatically extracted Gene

Ontology annotations, which are also produced by natural language processing.) These

features were word bigrams and collocations. Collocations, or sets of words that co-occur

more often than expected, have not been commonly used in text classification, but provide

a better reflection of the semantics of a text than bigrams. Both bigrams and collocations

were extracted using the Natural Language Tool Kit (NLTK)(Bird, 2006). Any bigram or

collocation where one of the tokens only contained punctuation was removed. Additionally,

only those features that appear in three or more documents were retained. Six different

NLP-derived feature sets were created by combining the three datasets (abstract, full-text,

curated + abstract + full-text) along with the two different types of surface linguistic

features (bigrams and collocations); these feature sets were tested and trained on both the

balanced and unbalanced datasets.
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4.3.8 Machine learning input

A breakdown of the kind and number of features used in each dataset can be seen in

Table 4.2.

4.3.9 Evaluation metrics

The performance of our classifier was assessed by estimating precision (P), recall (R),

and F-measure (F). The area under the receiving operator characteristic curve (AROC) is

reported, as it allows for comparison against other classifiers, but with a word of caution

interpreting the unbalanced dataset: inflated AROCs have been seen when working with

skewed class distributions (Kaymak et al., 2012). All scores were determined by taking the

average of 5-fold cross-validation for all datasets.

4.4 Results and discussion

4.4.1 Enriched Gene Ontology concepts

To assess the viability of a machine learner separating background and pharmacogenes,

we first determine whether functional differences between the pharmacogenes and back-

ground genes exist. At least one curated or text-mined functional annotation was retrieved

for 23,647 out of 26,236 total genes (90% of all genes in PharmGKB). The details of obtain-

ing the annotations are given in Sections 4.3.3 and 4.3.4. The gene sets and their annotations

were passed to FatiGO, a web tool that extracts over- and under-represented GO concepts

from two lists of genes, and a list of enriched GO concepts and probabilities was returned

as output. Examining the output from FatiGO, we found that, depending on the dataset,

between 800-4000 GO concepts were enriched, consistent with our hypothesis that there are

enriched pharmacogenetic functions. The top 10 enriched GO concepts for Molecular Func-

tion and Biological Process can be seen in Tables 4.3 and 4.4, respectively. These lists were

obtained by comparing the annotations from all pharmacogenes to all background genes. To

ensure that bias was not introduced solely because there is a large difference in the number

of genes and the number of annotations between the two sets, another comparison was done

between all pharmacogenes and the set of 1,124 background genes with equal representation

in the biomedical literature. The enriched GO concepts returned are similar the concepts
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returned when comparing against all background genes, and therefore we can conclude that

no bias is introduced. Because there are many statistically enriched GO concepts returned

for each dataset, we can conclude that there are functional differences between the set of

pharmacogenes and background genes and provide a biological basis for the machine learner

to be able to distinguish between the two sets.

Many of the enriched GO concepts can be categorized as playing a role in pharmaco-

dynamics (PD) or pharmacokinetics (PK). Pharmacodynamics is the study of the activity

of a drug in the body, e.g. its binding and effect on the body. Examples of PD concepts are

“integral to plasma membrane” (GO:0005887), “drug binding” (GO:0008144), and “pos-

itive regulation of protein phosphatase type 2B activity” (GO:0032514)—they are either

associated with receptors that drugs bind to, or refer to the possible effect that a drug has

on the body. Pharmacokinetics is the study of drug absorption, distribution, metabolism,

and excretion. Examples of PK concepts are “xenobiotic metabolic process” (GO:0006805),

“small molecule metabolic process” (GO:0044281), and “active transmembrane transporter

activity” (GO:0022804)—they refer to metabolism of a molecule or are involved in the

metabolism or transportation of a molecule.

There are interesting differences when examining the top enriched concepts between

the different datasets (curated, abstracts, and full text). Impressionistically, curated an-

notations seem to be more specific, while NLP annotations appear to be more general

(especially evident when examining Biological Processes, Table 4.4). This may be the case

because there are limitations to the depth in GO that concept recognizers can identify; a

large gap exists between how near-terminal concepts are stated in the ontology and their

expression in free text.

4.4.2 Classification of pharmacogenes

Having established that the functions of pharmacogenes are different from background

genes, the next step is to test the ability of machine learning to differentiate between them.

Our goal is to predict at genome-wide scale pharmacogenes that are not currently known

in PharmGKB to have drug or disease relationships. We approach the problem as binary

classification, where the classifier separates pharmacogenes from the rest of the genes.
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Table 4.3: Top 10 enriched GO concepts from the Molecular Function hierarchy.
The enriched GO concepts from the Molecular Function branch of Gene Ontology obtained
when comparing pharmacogenes versus all background genes using FatiGO.

GOA curated
Concept ID Concept name Adj. P-value
GO:0005515 protein binding < 1.0× 10−8

GO:0019899 enzyme binding < 1.0× 10−8

GO:0042803 protein homodimerization activity < 1.0× 10−8

GO:0046982 protein heterodimerization activity < 1.0× 10−8

GO:0004497 monooxygenase activity < 1.0× 10−8

GO:0005245 voltage-gated calcium channel activity < 1.0× 10−8

GO:0020037 heme binding < 1.0× 10−8

GO:0004713 protein tyrosine kinase activity < 1.0× 10−8

GO:0004674 protein serine/threonine kinase activity < 1.0× 10−8

GO:0003677 DNA binding < 1.0× 10−8

NLP abstracts
Concept ID Concept name Adj. P-value
GO:0022804 active transmembrane transporter activity < 1.0× 10−8

GO:0005322 low-density lipoprotein < 1.0× 10−8

GO:0005321 high-density lipoprotein < 1.0× 10−8

GO:0005320 apoplioprotein < 1.0× 10−8

GO:0005179 hormone activity < 1.0× 10−8

GO:0005041 low-density lipoprotein receptor activity < 1.0× 10−8

GO:0005215 transporter activity < 1.0× 10−8

GO:0016088 insulin < 1.0× 10−8

GO:0004697 protein kinase C activity < 1.0× 10−8

GO:0045289 luciferin monooxygenase activity < 1.0× 10−8

NLP full-text
Concept ID Concept name Adj. P-value
GO:0042031 angiotensin-converting enzyme inhibitor activity < 1.0× 10−8

GO:0005262 calcium channel activity < 1.0× 10−8

GO:0016088 insulin < 1.0× 10−8

GO:0022804 active transmembrane transporter activity < 1.0× 10−8

GO:0005179 hormone activity < 1.0× 10−8

GO:0004872 receptor activity < 1.0× 10−8

GO:0005215 transporter activity < 1.0× 10−8

GO:0016791 phosphatase activity < 1.0× 10−8

GO:0008083 growth factor activity < 1.0× 10−8

GO:0004601 peroxidase activity < 1.0× 10−8

4.4.3 Classification using Gene Ontology concepts

To see how well known pharmacogenes can be classified through their functional an-

notation similarity, five classifiers were created using the manually curated and text-mined

functional annotations on both the unbalanced and balanced datasets. Baselines for com-

parison against are a one-node decision tree (OneR), Naive Bayes, and randomly assigning

class labels. Performance of all classifiers and baselines can be seen in Table 4.5. A break-

down of features used for each dataset can be seen in Table 4.2 and a summary of functional

annotations is seen in Table 4.1.

The results are shown in Table 4.5. A clear effect of balance versus imbalance in the

data is evident. F-measure increases between 0.29 and 0.53 when using a balanced training

set. Examining performance across unbalanced training sets, we notice that Naive Bayes
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Table 4.4: Top 10 enriched GO concepts from the Biological Process hierar-
chy. The enriched GO concepts from the Biological Process branch of the Gene Ontology
obtained when comparing pharmacogenes versus all background genes using FatiGO.

GOA curated
Concept ID Concept name Adj. P-value
GO:0044281 small molecule metabolic process < 1.0× 10−8

GO:0007596 blood coagulation < 1.0× 10−8

GO:0030168 platelet activation < 1.0× 10−8

GO:0006805 xenobiotic metabolic process < 1.0× 10−8

GO:0048011 neurotrophin TRK receptor signaling pathway < 1.0× 10−8

GO:0007268 synaptic transmission < 1.0× 10−8

GO:0008543 fibroblast growth factor receptor signaling pathway < 1.0× 10−8

GO:0007173 epidermal growth factor receptor signaling pathway < 1.0× 10−8

GO:0045087 innate immune response < 1.0× 10−8

GO:0055085 transmembrane transport < 1.0× 10−8

NLP abstracts
Concept ID Concept name Adj. P-value
GO:0007568 aging < 1.0× 10−8

GO:0009405 pathogenesis < 1.0× 10−8

GO:0046960 sensitization < 1.0× 10−8

GO:0008152 metabolic process < 1.0× 10−8

GO:0006629 lipid metabolic process < 1.0× 10−8

GO:0007610 behavior < 1.0× 10−8

GO:0006810 transport < 1.0× 10−8

GO:0014823 response to activity < 1.0× 10−8

GO:0006280 mutagenesis < 1.0× 10−8

GO:0042638 exogen < 1.0× 10−8

NLP full-text
Concept ID Concept name Adj. P-value
GO:0009626 plant-type hypersensitive response < 1.0× 10−8

GO:0007568 aging < 1.0× 10−8

GO:0016311 dephosphorylation < 1.0× 10−8

GO:0032514 positive regulation of protein phosphatase type 2B activity < 1.0× 10−8

GO:0008152 metabolic process < 1.0× 10−8

GO:0009405 pathogenesis < 1.0× 10−8

GO:0042592 homeostatic process < 1.0× 10−8

GO:0046960 sensitization < 1.0× 10−8

GO:0006810 transport < 1.0× 10−8

GO:0050817 coagulation < 1.0× 10−8

produces the highest recall (0.68) but the lowest precision (0.17), whereas Random Forest

produces highest precision (0.69) but lowest recall (0.11). The same trends do not hold

for the balanced training sets. On both training sets, it is the SVM-based classifiers that

balance precision and recall and produce the highest F-measures. The highest F-measures

of 0.81 and 0.78, are produced by LibSVM and SMO, respectively, on the balanced NLP

abstract annotations. Naive Bayes and Random Forrest perform poorly in comparison to

the SVM classifiers, but better than a single-node decision tree or random assignment;

OneR performs slightly better than random assignment.

For a majority of the classifiers, GO annotations from literature produce the best

performance—surprisingly, text-mined annotations seem to be better features than those

from curated datasets. One explanation could be that more information is encoded in
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text-mined annotations than just gene function. From this set of experiments, we can con-

clude that using only Gene Ontology concepts, we are able classify pharmacogenes on the

balanced training set but it remains unclear, because of poor performance, whether it is

sufficient to use only GO concepts with an unbalanced training set. We can also conclude

that LibSVM should be used for the next set of experiments because it is best performing

and was the fastest to train (training time not shown).

4.4.4 Classification using GO concepts and literature features

To test the hypothesis that features derived from surface linguistic features can increase

performance over conceptual features alone, we trained classifiers with two additional fea-

ture types: bigrams and collocations. Bigrams consist of every sequence of two adjacent

words in a document and are commonly used in text classification. Collocations are a

subset of bigrams, containing words that co-occur more frequently than expected. They

are a better representation of the semantics of a text than bigrams alone. The methods

for extracting these features are described above in Section 4.3.7. Adding bigrams and

collocations introduces up to 30x more features than functional annotations alone (Table

4.2).

The performance of LibSVM with GO annotations and bigrams/collocations on both

training sets can be seen in Table 4.6. Baselines are the same.

Table 4.5: Classification using Gene Ontology concepts. Five-fold cross validation
performance of five binary classifiers when providing Gene Ontology concepts as features.
Results from both unbalanced and balanced training sets are shown. The highest F-measure
is bolded. The baselines provided are OneR (one-node decision tree), Naive Bayes, and
randomly assigning classes (median of 5 random assignments).

GOA curated NLP abstracts NLP full-text
Classifier P/R/F P/R/F P/R/F

Unbalanced Training
Random 0.05/0.50/0.09 0.07/0.50/0.12 0.05/0.50/0.09
OneR 0.57/0.01/0.03 0.56/0.17/0.25 0.80/0.10/0.18
Naive Bayes 0.17/0.60/0.26 0.17/0.68/0.27 0.17/0.59/0.26
Random Forest 0.53/0.17/0.25 0.69/0.12/0.21 0.58/0.11/0.18
SMO 0.43/0.31/0.36 0.39/0.41/0.40 0.37/0.34/0.35
LibSVM 0.29/0.55/0.38 0.41/0.58/0.48 0.37/0.52/0.42

Balanced Training
Random 0.50/0.50/0.50 0.50/0.50/0.50 0/50/0.50/0.50
OneR 0.71/0.41/0.52 0.68/0.51/0.59 0.73/0.48/0.56
Naive Bayes 0.65/0.72/0.68 0.75/0.70/0.72 0.67/0.70/0.68
Random Forest 0.63/0.71/0.67 0.72/0.77/0.74 0.67/0.73/0.69
SMO 0.64/0.66/0.65 0.79/0.77/0.78 0.70/0.73/0.72
LibSVM 0.71/0.71/0.71 0.83/0.80/0.81 0.76/0.79/0.78
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On the unbalanced training set, the maximum F-measure seen is 0.57, obtained by using

text-mined functional annotations and bigrams extracted from abstracts. By using bigrams

in addition to GO annotations, precision is increased by 0.17 while recall is decreased by

0.02, resulting in an increase in F-measure of 0.09 (Table 4.5 versus Table 4.6). On the

balanced training set, the maximum F-measure seen is 0.81, also obtained by using text-

mined functional annotations and bigrams from abstracts. With the addition of bigrams,

both precision and recall are increased by 0.06 and 0.03,respectively, resulting in an increase

in F-measure of 0.06 (comparing Table 4.5 to Table 4.6).

Table 4.6: Classification with GO concepts and natural language processing.
Five-fold cross-validation performance of LibSVM when combining Gene Ontology concepts
and literature-based features. Both the balanced and unbalanced training results are shown.
The highest F-measure and AROC are bolded. The baselines provided are OneR (one-
node decision tree), Naive Bayes, and randomly assigning classes (median of 5 random
assignments).

Abstract GO +
Bigrams

Full-Text GO +
Bigrams

Combined GO
+ Bigrams

Classifier P/R/F AUC P/R/F AUC P/R/F AUC
Unbalanced Training

Random 0.07/0.50/0.12 0.501 0.05/0.50/0.09 0.501 0.05/0.50/0.09 0.499
LibSVM 0.58/0.56/0.57 0.771 0.50/0.46/0.48 0.711 0.50/0.54/0.52 0.756

Balanced Training
Random 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500
OneR 0.75/0.59/0.66 0.696 0.71/0.53/0.61 0.663 0.79/0.50/0.61 0.685
LibSVM 0.89/0.83/0.86 0.860 0.79/0.82/0.80 0.807 0.86/0.83/0.85 0.848

Abstract GO +
Collocations

Full-Text GO +
Collocations

Combined GO
+ Collocations

Classifier P/R/F AUC P/R/F AUC P/R/F AUC
Unbalanced Training

Random 0.07/0.50/0.12 0.501 0.05/0.50/0.09 0.501 0.05/0.50/0.09 0.499
LibSVM 0.54/0.56/0.55 0.767 0.41/0.52/0.46 0.730 0.47/0.56/0.51 0.763

Balanced Training
Random 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500
OneR 0.78/0.46/0.58 0.664 0.67/0.64/0.66 0.675 0.75/0.59/0.66 0.698
LibSVM 0.87/0.82/0.85 0.850 0.77/0.80/0.78 0.786 0.85/0.81/0.83 0.833

4.4.4.1 Comparison with other methods

As mentioned in the introduction, there are very few methods against which our method

can be compared. Most gene-disease or gene prioritization methods are designed to work

on small sets of disease-specific genes (Aerts et al., 2006; Vanunu et al., 2010; Hutz et al.,

2008), while our method was designed to predict pharmacogenes on a genome-wide scale.

To obtain a completely fair analysis all systems would have to be trained and run over

the same input data then predictions or prioritization ranking would need to be manually
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compared and validation. Instead, we summarize a few systems and report the performance

numbers within the original publication.

One method, Garten et al. (Garten et al., 2010), utilizes text mining to extract drug-

gene relationships from the biomedical literature, also using PharmGKB as a gold standard,

with an AUC of 0.701. The closest methods to ours do not predict pharmacogenes as

defined here, but only predict disease genes. CIPHER (Wu et al., 2008) predicts human

disease genes with precision of ∼0.10 using protein-protein interaction networks and gene-

phenotype associations. PROSPECTR (Adie et al., 2005) uses 23 sequence-based features

and predicts disease genes from OMIM with precision = 0.62 and recall = 0.70 with an

AUC of 0.70.The most directly comparable method, presented in Costa et al. (Costa et al.,

2010), utilizes topological features of gene interaction networks to predict both morbidity

genes (P=0.66, R=0.65, AUC=0.72) and druggable genes (P=0.75, R=0.78, AUC=0.82).

While the majority of other methods utilize sequence-based features, protein interactions,

and other genomic networks, our method requires only Gene Ontology annotations and

simple bigrams/collocations extracted from biomedical literature. Precision and recall for

our classifier trained on the unbalanced dataset with GO annotations and bigrams from

abstracts are slightly lower than both PROSPECTR and the method presented in Costa et

al., our AUC (0.771) is higher than all but the predicted druggable genes from Costa et al.

Performance on the balanced training set using GO concepts and bigrams extracted from

abstracts (F=0.86, AUC=0.860) are higher than any of the other methods presented here.

4.4.4.2 Limitations

There are two major limitations of our work. The first is that we grouped together

all pharmacogenes, while it may have been more useful to differentiate between disease-

associated and drug-response-associated variant and even further subdivide genes that act

through PD or PK. We hypothesize that these three subsets of genes will all have enriched

GO concepts that are different from the other groups of pharmacogenes, by our defini-

tion. The other limitation is that we don’t provide a ranking, but rather just a binary

classification, but provide external systems to rank the predicted genes.
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Table 4.7: Top 10 predicted pharmacogenes. Top 10 pharmacogenes predicted by
all combined classifiers and ranked by functional similarity to the known pharmacogenes.
All information from PharmGKB and OMIM is presented along with the class that was
predicted by Costa et al.(Costa et al., 2010) (Morbid: mutations that cause human diseases,
Druggable: protein-coding genes whose modulation by small molecules elicits phenotypic
effects).

EG ID Symbol PharmGKB Annotations OMIM Phenotype

Costa et
al.(Costa
et al., 2010)
predicted

2903 GRIN2A None Epilepsy with neurodevelop-
ment defects

Druggable

7361 UGT1A None None Not tested
2897 GRIK1 None None Druggable
1128 CHRM1 None None Druggable
1131 CHRM3 Member of Proton Pump In-

hibitor Pathway
Eagle-Barrett syndrome Druggable

3115 HLA-DPB1 None Beryllium disease Mor-
bid/Druggable

6571 SLC18A2 Member of Nicotine, Se-
lective Serotonin Reuptake
Inhibitor, and Sympathetic
Nerve Pathway

None Mor-
bid/Druggable

477 ATP1A2 None Alternating hemiplegia of
childhood, Migraine (fa-
milial basilar and familial
hemiplegic)

Mor-
bid/Druggable

3643 INSR Member of Anti-diabetic
Drug Potassium Channel
Inhibitors and Anti-diabetic
Drug Repaglinide Pathways

Diabetes mellitus, Hyper-
insulinemic hypoglycemia,
Leprechaunism, Rabson-
Mendenhall syndrome

Mor-
bid/Druggable

2905 GRIN2C None None Druggable

4.4.5 Prediction of pharmacogenes

Now that classifiers have been created and evaluated, we can analyze the predicted phar-

macogenes. 141 genes were predicted to be pharmacogenes by all six unbalanced datasets

seen in Table 4.6. Predictions from unbalanced models were analyzed because the models

produced through balanced training were unknowingly weighted for recall. For example, the

balanced model trained on abstract GO and bigrams produces a recall of 0.99 and precision

of 0.10 when the classifier is applied to all genes in PharmGKB; this is not informative and

further work and error analysis will be conducted to examine why this is.

The top 10 predicted genes, ranked by functional similarity (as calculated by ToppGene)

to the known pharmacogenes, along with all known information from PharmGKB and

Online Mendelian Inheritance in Man (OMIM)(Hamosh et al., 2005), and if/what the gene

was predicted to be by Costa et al. can be seen in Table 4.7. We first notice that there

are no gene-disease or gene-drug relationships in PharmGKB for these predicted genes,
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but a few of them participate in curated pathways. We expand our search to see if other

databases have drug or disease information about them. OMIM provides insight into genetic

variation and phenotypes; half of the predicted genes have a variant that plays a role

in a mutant phenotype. We also looked up our predicted genes in the results from a

previous study on predicting morbid and druggable genes, and 90% (9 out of 10) of our

predicted pharmacogenes were also predicted to be morbid (variations cause hereditary

human diseases) or druggable (Costa et al., 2010).

To assess the hypothesized pharmacogenes further, PubMed and STITCH (Kuhn et al.,

2008) were used to find any known drug or disease associations not in PharmGKB or OMIM.

The top-ranked gene, GRIN2A, seems to play a part in schizophrenia and autism spectrum

disorders (Tarabeux et al., 2011) along with binding to memantine, a class of Alzheimer’s

medication blocking glutamate receptors. Interestingly, UGT1A is unable to be found in

STITCH or OMIM, but an article from May 2013 introduces a specific polymorphism that

suggests that it is an important determinant of acetaminophen glucuronidation and could

affect an individual’s risk for acetaminophen-induced liver injury (Freytsis et al., 2013). It

is also known to be linked to irinotecan toxicity. We also find genetic variations in GRIK1

have been linked to schizophrenia (Hirata et al., 2012) and down syndrome (Ghosh et al.,

2012). Even only examining the top three predicted pharmacogenes, there is evidence

in other databases and literature that suggests these should be further examined by the

PharmGKB curators for possible annotation.

4.4.6 Re-analysis with new knowledge

The version of PharmGKB used in this work was from May 2013, since performing the

original work, almost 2 years have passed and new curated annotations have accrued. This

allows us to re-evaluate our predictions in light of this new knowledge. We present this

re-analysis, using the February 2015 version of PharmGKB in Table 4.8. We find that 6

out of our top 10 predictions have at least one specific polymorphism that appears to affect

drug efficacy or a corresponding disease, many have more than one. Granted, given enough

time, variants within all genes will most likely have variants that affect drugs or diseases.

Interestingly, for UGT1A utilizing the PubMed searches for validation, we were able to
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Table 4.8: Top 10 predicted pharmacogenes re-analyzed taking into account new
PharmGKB annotations. Top 10 pharmacogenes predicted by all combined classifiers
and ranked by functional similarity to the known pharmacogenes. These annotations have
been added since May 2013.

EG ID Symbol Polymor-
phisms Drugs Disease

2903 GRIN2A None None None

7361 UGT1A
rs1042640,
rs10929303,
rs8330

acetoaminophen,
ritonavir,
atazanavir

Acute liver
failure, HIV

2897 GRIK1 rs2832407 topiramate Alcohol-related
diseases

1128 CHRM1 None None None

1131 CHRM3 rs2155870 None

None
Postoperative
vomiting and
nausea

3115 HLA-DPB1
rs1042136,
rs1042151,
rs3097671

aspirin aspirin-induced
asthma

6571 SLC18A2

rs1420,
rs363224,
rs363390,
rs929493

antipsychotics,
citalopram None

477 ATP1A2 None None None
3643 INSR None None None

2905 GRIN2C rs8092654 exemestane,
anastrozole None

pinpoint the article that lead to at least one of the now curated annotations – the interaction

with aspirin and acute liver failure. This re-evaluation shows that a pipeline consisting of

hypothesis made through use of the biomedical literature and supporting evidence mined

through a NLP pipeline designed could be provided to curators of databases to prioritize

their efforts to specific genes and articles.

4.5 Conclusions

One of the surprising findings of this study was that features extracted from abstracts

performed better than features extracted from full text. We believe this could be due to fact

that abstracts are more concise and features obtained from them will more related to the

proteins linked to the article; full text documents contain many other spurious sections and

most likely will refer to many other proteins introducing noise. We experiment in the next

chapter with limiting spans of mentions. Also, since full text was available for a smaller

number of genes, the comparison may not be as meaningful or appropriate.

The fact that features derived from text-mined functional annotations outperformed

manually curated annotations was a surprise. In this work, we did not evaluate the correct-
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ness of text-mined functional annotations. Therefore, the performance of the text-mined

functional annotation features is the only indication of how well we are able to recognize

Gene Ontology concepts. In Chapter II we found that baseline recognition (what was used

in this work) was underwhelming. Based on the fact that they performed higher than the

manually curated Gene Ontology concepts, it appears that the performance of the Con-

ceptMapper approach was at minimum, good enough for this task. Incorporating the rules

developed in Chapter III would most likely improve the ability to distinguish between the

two sets; we explore the impact of the rules presented in Chapter III for a different task in

Chapter VI.

In this work we identified a set of functions enriched in known pharmacogenes. This list

could be used to rank genes predicted by our classifier, but also has usefulness beyond the

work presented here. The list could prove useful in literature-based discovery by providing

linkages to identify gene-drug or gene-disease relationships from disparate literature sources.

We also present a classifier that is able to predict pharmacogenes at a genome wide

scale (F=0.86, AUC=0.860). The top 10 hypothesized pharmacogenes predicted by our

classifier are presented; 50% contain allelic variations in OMIM and 90% were previously

predicted but remain unannotated in PhamGKB. Additionally, using other sources at least

the top three genes predicted are known to bind a drug or to be associated with a disease.

Other methods attempting similar problems, utilize sequence based features and genomic

networks; only a few incorporate literature features. Our method, on the other hand, uses

mainly features mined from the biomedical literature along with functional annotations

from databases.

We re-analyzed the top 10 hypothesized pharmacogenes in light of the knowledge gained

in the 2 years since the original worked was completed and found that 60% had at least one

variant now associated with a drug or disease. This supports the original findings, that text

mined features from the biomedical literature can serve as useful features for predictions.

We briefly explore one advantage that literature features have, their ability to not only serve

as input features, but to offer supporting evidence or validation of the predictions. We dive

much deeper and offer more evidence on this topic in Chapter VI.
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CHAPTER V

PROTEIN FUNCTION PREDICTION USING LITERATURE

FEATURES5,6,7

5.1 Introduction
With the cost of high-throughput methods decreasing every year, many gene or gene

product sequences are deposited in databases with no known function. Manual annotation

is expensive and lagging behind; the only feasible methods that are able to keep up with

the growth in databases is through computational methods. Additional discussion of the

problem and brief summary of common methods is presented in Section 1.3. There have

been very few methods on incorporating the vast amount of information contained within

the biomedical literature.

Most computational methods use features derived from sequence, structure or protein

interaction databases (Radivojac et al., 2013); very few take advantage of the wealth of

unstructured information contained in the biomedical literature. Because little work has

been conducted using the literature for function prediction, it is not clear what type of

text-derived information will be useful for this task or the best way to incorporate it. In

this chapter I discuss the use of literature features for automated protein function predic-

tion. In both this chapter and the following we evaluate literature features in the context of

the machine learning framework, GOstruct (Sokolov and Ben-Hur, 2010). To address the

question “what features mined from the literature are useful?”, I build upon the features

discussed in Chapter IV and explore more complex features, specifically co-mentions, mined

from the biomedical literature. I explore the different ways to combine the multiple types

of literature features and how to best integrate them with more commonly used sequence-

or network-based features. Both these questions are evaluated through the use of our par-

The work presented in this chapter is republished with permission from:
5Combining heterogeneous data sources for accurate functional annotation of proteins

BMC bioinformatics 14.Suppl 3 (2013): S10.
6Improving automated protein function prediction by integrating natural language pro-

cessing and machine learning Poster at 9th Annual Rocky Mountain Bioinformatics Confer-
ence 2011, F1000Posters 2012, 3: 70 http://f1000.com/posters/browse/summary/1089821

7Evaluating a variety of text-mined features for automatic protein function prediction
with GOstruct Journal of Biomedical Semantics (in press).
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ticipation in community challenges that focused on prediction of protein function, Critical

Assessment of Function Annotation (CAFA). I describe both our methodology for each task

and highlight the overall conclusions for the use of literature for function prediction.

5.1.1 GOstruct

Most machine learning function prediction methods combine the output of many bi-

nary classifiers answering the question “does this protein have function X?”, which results

in training thousands of classifiers and then rectifying the many predictions within the Gene

Ontology hierarchy. In contrast, GOstruct is a support vector machine learning framework

that models predictions as a hierarchical multi-label classification task using a single classi-

fier; when training and predicting it takes into account the entire GO structure and is able

to predict the entire set of GO classes at once. For a more technical presentation, please

refer to the original publication, Sokolov et al (Sokolov and Ben-Hur, 2010).

5.1.2 Co-mentions

We use the term co-mention to define the co-occurrence of any two entities within a

predefined span of text. In this case we explore two different types of co-mentions: protein-

protein co-mentions and protein-GO term co-mentions. We briefly experimented with GO-

GO co-mentions but found they were not helpful; it could be the case that they would be

useful in other contexts but not for input into function predication algorithms. We also

used two different spans to identify co-mentions within this work, sentence and paragraph.

For the case of abstracts, we equated the whole abstract as a paragraph and when dealing

will full text documents we utilized the traditional notion of a paragraph. We explore using

these because 1) they are very quick to extract from the literature and 2) are able to act

as a proxy to actual relationships, without the cost of parsing. This allows us to extract

this type of feature from large amounts of literature (10+ million abstracts, 1+ million full

text) very quickly. As discussed in the Section 1.3, there are only a few other methods using

literature for function prediction; the scale at which we mine the literature is one thing that

sets this work apart.
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5.2 Background
Literature mining has been shown to have substantial promise in the context of auto-

mated function prediction, although there has been limited exploration to date (Verspoor,

2014). The literature is a potentially important resource for this task, as it is well known

that the published literature is the most current repository of biological knowledge and

curation of information into structured resources has not kept up with the explosion in

publication (Baumgartner et al., 2007a). A few teams from the first Critical Assessment

of Functional Annotation (CAFA) experiments (Radivojac et al., 2013) used text-based

features to support prediction of Gene Ontology (GO) functional annotations (The Gene

Ontology Consortium, 2000).

Wong and Shatkay (Wong and Shatkay, 2013) was the only team in CAFA that used

exclusively literature-derived features for function prediction. They utilized a k-nearest

neighbor classifier with each protein related to a set of predetermined characteristic terms.

In order to have enough training data for each functional class, they condensed information

from all terms to those GO terms in the second level of the hierarchy, which results in only

predicting 34 terms out of the thousands in the Molecular Function and Biological Process

sub-ontologies. Recently, there has been more in-depth analysis into how to use text-based

features to represent proteins from the literature without relying on manually annotated

data or information extraction algorithms (Shatkay et al., 2014). This work explored using

abstracts along with unigram/bigram feature representation of proteins.

Another team, Björne and Salakoski (Björne and Salakoski, 2011), utilized events,

specifically molecular interactions, extracted from biomedical literature along with other

types of biological information from databases; they focused on predicting the 385 most

common GO terms.

In this work, we explore a variety of text-mined features, and different ways of combining

these features, in order to understand better the most effective way to use literature features

for protein function prediction.

5.3 CAFA 1
In 2011, the first Critical Assessment of Function Annotation (CAFA) was held to

evaluate the accuracy of current function prediction methods (Radivojac et al., 2013). To
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Figure 5.1: Multi-view approach to training. Data is separated into two different
view: a cross-species view that contains features computed from sequence and a species-
specific view which contains, in this figure, only features derived from mouse co-mentions,
PPI, and gene expression. Both views are summed into the multi-view classifier. The red
highlighted box are mined from the literature.

start, participants were provided ∼44,000 SwissProt proteins, from 11 different species, that

contained no experimentally annotated function. A period of ∼6 months was provided to

train and submit predictions of Molecular Function and Biological Process for all possible

target proteins. After predictions were locked, experimental annotations were allowed to

accrue for 11 months; the 866 proteins that had experimentally validated functions were

the evaluation targets.
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5.3.1 Features

An overview of the experimental setup used for making predictions along with the types

of features used can be seen in Figure 5.1. GOstruct has two different views of data that

it combines, the species-specific and cross-species. My contributions are the features mined

from the literature using concept recognition (red box in Figure 5.1). I describe in detail

the literature mined features extracted and for complete context, briefly cover the other

types of sequence-based and cross-species features.

5.3.1.1 Literature features
Literature features were incorporated within the species-specific view; for this first ex-

periment we only focused on mining features related to mouse proteins ( MGI IDs). We

extracted two different types of literature features, protein-protein co-mentions (PPC) and

protein-GO co-mentions (PGC) within both sentences and documents. These features were

extracted from a set of 11.7 million PubMed abstracts, all Medline abstracts on 9/8/2011

that had title and body text. The abstracts were fed into a natural language processing

pipeline based on the BioNLP UIMA resources http://bionlp-uima.sourceforge.net/ which

consists of the following steps: 1) splitting the abstracts into sentences 2) protein name

tagging using the LingPipe named entity recognizer http://alias-i.com/lingpipe with the

CRAFT model (Verspoor et al., 2012) 3) Gene Ontology term recognition via dictionary

lookup (using ConceptMapper as described in Chapter II) and 4) extraction of the two

types of co-mentions at the abstract and sentence level. Protein names were mapped to

mouse MGI IDs using a MGI name dictionary lookup. Assuming only mouse references

allowed us to avoid the full gene normalization problem (Morgan and Hirschmann, 2007)

and fit in well with the other data sources of the species-specific classifier.

Counts of features extracted from all Medline can be seen in Table 5.1. We find that for

both types of sentence co-mentions there is ∼10x increase when comparing unique verses

total and for document co-mentions there is ∼100x increase. Having 100’s of millions of

co-mentions from such a large literature collection there will be some noise introduced.

We hypothesize that good co-mention signal will rise from the noise. The most common

co-mentions will likely have been documented. An extreme example of a common co-

mention is interleukin 6, which is mentioned 426,031 times in conjunction with “interleukin-6
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receptor binding”; this represents no new knowledge. The least common co-mentions, those

mentioned very few times, either represent noise or brand new knowledge that is most

likely not curated and accounted for from other sources. For training, the co-mentions were

provided to GOstruct as frequency data – each protein is characterized by a vector that

provides the number of times it co-occurs with each protein or GO term.

Table 5.1: Counts of mouse literature features extracted for CAFA 1. Counts of
different types of co-mentions extracted from 11.7 million abstracts using an MGI and GO
dictionary lookup. Document refers to co-mentions within the entire abstract, regardless of
the number of paragraphs.

Features Unique proteins Unique GO terms Unique co-mentions Total co-mentions
PPC-sentence 3,588 – 211,543 4,174,302
PPC-document 3,654 – 350,417 37,145,104
PGC-sentence 3,721 9,345 696,141 18,713,932
PGC-document 3,738 11,591 1,392,033 180,142,251

5.3.1.2 Other features

Besides the species-specific literature features already discussed, there are multiple other

types of biological features that are commonly used for function prediction8. I briefly touch

on them to provide full context of the information provided for prediction of function and

to compare the literature mined features against.

Cross-species features

These features are calculated from the protein sequence alone and are therefore not tied

directly to a species. These features are where homology and the ‘transfer of annotation’ is

encoded.

1. BLAST hits – Proteins are represented in terms of its sequence similarity to other

proteins using the BLAST score against a database of annotated proteins (Altschul

et al., 1990).

2. Localization signals – Sub cellular localization can offer insight into function as some

processes are specific to certain compartments (Rost et al., 2003). WoLF PSORT

(Horton et al., 2007) is used to identify these signals from sequence.

8Credit for other features and performing evaluation goes to students from Asa Ben-Hur’s
lab: Artem Sokolov and Kiley Graim.

151



3. Transmembrane predictions – Certain functions such as “cell adhesion” or “transport

of ions” tend to be associated with transmembrane proteins. The TMHMM program

(Krogh et al., 2001) is used to establish how many possible transmembrane domains

are in the protein.

4. Low complexity regions – These types of regions are abundant with proteins and have

an effect on the protein’s function (Coletta et al., 2010). A sliding window of 20 amino

acids with the lowest diversity of amino acid sequence is used as a feature.

Species-specific features

Certain type of data that you cannot obtain for all species or it is not clear, for example,

how frog PPI could directly apply to human, so there is a species-specific view. For these

experiments, we create only mouse specific features.

1. Protein-protein interactions – M. musculus PPI were extracted from the STRING

database (Szklarczyk et al., 2011).

2. Gene expression – Similarity of expression for ∼15,000 microarray experiments were

provided by PILGRIM (Greene and Troyanskaya, 2011).

5.3.2 Preliminary evaluation of useful literature features

To test which literature features we should use for the competition, we started by

performing an evaluation of two types of co-mention features extracted from the literature

using a small mouse dataset of ∼3,500 proteins. Performance is presented as AUC (mean per

GO term) and can be seen in Table 5.2 from 5-fold cross-validation. The baseline (0.782)

presented is only using BLAST and PPI; using only literature features, protein-protein

and protein-GO co-mentions from abstracts, produces comparable, but slightly reduced

performance (0.774). The only protein-protein co-mention that improve performance are

those within a sentence, even though the increase could be determined negligible. Document

protein-protein co-mentions reduce performance when combined with any other features;

this is most likely due to noise introduced and them being a very poor approximation to

a traditional interaction. On the other hand, we find that protein-GO term co-mentions
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improve performance when combined with all other features. Using the document co-

mentions improve performance over the sentence co-mentions. In this experiment, the

sentence co-mentions are a subset of the document co-mentions and we believe more textual

context can be encoded within the data when using document co-mentions over sentence.

The best performance is when the document protein-GO co-mentions are combined with

both BLAST and PPI. These literature co-mentions complement the other types of data

and preliminary results show their usefulness for function prediction. Based upon this

preliminary experiment, we chose to use the protein-GO term co-mentions from the entire

abstract as the literature features for the first CAFA predictions.

Table 5.2: Performance on combination set of ∼3,500 mouse proteins. Combi-
nation of AUC is the mean per GO term. PPC is protein-protein co-mentions and PGC is
protein-GO co-mentions and the span of the co-mention is represented by either sentence
or document (entire abstract). The difference from baseline is also presented.

Set of features AUC ∆ Baseline
Mouse-BLAST + Mouse-PPI 0.782 –
PPC-document + PGC-document 0.774 -0.008
Mouse-BLAST + Mouse-PPI + PPC-sentence 0.783 +0.001
Mouse-BLAST + Mouse-PPI + PPC-document 0.779 -0.003
Mouse-BLAST + Mouse-PPI + PPC-sentence + PPC-document 0.773 -0.009
Mouse-BLAST + Mouse-PPI + PGC-sentence 0.807 +0.025
Mouse-BLAST + Mouse-PPI + PGC-document 0.814 +0.032
Mouse-BLAST + Mouse-PPI + PGC-sentence + PGC-document 0.813 +0.031
Mouse-BLAST + Mouse-PPI + PPC-sentence + PGC-sentence 0.799 +0.017
Mouse-BLAST + Mouse-PPI + PPC-document + PGC-document 0.799 +0.017
Mouse-BLAST + Mouse-PPI + PPC-sentence + PPC-document +
PGC-sentence + PGC-document 0.789 +0.016

5.3.3 Impact of individual features

Our method was one of the top performers in the first CAFA with an F-max of ∼0.57 for

all targets for the Molecular Function branch (Radivojac et al., 2013). Unfortunately, due to

timing issues, we were unable to incorporate literature features for the official predictions,

but after the fact we performed extensive evaluation to explore the impact that each feature

had using the methodology but also included literature features (Sokolov et al., 2013b).

To assess the contribution of each source of data to predict function, we compared the

performance of models trained on individual features and combinations of them. These

results are presented in Table 5.3.

Our first observation is that BLAST data accounts for the largest contribution to the

predictive power of the cross-species SVM, although the additional sequence-based features
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provide an increase in performance. From the species-specific view, the PPI features yield

the highest accuracy, and outperforms all sequence-based predictors in biological function

and cellular component namespaces. Furthermore, these features are complementary to

the co-mention features, as demonstrated by the strong increase in performance over either

feature set by itself when using the combination of the two. A classifier based solely on

gene expression data did not fare well by itself. Nevertheless, inclusion of gene expression

data provides a marginal increase in performance. We imagine that if we had time to

incorporate the features into the submitted predictions that our performance on the ∼150

mouse proteins in the evaluation set would be improved.

Table 5.3: Classifier performance in predicting GO terms using individual
sources of data and some of their combinations using only data from mouse.
Reported performance is AUC calculated through 5-fold cross validation. P20R represents
precision at recall 20%. BLAST refers to a classifier trained on BLAST scores only; the
Sequence entry uses all the sequence-based features. In addition to classifiers trained
on PPI, co-mention and expression individually, we also provide results using PPI and
co-mention and the combination of all three.

AUC P@R20
Set of features MF BP CC MF BP CC
BLAST 0.77 0.61 0.69 0.40 0.13 0.25
Sequence 0.83 0.65 0.76 0.41 0.14 0.26
PPI 0.78 0.80 0.81 0.33 0.25 0.43
Protein-GO co-mention 0.78 0.75 0.79 0.24 0.17 0.33
Gene Expression 0.58 0.64 0.62 0.04 0.06 0.10
PPI + co-mention 0.85 0.82 0.85 0.43 0.29 0.45
PPI + co-mention + expression 0.86 0.83 0.86 0.42 0.29 0.46

5.3.4 Manual validation of incorrect predictions

A manual analysis of incorrect predictions using literature features was performed to

examine what information GOstruct used to make the prediction and to show how useful

literature features are beyond prediction; they can be used for validation of predictions.

Analysis of the top 25 false positives from the molecular function namespace is presented

in Table 5.4.

Three main conclusions can be drawn from the analysis. First, predictions made are

more accurate than the evaluation estimated; our system identified biologically correct

annotations that were not yet available in the gold standard. The gold standard used for

evaluation was from Feb 2011. When evaluated against the contents of SwissProt from

April 2012, 16 out of the top 25 predictions are supported. Second, our NLP pipeline is

154



able to extract pertinent information for function prediction. Even individual sentences

can contain evidence of multiple GO annotations. For example, a sentence extracted by our

pipeline from PMID:19414597,“LKB1, a master kinase that controls at least 13 downstream

protein kinases including the AMP-activated protein kinase (AMPK), resides mainly in the

nucleus.”, describes both the function and the subcellular localization of the protein LKB1.

Finally, even though the sentences extracted provide useful information, more sophisticated

methods to extract information from them will need to be developed. Because we are

using simple co-occurrence of protein and GO-terms, extracted associations are not always

correct. For example, our pipeline associated peptidase activity with TIMP-2 on the basis

of the following sentence: “The 72-kDa protease activity has been found to be inhibited by

tissue inhibitor of metalloprotease-2 (TIMP-2), indicating that the protease is the matrix

metalloprotease-2 (MMP-2)”. Clearly, TIMP-2 does not actually have peptidase activity,

but inhibits it. This incorrect association, and others like it, possibly mislead GOstruct

predictions. Such errors will be addressed in future work by incorporating the semantic role

of the protein in regards to the described function.

Table 5.4: Analysis of the top 25 false positive predictions made by GOstruct.
Analysis of the top 25 false positive predictions made by GOstruct. We present the best
supporting sentence for the function of each protein, the document source, and the most
recent known annotation.

Protein
GOstruct
prediction / current
annotation

Best supporting sentence Pubmed
ID

GO
term(s)
in sen-
tence

MGI:103293 GO:0016787 hydrolase
activity

We recently demonstrated that
human protein tyrosine
phosphatase (PTP) L1, a large
cytoplasmic phosphatase also
known as
PTPBAS/PTPN13/PTP-1E, is a
negative regulator of
IGF-1R/IRS-1/Akt pathway in
breast cancer cells.

19782949 GO:0004722

MGI:103305 GO:0016787 hydrolase
activity / N/A N/A N/A N/A

Continued on next page
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Protein
GOstruct
prediction / current
annotation

Best supporting sentence Pubmed
ID

GO
term(s)
in sen-
tence

MGI:104597
GO:0016740
transferase activity /
N/A

Using this assay system,
chloramphenicol acetyltransferase
activity directed by the cTNT
promoter/upstream region was
between two and three orders of
magnitude higher in cardiac or
skeletal muscle cells than in
fibroblast cells, indicating that cis
elements responsible for
cell-specific expression reside in
this region of the cTNT gene.

3047142 GO:0008811,
GO:0016407

MGI:104744

GO:0022857
transmembrane
transporter activity /
GO:0005242 inward
rectifier potassium
channel activity

Many Andersen syndrome cases
have been associated with
loss-of-function mutations in the
inward rectifier K(+) channel
Kir2.1 encoded by KCNJ2.

18690034 GO:0015267

MGI:104744

GO:0022892
substrate-specific
transporter activity /
GO:0005242 inward
rectifier potassium
channel activity

IRK1, but not GIRK1/GIRK4
channels, showed a marked
specificity toward phosphates in
the 4,5 head group positions.

10593888 GO:0015267

MGI:105926 GO:0005515 protein
binding

Based on our results together with
previous work showing that Rin1
interacts with signal transducing
adapter molecule to facilitate the
degradation of EGFR, we
hypothesize that the selective
association of Rab5A and Rin1
contributes to the dominance of
Rab5A in EGFR trafficking

19723633 GO:0005488

MGI:105938

GO:0005515 protein
binding / GO:0030742
GTP-dependent
protein binding

To validate this method, the
binding of EEA-1 was confirmed
and several novel Rab5-binding
proteins were also identified by
2-dimensional electrophoresis and
liquid chromatographymass
spectrometry/mass spectrometry
(LC-MS/MS).

19526728 GO:0017091,
GO:0005488

MGI:107548 GO:0005515 protein
binding / N/A

In vitro binding assays revealed
that TRAF5 associates with the
cytoplasmic tail of CD40, but not
with the cytoplasmic tail of tumor
receptor factor receptor type 2,
which associates with TRAF2.

8790348 GO:0005515
GO:0003818

Continued on next page
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Protein
GOstruct
prediction / current
annotation

Best supporting sentence Pubmed
ID

GO
term(s)
in sen-
tence

MGI:1316660 GO:0005515 protein
binding / N/A

Members of the voltage-gated
calcium channel y subunit gene
family (Cacng), have been rapidly
discovered since the discovery of
the identification of the mouse
gamma2 gene (Cacng2) and its
association with the stargazer
mutant mouse line.

15000525 GO:0015267,
GO:0005262

MGI:1341870 GO:0016301 kinase
activity

LKB1, a master kinase that
controls at least 13 downstream
protein kinases including the
AMP-activated protein kinase
(AMPK), resides mainly in the
nucleus.

19414597 GO:0050405

MGI:1341870 GO:0016740
transferase activity

LKB1 can phosphorylate the
Thr174 of BRSK2, increasing its
activity ¿50- fold. 16870137 GO:0016310

MGI:1341870

GO:0016772
transferring
phosphorus containing
groups

LKB1 tumour suppressor protein
kinase phosphorylates and
activates protein kinases belonging
to the AMP activated kinase
(AMPK) subfamily

15733851 GO:0004674

MGI:1343087 GO:0016740
transferase activity

PKCzeta thus functions as an
adaptor, associating with a
staurosporine insensitive PDK2
enzyme that catalyzes the
phosphorylation of S472 of
PKBgamma.

12162751 GO:0004697,
GO:0004740

MGI:1343087

GO:0016772
transferring
phosphorus containing
groups / GO:0004740
pyruvate
dehydrogenase kinase
activity

PKCzeta thus functions as an
adaptor, associating with a
staurosporine insensitive PDK2
enzyme that catalyzes the
phosphorylation of S472 of
PKBgamma.

12162751 GO:0004697,
GO:0004740

MGI:1926334

GO:0016787 hydrolase
activity / GO:0004722
protein
serine/threonine
phosphatase activity

The protein B-50 is
dephosphorylated in rat cortical
synaptic plasma membranes
(SPM) by protein phosphatase
type 1 and 2A (PP-1 and
PP-2A)-like activities.

1319470 GO:0004722

MGI:1926334

GO:0016788 hydrolase
activity, acting on
ester bonds /
GO:0004722 protein
serine/threonine
phosphatase activity

The protein B-50 is
dephosphorylated in rat cortical
synaptic plasma membranes
(SPM) by protein phosphatase
type 1 and 2A (PP-1 and
PP-2A)-like activities.

1319470 GO:0004722

Continued on next page
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Protein
GOstruct
prediction / current
annotation

Best supporting sentence Pubmed
ID

GO
term(s)
in sen-
tence

MGI:2140494 GO:0016787 hydrolase
activity / N/A

Nuclear inhibitor of protein
phosphatase-1 (NIPP1; 351
residues) is a nuclear RNA-binding
protein that also contains in its
central domain two contiguous
sites of interaction with the
catalytic subunit of protein
phosphatase-1 (PP1(C)).

11104670 GO:0016791,
GO:0003723

MGI:2140494
GO:0016788 hydrolase
activity, acting on
ester bonds / N/A

Nuclear inhibitor of protein
phosphatase-1 (NIPP1; 351
residues) is a nuclear RNA-binding
protein that also contains in its
central domain two contiguous
sites of interaction with the
catalytic subunit of protein
phosphatase-1 (PP1(C)).

11104670 GO:0016791,
GO:0003723

MGI:2180854 GO:0005515 protein
binding / N/A

We report here that RFXAP, a
subunit of the DNA-binding RFX
complex, also binds BRG1 and
therefore provides a mechanism by
which MHC class II gene
chromatin can be remodeled in the
absence of CIITA.

15781111
GO:0005515,
GO:0003677,
GO:0017091

MGI:2385847 GO:0005515 protein
binding

In contrast with other MOs, this
conformational switch is coupled
with the opening of a channel to
the active site, suggestive of a
protein substrate.

16275925 GO:0005515,
GO:0015267

MGI:96785 GO:0005515 protein
binding

Here, using the yeast one-hybrid
system and electrophoretic
mobility shift assay, we report that
Lhx2, a LIMhomeodomain protein,
binds to the homeodomain site in
the mouse M71 OR promoter
region.

15173589 GO:0005515,
GO:0017091

MGI:97531 GO:0005515 protein
binding

Many proteins bind to the
activated platelet derived growth
factor receptor (PDGF-R) either
directly or by means of adapter
molecules.

8619809 GO:0005515

MGI:97809 GO:0016787 hydrolase
activity

We conclude that VE-PTP is a
Tie- 2 specific phosphatase
expressed in ECs, and VE-PTP
phosphatase activity serves to
specifically modulate
Angiopoietin/Tie-2 function.

10557082
GO:0004722,
GO:0004725,
GO:0016791

MGI:98753 GO:0008233 peptidase
activity / N/A

The 72-kDa protease activity has
been found to be inhibited by
tissue inhibitor of
metalloprotease-2 (TIMP-2),
indicating that the protease is the
matrix metalloprotease-2
(MMP-2).

12102173 GO:0008233,
GO:0004222

Continued on next page
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Protein
GOstruct
prediction / current
annotation

Best supporting sentence Pubmed
ID

GO
term(s)
in sen-
tence

MGI:98753 GO:0016787 hydrolase
activity / N/A

In the comparison of normal and
cloned samples, a total of 41 spots
were identified as differentially
expressed proteins, of which 25
spots were upregulated proteins
such as TIMP-2,
glutamate-ammonia, and esterase
10, while 16 spots were
down-regulated proteins such as
PBEF and annexin A1.

20684987 GO:0004091

5.4 CAFA 2

The second CAFA was held in 2014 and follows a similar setup as the first. The

prediction task has expanded, systems were required to predict all branches of GO (MF, BP,

and CC) and predictions for human proteins could also be made to the Human Phenotype

Ontology (HPO). Participants were provided ∼100,000 possible targets from 27 different

species. Unlike the first competition there could be two different types of annotations

evaluated:

1. For proteins that had no experimental annotations before, evaluation would be per-

formed the same as the first CAFA.

2. Proteins can already have experimental annotations and could accrue new experimen-

tal annotations, this is called the re-annotation task.

5.4.1 Experimental setup

We use similar approaches to those we used in the first CAFA, we highlight those

changes and their impact on function prediction in the following sections. To account for

the large increase in number of target species, we first expanded the protein dictionary

to cover the 27 species covered by the 100,000 target proteins. To increase the ability

to identify proteins in text, synonyms for proteins were added from UniProt (Consortium

et al., 2008) and BioThesaurus version 0.7 (Liu et al., 2006). We also made a few changes to

the way co-mentions were extracted based upon lessons learned from previous experiments.
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Unlike the first CAFA, where literature features were mined for only M. musculus, for

the second iteration literature features were incorporated into 8 different species-specific

views (A. thaliana, H. sapiens, M. musculus, R. norvegicus, S. cerevisiea, S. pombe, D.

melanogaster, and E. coli). In human and yeast ∼75% of all proteins had at least one

co-mention associated with them.

Previously, we’ve shown that literature improve performance on the prediction of M.

musculus proteins. In the following sections we expand to other species and explore the

impact of literature features on their ability to predict function of proteins from both H.

sapiens (∼20,000 proteins) and S. cerevisiea(∼6,000 proteins). Performance is reported

from 5-fold cross-validation using precision, recall, F-max, and AUC as evaluation metrics;

these are computed in a protein-centric manner as described in Radivojac et al (Radivojac

et al., 2013).

5.4.1.1 Changes made to co-mentions

In the first CAFA, we used document (whole abstract) level protein-GO term co-

mentions. We experimented with sentence co-mentions but saw reduced performance when

compared to document level (Section 5.3.2). We believe that sentence co-mentions should

contain useful information, but since they were a complete subset of the document co-

mentions, their full potential was not realized. For the second CAFA, we considered two

separate spans: sentence and non-sentence. Sentence co-mentions are two entities of interest

seen within a single sentence while non-sentence co-mentions are those that are mentioned

within the same paragraph/abstract, but not within the same sentence. The number of

co-mentions extracted for human and yeast proteins can be seen in Table 5.5. We also

expanded the literature collection that we extracted these co-mentions from. We mined

∼13.5 million abstracts available from Medline along with ∼600 thousand full-text articles

from the PubMed Open Access Collection (PMCOA). Comparing these numbers to those

from CAFA1, utilizing the improved protein dictionary and a newer version of GO, we are

able to identify many more proteins and GO concepts.
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Table 5.5: Counts of co-mentions extracted from both Medline and PMCOA
for the second CAFA.

Human
Span Unique Proteins Unique GO Terms Unique Co-mentions Total Co-mentions
sentence 12,826 14,102 1,473,579 25,765,168
non-sentence 13,459 17,231 3,070,466 147,524,964
combined 13,492 17,424 3,222,619 173,289,862

Yeast
Span Unique Proteins Unique GO Terms Unique Co-mentions Total Co-mentions
sentence 5,016 9,471 317,715 2,945,833
non-sentence 5,148 12,582 715,363 18,142,448
combined 5,160 12,819 748,427 21,088,281

5.4.1.2 Exploring how to combine co-mention features

We mined co-mentions from two different text spans and explore four different ways to

use them.

1. only using sentence co-mentions

2. only using non-sentence co-mentions

3. combining counts from sentence and non-sentence co-mentions into one feature set in

the input representation

4. using two separate feature sets for sentence and non-sentence co-mentions

The spans were explained in more detail above, under the Changes made to co-mentions

section.

The performance of these four different strategies for combining the co-mention features

for the enhanced dictionary can be seen in Figure 5.2. Each branch of GO is predicted and

evaluated separately, but the way to combine features is the same for all branches. Using

the two types of co-mentions as two separate feature sets provide the best performance on

all branches of GO (see green shapes in Figure 5.2). These two types of co-mentions encode

different but complementary information and the classifier is able to build a better model

by considering them separately.

Interestingly, non-sentence co-mentions perform better than sentence co-mentions. This

goes against intuition, as co-mentions within a sentence boundary act as a proxy to a

relationship between the protein and its function. However, it was seen in Bada et al. (Bada

et al., 2013) that often function annotations do not occur within a sentence boundary with
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Figure 5.2: Precision, recall, and F-max performance of four different co-
mention feature sets on function prediction. Better performance is to the upper-right
and the grey iso bars represent balance between precision and recall. Diamonds – Cellular
Component, Circle – Biological Process, Square – Molecular Function.

the corresponding protein. While coreference resolution may be required to correctly resolve

such relationships, capturing function concepts in close proximity to a protein appears to

be a useful approximation. This could be the reason why non-sentence co-mentions perform

better. Based upon these results, from now on and in Chapter VI, when we say “co-mention

features” we are referring to using both sentence and non-sentence as separate feature sets

but within the same classifier.

5.4.1.3 Changes in other biological features

The same types of cross-species and species-specific features were used as outlined in

Section 5.3.1.2; all data has been updated to the most recent datasets to include new

knowledge gained over the past years. The most notable change was incorporation of

more for PPI data, not only STRING, but BioGRID (Stark et al., 2006) and GeneMANIA

(Warde-Farley et al., 2010) were combined to form species-specific network for the 8 species

mentioned above.9

9Credit for other features and performing evaluation goes to Indika Kahanda from Asa
Ben-Hur’s lab.
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5.4.2 Contribution from individual sources of data

To understand the effectiveness of each source of data we train and test classifiers created

from each feature set alone along with the combination of all feature sets; this comparison

on all three GO namespaces can be seen in Figure 5.3. The results show that literature

data is almost as effective as homology and network-based data alone. For yeast, we find

that on both Biological Process and Cellular Component, co-mentions alone outperforms

transmembrane/localization and homology and falls slightly behind network information.

We notice that despite high performance on yeast proteins, co-mentions are not as effective

on human proteins. For human, literature outperforms transmembrane/localization features

on all namespaces while F-max is 0.05-0.15 below both network and homology features.

For all GO namespaces and both species, the combination of all features yields improved

performance over any feature alone. This shows that all types of input data is useful and

complementary to one another.

5.5 Conclusions

In this chapter, we’ve briefly described the work behind participation in two community

challenges along with presenting further exploration of the impact that literature mined

features have on function prediction. Over the course of the experiments we’ve refined the

extraction and utilization of co-mentions. Examining performance on the ability to predict

human, mouse, and yeast proteins, we’ve concluded that protein-GO term co-mentions are

the most useful type of co-mentions (compared to protein-protein or GO-GO co-mentions).

In addition, we compared the value of varying the span of text where the co-mentions

occurs in: within a sentence (“sentence co-mention”) and across a sentence boundary (“non-

sentence co-mention”). Interestingly, we found that sentence and non-sentence co-mentions

are equally useful, and that they are best used in conjunction as separate feature sets

within a single classifier. Overall, we’ve shown that literature is a very informative feature

for function predictions and continued work to develop more sophisticated methods for

extracting protein-GO relations are required. While literature can be useful on its own, its

real usefulness comes when combining with other features.
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Figure 5.3: Performance of individual sources of data on S. cerevisia and H.
sapiens. Transmembrane/localization signal are from TMHMM and WoLF PSORT, re-
spectively. Homology is calculated from BLAST, and network aggregates interaction data
from STRING, BioGRID, and GeneMANIA. Literature is the combination of sentence and
non-sentence protein-GO term co-mentions from a large collection of literature. Combined
is from all features combined.

We benchmarked the ability to recognize concepts in Chapter II and found recognition of

GO concepts to be lacking. While it is clear from previous research that exact term matching

is inadequate for good recall of Gene Ontology terms in text (Verspoor et al., 2003), it is also

clear that accurately recognizing Gene Ontology terms is a challenging problem not only

due to linguistic variation (Rice et al., 2005a) but due to variability in term informativeness

in the context of the GO itself (Couto et al., 2005). We test the impact that improving

GO recognition, presented in Chapter III, has on function prediction in Chapter VI. Our

conservative exact-match approach to recognizing GO terms is highly precise, and its low

coverage is likely offset by the large document collection we have considered in this work.

One thing that sets this work apart is that our literature collection is orders of magnitude

larger than previous collections (for instance, another CAFA participant, Wong et al (Wong

and Shatkay, 2013) uses 68,337 abstracts for training and the BioCreative data (Blaschke
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et al., 2005) consisted of 30,000 (full text) documents). Our use of direct protein mentions

within a document to relate proteins to GO terms, and aggregated across the corpus as

a whole, also differentiates this work from previous efforts that use externally provided

protein-text links (like was done in Chapter IV). In BioCreative, the test data consisted

of protein-document pairs in the input and most systems considered only the information

within the document(s) provided for a protein rather than any document in the collection

that might mention the protein; Wong et al (Wong and Shatkay, 2013) associates proteins

to text via curated protein-document links in UniProt. This means our methods consider

many more implied relationships than other methods. Additionally, we find that assuming

all protein mentions are species independent did not hinder performance. This is possibly,

again, due to the large literature collection. Another possible explanation is that proteins

with the same name have similar or at least related functions in all organisms.

Lastly, the usefulness of co-mentions beyond prediction, for validation or evidence find-

ing, is explored. We extract supporting sentences from the extracted co-mentions for the top

25 predictions made and show that many have supporting evidence within the literature.

We explore this idea further in the next chapter.
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CHAPTER VI

IMPACT OF CONCEPT RECOGNITION ON PROTEIN FUNCTION

PREDICTION10

6.1 Introduction

As mentioned in the previous chapter, characterizing the functions of proteins is an

important task in bioinformatics today. In recent years, many computational methods to

predict protein function have been developed to help understand functions without perform-

ing costly experiments. In the last chapter I explored the usefulness of both protein-protein

and protein-GO term co-mentions extracted from large literature collections on their abil-

ity to predict protein function. In this work, we introduce and explore another scalable

literature feature – a bag-of-words model. In Chapter III, I implemented GO synonym

generation rules to help increase the recall of GO concept recognition. In this chapter, I

test the hypothesis that with the ability to better extract GO concepts from the literature

would lead to more informative predictions. As mentioned in the last chapter, I also provide

many examples of how extracted literature features can be helpful beyond prediction – for

verification or validation and present a pipeline that could possibly help speed up the rate

of functional curation.

6.2 Background

The work we presented in the first CAFA (Sokolov et al., 2013a) (Chapter V) is on a

different scale from these previous efforts, and integrates information relevant for predicting

protein function from a range of sources. We utilize as much of the biomedical literature

as possible and are able to make predictions for the entire Gene Ontology, thanks to a

structured output support vector machine (SVM) approach called GOstruct (Sokolov and

Ben-Hur, 2010). We found in that previous work that features extracted from the literature

alone approach performance of many commonly used features from non-literature sources,

such as protein-protein interactions derived from a curated resource. However, we used only

10The work presented in this chapter is republished with permission from: Evaluating
a variety of text-mined features for automatic protein function prediction with GOstruct
Journal of Biomedical Semantics 6.1 (2015): 9.
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concept co-occurrence features – focusing on simple, scalable features – leaving open many

questions about the best strategy for representing the literature for the task of automated

protein function prediction. In this work we explore another scalable feature commonly

used for natural language processing tasks, bag-of-words.

We have extended our workshop paper (Funk et al., 2014b) by refining enhanced GO

synonym generation rules, performing more extensive analysis of the data at the functional

class level, and extending validation through manual curation using a “medium-throughput”

curation pipeline. As in the last chapter, we explore these questions in the context of the

structured output SVM model, GOstruct.

Figure 6.1: Overview of the experimental setup used for function prediction.

6.3 Methods

An overview of our experimental setup can be seen in Figure 6.1 with more specific

details about each process following.

6.3.1 Data

We extracted text features from two different literature sources: (1) 13,530,032 ab-

stracts available from Medline on October 23, 2013 with both a title and abstract text and
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(2) 595,010 full-text articles from the PubMed Open Access Collection (PMCOA) down-

loaded on November 6, 2013. These literature collections were processed identically and

features obtained from both were combined. Gold standard Gene Ontology annotations for

both human and yeast genes were obtained from the Gene Ontology Annotation (GOA)

data sets (Camon et al., 2004). Only annotations derived experimentally were considered

(evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS). Furthermore, the term Protein Bind-

ing (GO:0005515) was removed due to its broadness and overabundance of annotations.

The human gold standard set consists of over 13,400 proteins annotated with over 11,000

functional classes while the yeast gold standard set consists of over 4,500 proteins annotated

with over 6,500 functional classes. Even though the gold standard sets are large, only pro-

teins where there is enough training data will produce predictions. Additionally, to produce

meaningful area under the curve (AUC) scores only GO terms with at least 10 annotations

in the gold standard are considered as possible prediction targets; this corresponds to 509

Molecular Function classes, 2,088 Biological Process classes, and 345 Cellular Component

classes.

6.3.2 Literature features

Co-mentions are mentions of both a specific protein and concept from the Gene Ontology

that co-occur with a specified span of text; they represent a simple knowledge-directed

approach to represent the information contained within the biomedical literature. Through

experiments conducted in the previous chapter, we know that protein-GO term co-mentions

extracted at both the sentence and non-sentence level provide complementary types of data

when used as separate features within the same classifier. Here, we explore the combination

of these co-mentions with a very simple and commonly used set of features – a bag-of-words

model. This is another representation of biomedical information is to relate proteins to

words mentioned in the surrounding context; this is a knowledge-free approach because we

are not grounding what we relate to proteins into some ontology, but only strings.

6.3.2.1 Text-mining pipeline

A pipeline was created to automatically extract the two different types of literature

features using Apache UIMA version 2.4 (IBM, 2009). Whole abstracts were provided as
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input and full-text documents were provided one paragraph at a time. The pipeline consists

of splitting the input documents into sentences, tokenization, and protein entity detection

through LingPipe trained on CRAFT (Verspoor et al., 2012), followed by mapping of protein

mentions to UniProt identifiers through a protein dictionary. Then, Gene Ontology (GO)

terms are recognized through dictionaries provided to ConceptMapper (Tanenblatt et al.,

2010). Finally, counts of GO terms associated with proteins, and sentences containing

proteins, are output. A modified pipeline to extract proteins, GO terms, or any entity

from an ontology file from text is available at http://bionlp.sourceforge.net/nlp-pipelines/.

Details of the individual steps are provided below.

6.3.2.2 Protein mention extraction

The protein dictionary consists of over 100,000 protein targets from 27 different species,

all protein targets from the CAFA2 competition (http://biofunctionprediction.org). To

increase the ability to identify proteins in text, synonyms for proteins were added from

UniProt (Consortium et al., 2008) and BioThesaurus version 0.7 (Liu et al., 2006).

6.3.2.3 Gene Ontology term extraction

The best performing dictionary-based system and parameter combination for GO term

recognition identified in previous work was used (Funk et al., 2014a). ConceptMapper (CM)

is highly configurable dictionary lookup system that is a native UIMA component. CM is

highly configurable through the use of many parameters.

Two different dictionaries were provided to CM to extract Gene Ontology mentions

from text: original and enhanced. Both dictionaries are based on GO from 2013-11-13.

The original directly utilizes GO terms and synonyms, with the exception that the word

“activity” was removed from the end of ontology terms. The enhanced dictionary aug-

ments the original dictionary with additional synonyms for many GO concepts. This is

work that is presented in Chapter III. Rules were manually created by examining variation

between ontology terms and the annotated examples in a natural language corpus. This

enhanced dictionary improved GO recognition F-measure performance on CRAFT corpus

(Bada et al., 2012; Verspoor et al., 2012) by 0.1 (from 0.49 to 0.59), through application of

term transformation rules to generate synonyms.
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A simple rule deals with the many GO terms of the form “X metabolic process”, which

we have observed often do not occur literally in published texts. For example, for term

GO:0043705, “cyanophycin metabolic process” synonyms of “cyanophycin metabolism” and

“metabolism of cyanophycin” are generated. It is also noted that most of the terms in GO

are nominals, so it is important to generate part of speech variants. There are also many

”positive regulation of X” terms; not only will we generate synonyms of “positive regulation

of” such as “stimulation” and “pro”, but if there exist inflectional and derivational variants of

X we can also substitute that in. For example, “apoptotic stimulation” and “pro-apoptotic”

are added for “positive regulation of apoptosis” (GO:0043065). The version of the enhanced

dictionary differs from the dictionary originally used for CAFA2, as described in (Funk et al.,

2014b).

Table 6.1: Statistics of co-mentions extracted from both Medline and PMCOA
using the different dictionaries for identifying GO terms.

Human
Dictionary Span Unique Proteins Unique GO Terms Unique Co-mentions Total Co-mentions

Original
sentence 12,826 14,102 1,473,579 25,765,168
non-sentence 13,459 17,231 3,070,466 147,524,964
combined 13,492 17,424 3,222,619 173,289,862

Enhanced
sentence 12,998 15,415 1,839,360 33,199,284
non-sentence 13,513 18,713 3,725,450 196,761,554
combined 13,536 18,920 3,897,951 229,960,838

Yeast
Dictionary Span Unique Proteins Unique GO Terms Unique Co-mentions Total Co-mentions

Original
sentence 5,016 9,471 317,715 2,945,833
non-sentence 5,148 12,582 715,363 18,142,448
combined 5,160 12,819 748,427 21,088,281

Enhanced
sentence 5,063 12,877 414,322 3,853,994
non-sentence 5,160 13,769 901,123 23,986,761
combined 5,167 14,018 939,743 27,840,755

6.3.2.4 Co-mentions

Co-mentions are based on co-occurrences of entity and ontology concepts identified

in the literature text. We introduced them in more detail in Chapter V. This approach

represents a targeted knowledge-based approach to feature extraction. The co-mentions we

use here consist of a protein and Gene Ontology term that co-occur anywhere together in

a specified span. While this approach does not capture relations as specific as an event

extraction strategy (Björne and Salakoski, 2011), it is more targeted to the protein function

prediction context as it directly looks for the GO concepts of the target prediction space. It
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also has higher recall since it doesn’t require an explicit connection to be detected between

the protein and the function term.

The number of co-mentions extracted for human and yeast proteins using both dictio-

naries can be seen in Table 6.1. For human proteins, the enhanced dictionary identifies

1,500 more GO terms than the original dictionary, which, leads to a 35% increase in the

number of co-mentions identified (∼56 million more). Similar increases are seen with yeast

proteins.

6.3.2.5 Bag-of-words

Bag-of-words (BoW) features are commonly used in many text classification tasks. They

represent a knowledge-free approach to feature extraction. For these experiments, proteins

are associated to words from sentences in which they were mentioned. All words were

lowercased and stop words were removed, but no type of stemming or lemmatization was

applied.

6.3.2.6 Feature representation

The extracted literature information is provided to the machine learning framework as

sets of features. Each protein is represented as a list of terms, either Gene Ontology or words,

along with the number of times the term co-occurs with that protein in all of the biomed-

ical literature. An example entry from the co-mention features is as follows: “Q9ZPY7,

co GO:0003675=6, co GO:0005623=2, co GO:0009986=2, co GO:0016020=2. . . ”. We uti-

lize a sparse feature representation and only explicitly state the non-zero features for both

co-mentions and BoW.

6.3.3 Experimental setup

We evaluate the performance of literature features using the structured output SVM

approach GOstruct (Sokolov and Ben-Hur, 2010). GOstruct models the problem of pre-

dicting GO terms as a hierarchical multi-label classification task using a single classifier.

As input, we provide GOstruct with different sets of literature features for each protein, as

described above, along with the gold standard GO term associations of that protein, used

for training. From these feature sets, GOstruct learns patterns associating the literature
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features to the known functional labels for all proteins in the training set. Given a set of

co-occurring terms for a single protein, a full set of relevant Gene Ontology terms can be

predicted. In these experiments, we use no additional resource beyond the literature to

represent proteins.

GOstruct provides confidence scores for each prediction; therefore, all results presented

in this paper are based upon the highest F-measure over all sets of confidence scores, F-

max (Radivojac et al., 2013). Precision, recall, and F-max are reported based on evaluation

using 5-fold cross validation. To take into account the structure of the Gene Ontology, all

gold standard annotations and predictions are expanded via the ‘true path rule’ to the root

node of GO. The ‘true path rule’ states that ‘the pathway from a child term all the way up

to its top-level parent(s) must always be true’. We then compare the expanded set of terms.

(This choice of comparison impacts the interpretations of our results, which is discussed

further below.) All experiments were conducted on both yeast and human.

Note that the ‘true path rule’ is only utilized during the evaluation of features through

machine learning system (as discussed in Impact of evaluation metric on performance). All

numbers reported about the performance and predictions made by the machine learning

system have the rule applied, while numbers strictly referring to counts of co-mentions

mined from the literature do not.

6.3.4 Gene Ontology term information content

To better explore and understand the predictions that our system is making we’d like

to know how specific or informative a specific function is; our goal is to perform well on

the highly informative terms. We calculate an annotation-based information content(IC)

for each GO term based upon the gold standard annotations. We utilize the information

content formula outlined in Resnik et al. (Resnik, 1995) and applied directly to GO in

Mazandu et al. (Mazandu and Mulder, 2013). The IC of a term is given by

IC(x) = −ln(p(x)), (6.1)
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where p(x) is the relative frequency of term x in the GOA gold standard dataset,

obtained from the frequency f(x) representing the number A (x) of proteins annotated

with x, considering the ‘true path rule’. The frequency f(x) is given by

f(x) =

 A (x) if x is a leaf

A (x) +
∑

z∈Ch(x) A (z) otherwise,
(6.2)

where a leaf is term with no children and Ch(x) is the set of GO terms that have x as

a parent.

p(x) = f(x)
f(R) , (6.3)

where f(R) is the count of annotations corresponding to the root R and all of it’s

children; the three sub-ontologies (MF, BP, CC) were calculated separately because they

share different root nodes.

The larger the term information content score is, the more informative the term is.

From the GOA annotations, the range of scores computed is 0-10.89. The root nodes of the

ontologies have an information content of 0. A very broad function that many gene/gene

products share will have a low IC content. For instance, “GO:0005488 - binding” has an

IC score of 0.20. There highest IC concept, “GO:0016862 - intramolecular oxidoreductase

activity, interconverting keto- and enol-groups”, has a score of 10.89.

6.3.5 Human evaluation of co-mentions

To support evaluation of the accuracy of the co-mention features, we sampled a number

of them and asked a human assessor to rate each one as “good” (True Positive) or “bad”

(False Positive), i.e., whether or not it captures a valid relationship. To assess accuracy of

co-mentions as a whole, 1,500 sentence co-mentions were randomly sampled from the 33.2

million co-mentions for annotation. Additionally, three smaller subsets of co-mentions of

specific functional classes, totaling about 500 co-mentions, were selected for annotation to

assess accuracy of sentence co-mentions for specific functional classes. In total, there were

around 3,000 full sentences annotated.
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To enable fast annotation of this rating, we developed an approach that allows for

“medium-throughput” manual annotation of co-mentions, about 60-100 per hour. The

sentence co-mentions are transformed to brat rapid annotation tool (http://brat.nlplab.

org/) format. The annotator views both the identified protein and functional concept in

differing colors within the context of the entire sentence. The annotator is only required

to connect them with a single relationship, either “Good-Comention” or “Bad-Comention”.

The annotator was instructed to view the labeled protein and GO concept as correct and

to only annotate “Good-Comention” when there exists a relationship between the specified

entities. While a relationship may exist between the annotated GO category and another

exact mention of the labeled protein, that would be considered incorrect for the purposes

of this annotation, i.e., it is a decision relative to individual mentions of the protein in a

specific textual context. We utilized these annotations to assess quality of a random set

of co-mentions and also to label subsets of co-mentions containing particular functional

concepts.

6.4 Results and discussion

In Chapter V, Section 5.4.1.2 we performed evaluation of the best ways to combine the

co-mention features. From now on, when we say “co-mention features” we are referring to

using both sentence and non-sentence as separate feature sets but within the same classifier.

To establish a baseline we utilized the co-mentions themselves as a classifier; the co-

mentions are used as the final predictions of the system. We performed evaluations using

both original and enhanced co-mentions. Results from combining counts between sentence

and non-sentence co-mentions are presented in Table 6.2. The baseline leads to very low

precision for all branches but we do see impressive levels of recall. This signifies that infor-

mation from the literature is able to capture relevant biological information, but because

we identify many different co-mentions the false positive rate is fairly high.

We utilized our “medium-throughput” human annotation pipeline and curated 1,500

randomly sampled sentence co-mentions; we found that ∼30% (441 out of 1,500) appeared

to correctly relate the labeled protein with the labeled function. From these results it seems

that sentence co-mentions contain a high false positive rate, most likely due to many men-
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tions of proteins or GO concepts within a single sentence. Methods for filtering sentences

that contain ambiguous mentions, due to both ambiguous protein names and many anno-

tations within sentences containing complex syntactic structure, are still to be explored.

Additionally, more complicated relationship or event detection would reduce the number of

false positives seen and provide the classifier with higher quality sentence co-mentions, but

significantly reduce the total number of identified co-mentions. It is unclear which method

would be preferred for function prediction features.

Table 6.2: Overall performance of literature features on human proteins. Pre-
cision, Recall are micro-averaged across all proteins and F-max is a protein-centric metric.
Baseline corresponds to using only the co-mentions mined from the literature as a classifier.
Macro-AUC is the average AUC per GO category. “Co-mentions + BoW” utilizes original
co-mentions and BoW features within a single classifier.

Molecular Function
Features F-max Precision Recall macro-AUC
Baseline (Original) 0.094 0.055 0.327 0.680
Baseline (Enhanced) 0.064 0.036 0.322 0.701
Co-mentions (Original) 0.386 0.302 0.533 0.769
Co-mentions (Enhanced) 0.377 0.336 0.447 0.764
BoW 0.394 0.376 0.414 0.768
Co-mentions + BoW 0.408 0.354 0.491 0.790

Biological Process
Features F-max Precision Recall macro-AUC
Baseline (Original) 0.134 0.091 0.249 0.610
Baseline (Enhanced) 0.155 0.103 0.311 0.611
Co-mentions (Original) 0.424 0.426 0.422 0.750
Co-mentions (Enhanced) 0.429 0.427 0.430 0.752
BoW 0.461 0.467 0.455 0.768
Co-mentions + BoW 0.459 0.426 0.510 0.779

Cellular Component
Features F-max Precision Recall macro-AUC
Baseline (Original) 0.086 0.050 0.305 0.640
Baseline (Enhanced) 0.073 0.041 0.317 0.642
Co-mentions (Original) 0.587 0.590 0.585 0.744
Co-mentions (Enhanced) 0.589 0.583 0.596 0.753
BoW 0.608 0.594 0.624 0.755
Co-mentions + BoW 0.607 0.592 0.622 0.773

6.4.1 Performance on human proteins

We report performance of all four feature sets on human proteins in Table 6.2. Com-

paring the performance of the co-mention features, we find that the original co-mention

features produce the better performance on Molecular Function (MF), while the enhanced

co-mentions perform slightly better on both Biological Process (BP) and Cellular Compo-

nent (CC). The most surprising result is that bag of words performed as well as it did,

considering the complexity of the Gene Ontology with its many thousands of terms. Many
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text classification tasks utilize BoW and achieve very good performance while some have

tried to recognize functional classes from text with BoW models with poorer results (Mao

et al., 2014; Jacob et al., 2013). Their applicability to function prediction has only begun to

be studied in this work and Wong et al.(Shatkay et al., 2014). One explanation for their per-

formance could be due to their higher utilization of the biomedical literature; co-mentions

only capture information when both a protein and GO term are recognized together while

BoW only relies on a protein to be recognized. In other words, the knowledge-based co-

mentions are limited by the performance of automatic GO concept recognition, a challenging

task in itself (Funk et al., 2014a), while the BoW features have no such limitation. In sup-

port of that, we note that on average, there are 2,375 non-zero BoW features per protein,

whereas there are an average of 135 sentence and 250 non-sentence non-zero co-mention

features per protein. The results reported here are for human proteins.

Overall, best performance for all branches of the Gene Ontology is seen when using

both co-mentions and the bag-of-words features. This suggests that all types of features

provide complementary information. In view of this observation, we explored an alternative

to using the features in combination to train a single classifier, which is to train separate

classifiers and combine their scores. This approach gave similar results to those reported

here (data not shown). It can be difficult to understand the impact of each type of feature

solely by looking at the overall performance, since it is obtained by averaging across all

proteins; we dive deeper in the following sections and provide examples that indicate that

using co-mentions produces higher recall than precision.

Another observation to make is that performance for all three branches of GO as mea-

sured using the macro-AUC is very similar, indicating that the three sub-ontologies are

equally difficult to predict from the literature. The differences in performance as measured

by F-max, which is a protein-centric measure, are likely the result of the differences in the

distribution of terms across the different levels in the three sub-ontologies. The similar

performance across the sub-ontologies is in contrast to what is observed when using other

types of data: MF accuracy is typically much higher than BP accuracy, especially when

using sequence data (Sokolov et al., 2013b; Radivojac et al., 2013), with the exception of

network data such as protein-protein interactions that yields better performance in BP.
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Table 6.3: Description of the gold standard human annotations and predictions
made by GOstruct from each type of feature. All numbers are counts based on the
predictions broken down by sub-ontology; these counts have the ‘true path rule’ applied.

Molecular Function Biological Process Cellular Component
Feature type # Predictions # Predictions # Predictions
Gold standard 36,349 264,631 79,631
Original 102,486 268,068 76,513
Enhanced 64,919 276,734 81,094
BoW 40,499 268,114 77,753
Combined 62,039 386,267 78,475

6.4.2 Exploring differences between original and enhanced co-mentions

Examining Table 6.1, we see that the enhanced dictionary finds ∼35% (∼56 million)

more unique co-mentions, makes about 32,000 fewer predictions (Table 6.3) and performs

slightly better at the function prediction task (Table 6.2). To elucidate the differences

that GO term recognition plays in the function prediction task, co-mention features and

predictions were examined for individual proteins.

Examining individual predictions it appears that many of the predictions made from en-

hanced co-mention features are more specific than both the original dictionary and the gold

standard annotations; this is also supported by further evidence presented in the functional

analysis in the Functional class analysis and Analysis of individual Biological Process and

Molecular Function classes sections. For example, in GOstruct predictions using the original

dictionary, DIS3 (Q9Y2L1) is (correctly) annotated with rRNA processing (GO:0006364).

Using co-mentions from the enhanced dictionary, the protein is predicted to be involved

with maturation of 5.8S rRNA (GO:0000460), a direct child of rRNA processing. There are

10 more unique sentence and 31 more unique non-sentence GO term co-mentions provided

as features by the enhanced dictionary. Some of the co-mentions identified by the enhanced

and not by the original dictionary refer to “mRNA cleavage”, “cell fate determination”,

and “dsRNA fragmentation”. Even though none of these co-mentions directly correspond

to the more specific function predicted by GOstruct, it could be that the machine learner is

utilizing this extra information to make more specific predictions. Interestingly, the human

DIS3 protein is not currently known to be involved with the more specific process, but the

yeast DIS3 protein is. We did not attempt to normalize proteins to specific species because

that is a separate problem in itself. It is probable that if we normalized protein mentions
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to specific species or implemented a cross-species evaluation utilizing homology the results

of the enhanced dictionary would show improved performance.

We expected to see a bigger increase in performance because we are able to recognize

more specific GO terms utilizing the enhanced dictionary. One possible reason that we don’t

is due to increased ambiguity in the dictionary. In the enhanced dictionary, for example,

a synonym of “implantation” is added to the term “GO:0007566 - embryo implantation”.

While a majority of the time this synonym correctly refers to that GO term, there are cases

such as “. . . tumor cell implantation” for which an incorrect co-mention will be added to

the feature representation. These contextually incorrect features could limit the usefulness

of those GO terms and result in noisier features. One way to address this may be to

create a separate feature set of only co-mentions based on synonyms so the machine learner

could differentiate or weight them differently; this could help improve performance using

the enhanced dictionary co-mentions.

6.4.3 Functional class analysis

We now move to an analysis of functional classes to assess how well different parts of

GO are predicted by different feature sets (Figure 6.2). We use two separate metrics, depth

within the GO hierarchy and information content (IC) of the GO term derived from our

gold standard annotations. Because the GO is a graph with multiple inheritance and depth

can be a fuzzy concept (Joslyn et al., 2004), we define depth as the length of the shortest

path from the root to the term in the GO hierarchy. We calculate an annotation-based

information content(IC) for each GO term based on the gold standard annotations using

the IC statistic described in Resnik et al.(Resnik, 1995).

Figure 6.2(a) shows the distribution of counts of GO terms within the gold standard

and predictions by both depth and information content, Figure 6.2(b) shows the macro-

averaged performance (F-measure) for each feature set by depth, and Figure 6.2(c) shows the

macro-averaged performance for each feature set binned by GO term information content.

Examining 6.2(a) we find that terms appear to be normally distributed with mean depth

of 4. Looking at information content, we find that over two-thirds of the terms have an

information content score between 6 and 8, indicating that a majority of terms within the
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(a) Distribution of GO terms by depth and information content

(b) Performance vs. term depth

(c) Performance vs. term information content

Figure 6.2: Functional class analysis of all GO term annotations and predictions.
A) Distribution of the depth and information content of GO term annotations. As IC values
are real numbers, they are binned, and each bar represents a range, e.g. ’[1,2)’ includes all
depth 1 terms and IC between 1 and 2 (not including 2). B) Macro-averaged F-measure
performance broken down by GO term depth. C) Macro-averaged F-measure performance
binned by GO term information content.
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gold standard set are annotated very few times. Overall, for all sets of features, performance

of concepts decreases as the depth and information content increases; it is intuitive that

terms that are more broad, and less informative, would be easier to predict than terms that

are specific and more informative.

Examining performance by depth (Figure 6.2(b)) we see a decrease in performance be-

tween depths 1-3, after which performance levels off. As a function of information content we

obtain a more detailed picture, with a much larger decrease in performance with increased

term specificity; all features are able to predict low information content, less interesting

terms, such as “binding” (IC=0.20) or “biological regulation” (IC=0.66) with high confi-

dence (F-measure > 0.8). Performance drops to its lowest for terms that have information

content between 7 and 9 indicating there still remains much work to be done to accurately

predict these specific and informative terms. Interestingly, there is an increase in perfor-

mance for the most specific terms, especially using the BoW and combined representations;

however, there are very few such terms as seen in Figure (6.2(a)), representing very few

proteins, so it’s not clear if this is a real trend. Finally, we observe that for both depth

and IC analysis the knowledge-free BoW features usually outperform the knowledge-based

co-mentions and that the enhanced co-mentions usually produce slightly better performance

than the original co-mentions.

6.4.4 Analysis of Biological Process and Molecular Function classes

To further explore the impact of the different features on predictions, we examined the

best (Tables 6.4 & 6.5) and worst (Table 6.6) Biological Process and Molecular Function

categories.

Examining the top concepts predicted, it is reinforced that the enhanced co-mentions

are able to make more informative predictions, in addition to increasing recall without a loss

in precision when compared to the original co-mentions. All 12 of the top terms predicted by

the original co-mentions have an information content< 2 as opposed to only 7 terms from the

enhanced co-mentions. We can compare the performance on specific functional classes. For

example, “GO:0007076 - mitotic chromosome condensation” is the second highest predicted

GO term by the enhanced co-mentions (F=0.769) while it is ranked 581 for the original co-
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mentions (F=0.526). Granted, there will always be specific cases where one performs better

than the other; from these and previous analyses, we find that the enhanced co-mentions

are able to predict more informative terms for more proteins than the original co-mention

features (Figure 6.2 and Tables 6.4 & 6.5). This shows that improving GO term recognition

leads to an improvement in the specificity of function prediction.

Considering the top concepts predicted by the BoW features, we see a pattern similar to

the enhanced co-mentions. Five out of the top twelve concepts predicted have an information

content score greater than 6; these informative terms are different between the two feature

sets. For the top functions predicted by all features the combined classifier of co-mentions

and BoW produces more predictions, leading to higher recall and better F-measure. Even

though some of the top terms predicted are informative and interesting we still strive for

better performance on the most informative terms.

We also analyze the most difficult functional classes to predict, results can be seen

in Table 6.6. Between all features we find some similar terms are difficult to predict;

“localization” and “electron carrier activity” are in the worst five from all feature sets. It

is interesting to note that the information content of these difficult to predict terms lies

around the median range for all predicted terms. We might have expected that the most

difficult terms to predict would be those most informative terms (IC around 10). We believe

that these terms are difficult to predict because the ontological term names are made up

of common words that will be seen many times in the biomedical literature, even when

not related to protein function. This ambiguity likely results in a high number of features

corresponding to these terms which results in poor predictive performance. There is still

further work needed to address these shortcomings of literature mined features.
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Table 6.6: Most difficult Biological Process and Molecular Function classes. IC
represents information content of term.

Original Co-Mentions
GO ID Name # Predictions Precision Recall F-measure IC
GO:0051179 localization 28 0.107 0.054 0.072 5.70
GO:0016247 channel regulator activity 115 0.043 0.208 0.071 6.53
GO:0009055 electron carrier activity 108 0.03 0.111 0.055 6.94
GO:0007067 mitosis 23 0.043 0.031 0.036 7.54
GO:0042056 chemoattractant activity 53 0.018 0.067 0.029 7.56

Enhanced Co-Mentions
GO ID Name # Predictions Precision Recall F-measure IC
GO:0009055 electron carrier activity 102 0.090 0.138 0.109 6.94
GO:0051179 localization 42 0.071 0.055 0.061 5.70
GO:0019838 growth factor binding 44 0.021 0.035 0.027 5.99
GO:0070888 E-box binding 99 0.010 0.066 0.019 7.49
GO:0030545 receptor regulator activity 152 0.007 0.020 0.010 7.63

Bag-of-words
GO ID Name # Predictions Precision Recall F-measure IC
GO:0051179 localization 18 0.277 0.090 0.137 5.70
GO:0009055 electron carrier activity 29 0.103 0.083 0.092 6.94
GO:0016042 lipid catabolic process 26 0.076 0.054 0.063 5.80
GO:0015992 proton transport 15 0.066 0.047 0.055 7.29
GO:0005516 calmodulin binding 14 0.071 0.033 0.045 7.25

Co-Mentions + Bag-of-words
GO ID Name # Predictions Precision Recall F-measure IC
GO:0051179 localization 61 0.100 0.109 0.104 5.70
GO:0009055 electron carrier activity 62 0.079 0.138 0.101 6.94
GO:0030545 receptor regulator activity 63 0.064 0.080 0.071 7.63
GO:0042056 chemoattractant activity 24 0.041 0.066 0.051 7.56
GO:0040007 growth 27 0.030 0.066 0.047 7.33

6.4.5 Manual analysis of predictions

6.4.5.1 Manual analysis of individual predictions

We know that GO annotations are incomplete and therefore some predictions that are

classified as false positives could be actually correct. The prediction may even be supported

by an existing publication, however due to the slow process of curation they are not yet in

a database. We manually examined false positive predictions that contain sentence level

co-mentions of the protein and predicted function to identify a few examples of predictions

that look correct but are counted as incorrect:

• Protein GCNT1 (Q02742) was predicted to be involved with carbohydrate metabolic

process (GO:0006959). In PMID:23646466 (Ze-Min et al., 2013) we find “Genes related

to carbohydrate metabolism include PPP1R3C, B3GNT1, and GCNT1. . . ”.

• Protein CERS2 (Q96G23) was predicted to play a role in ceramide biosynthetic process

(GO:0046513). In PMID:22144673 (Tidhar et al., 2012) we see “. . . CerS2, which uses

C22-CoA for ceramide synthesis. . . ”.
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These are just two examples taken from the co-mentions, but there are most likely more,

which could mean that the true performance of the system is underestimated. Through these

examples we show how the input features can be used not only for prediction, but also for

validation. This is not possible when using features that are not mined from the biomedical

literature and illustrate their importance.

6.4.5.2 Manual analysis of functional classes

In the previous section we explored individual co-mentions that could serve as vali-

dation for an incorrect GOstruct prediction. In addition to this one-off analysis, we can

label subsets of co-mentions pertaining to particular functional concepts for validation on a

medium-throughput scale. To identify functional classes for additional exploration, all GO

concepts were examined for three criteria: 1) their involvement in numerous co-mentions

with human proteins 2) numerous predictions made with an overall average performance

and 3) confidence in the ability to extract the concept from text. The concepts chosen for

further annotation were GO:0009966 – “regulation of signal transduction”, GO:0022857 –

“transmembrane transporter”, and GO:0008144 - “drug binding”. For each of these classes

all human co-mentions were manually examined.

We identified 204 co-mentions between a human protein and “GO:0008144 - drug bind-

ing” (IC=6.63). Out of 204 co-mentions, 112 appeared to correctly related the concept

with the protein (precision of 0.554). 61 unique proteins were linked to the correct 112

co-mentions. Of these, only 4 contained annotations of “drug binding” in GOA, while the

other 57 are not currently known to be involved with “drug binding”. When we examined

the predictions made by GOstruct for these proteins, unfortunately, none of them were

predicted as “drug binding”. After further examination of the co-mentions, most appear

to be from structure papers and refer to drug binding pockets within specific residues or

domains of the proteins. It is unlikely that the specific drug could be identified from the

context of the sentence and many refer to a proposed binding site with no experimental

data for support.

The concept “GO:0022857 - transmembrane transporter” (IC=4.17) co-occurred with a

human protein 181 different times. 69 co-mentions appeared to correctly relate the concept
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with the labeled protein (precision of 0.381). A total of 32 proteins could be annotated

with this concept; out of the 32 only 6 are not already annotated with “transmembrane

transporter” in GOA. When we examine the predictions made from the enhanced features,

only 1 out of the 6 proteins are predicted to be involved with “transmembrane transporter”.

There were a total of 134 human co-mentions containing “GO:0009966 – regulation of

signal transduction” (IC=3.30). 73 out of 134 co-mentions appeared to correctly relate the

concept with the protein (precision of 0.543). A total of 58 proteins could be annotated

based upon these co-mentions. 21 proteins already contain annotations conceptually related

to “regulation of signal transduction”, while the other 37 proteins do not contain annotations

related to “regulation of signal transduction”; the later could represent true but uncurated

functions. When we examine the predictions made by GOstruct using the enhanced co-

mention features, 9 out of those 37 proteins were predicted to be involved with “regulation

of signal transduction”.

When a random subset of 1,500 human co-mentions were labeled it was found that∼30%

(441 out of 1,500) correctly related the labeled protein and GO term. By annotating co-

mentions of specific functional concepts we see that these categories have a higher proportion

of correct co-mentions than the random sample from all co-mention; there will also be some

categories where performance of co-mentions is quite low. This information can be used in

multiple different ways. If we are more confident that certain categories related to function

can be extracted from co-mentions, we can use this information to inform the classifier by

encoding the information into the input features. Additionally, we show the importance

and ability of co-mentions to not only be used as input features, but also for validation and

enhancing the machine learning results. We show that many of the predictions made by our

system could possibly be correct, but just not curated in the gold standard annotations.

6.4.5.3 Impact of evaluation metric on performance

In our initial experiments, we required predictions and gold standard annotations to

match exactly (data not shown), but we found, through manual examination of predictions,

that many false positives are very close (in terms of ontological distance) to the gold standard

annotations. This type of evaluation measures the ability of a system to predict functions
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exactly, at the correct specificity in the hierarchy, but it doesn’t accurately represent the

overall performance of the system. It is preferable to score predictions that are close to

gold standard annotations higher than a far distant prediction. We are aware of more

sophisticated methods to calculate precision and recall that take into account conceptual

overlap for hierarchical classification scenarios (Verspoor et al., 2006; Clark and Radivojac,

2013). For the results reported in Table 6.2, to take into account the hierarchy of the Gene

Ontology, we expanded both the predictions and annotations via the ‘true path rule’ to

the root. By doing this, we see a large increase in both precision and recall of all features;

this increase in performance suggests that many of the predictions made are close to the

actual annotations and performance is better than previously thought. A downside of our

chosen comparison method is that many false positives could be introduced via an incorrect

prediction that is of a very specific functional class. This could possibly explain why co-

mentions from the enhanced dictionary display a decrease in performance; a single, very

specific, incorrect prediction introduces many false positives.

6.5 Conclusions

In this work we explored the use of protein-related features derived from the published

biomedical literature to support protein function prediction. We evaluated two different

types of literature features, ontology concept co-mentions and bag-of-words, and analyzed

their impact on the function prediction task. Both types of features provided similar levels of

performance. The advantage of the bag-of-words approach is its simplicity. The additional

effort required to identify GO term mentions in text pays off by offering users the ability

to validate predictions by viewing the specific literature context from which an association

is derived, as demonstrated in our experiments.

Combining co-mentions and bag-of-words data provided only a marginal advantage,

and in future work we will explore ways to obtain better performance from these features

together. We also show that increasing the ability to recognize GO terms from biomedical

text leads to more informative functional predictions. Additionally, the literature data we

used provides performance that is on par with other sources of data such as network and

sequence and has the advantage of being easy to verify on the basis of the text, as seen in the
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previous chapter. We believe that when we incorporate the synonym generation rules and

bag-of-words features with the other biological features compared in the previous chapter

that predictions would also be more informative.

Our experiment in medium-throughput manual inspection of protein-GO term co-

mentions suggests that this strategy can be used as a way of speeding up the process of

curation of protein function. The literature contains millions of co-mentions, and a human-

in-the-loop system based on the detected co-mentions prioritized by GOstruct can be a

highly effective method to dramatically speed up the rate at which proteins are currently

annotated.
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CHAPTER VII

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The focus of this dissertation is the importance of biomedical concept recognition and

application of recognizing concepts from ontologies for biomedical prediction. I begin by

presenting an in-depth evaluation of concept recognition systems (Chapter II) and follow

with improving performance of concepts from the Gene Ontology through hand-crafted syn-

onym generation rules (Chapter III). I then switch focus and present two applications where

features derived from mining concepts from a large collection of the biomedical literature

are effective at making informative predictions. The two specific problems discussed are

pharmacogene prediction (Chapter IV) and automated function prediction (Chapter V). I

conclude with an analysis of the impact that improving concept recognition can have on

function prediction (Chapter VI). In the following sections I review the most significant

conclusions from the work and outline future directions.

7.1 Concept recognition

Ontologies have become a great enabling technology in modern bioinformatics. They aid

in linking large scale genomic data for database curation and are useful for many biomedi-

cal natural language processing tasks, where they can be used as terminology and semantic

constraints on entities and events. In Chapter II, I perform a rigorous linguistic evalu-

ation, grounding concepts to both ontological identifier and exact span of text, of three

dictionary-based concept recognition systems on their ability to recognize concept from

eight biomedical ontologies against a fully annotated gold standard corpus. A full explo-

ration of parameter space for each of system is also presented. We test multiple hypothesis

and conclude the following:

1. Recognition performance is associated with the linguistic characteristics on an ontol-

ogy and varies widely depending on the concept recognition system and parameters

used for dictionary lookup.

2. Surprisingly, default parameters are not the best, or even close, set for most ontologies;

illustrating the importance of parameter tuning for specific applications.
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3. The heuristic methods implemented by some systems are helpful to identify complex

multi-token concepts, but more sophisticated methods are needed to achieve better

performance.

4. Morphological processing is an important task to incorporate into concept recognition.

Most of the best parameters incorporated stemming or lemmatization – this helps to

reduce the variability between the information contained within the ontology and the

expression of concepts in text.

The Gene Ontology represents the standard nomenclature when discussing processes

and functions that gene or gene products participate in. As seen in Chapter II, the ability

to recognize these concepts is lacking because they are more complex than other ontologies

– both in length and syntactic structure. The goal of the work presented in Chapter III is to

address points improve performance on GO concept recognition by expanding on points 3

and 4 above. We take advantage of the compositional nature within the Gene Ontology and

hand-craft 18 syntactic decompositional and derivational variant generation rules. These

rules generate new synonyms for two-thirds of concepts with GO. Through intrinsic and

extrinsic evaluation, we show these generated synonyms help to close the gap between

ontological concept and their expression in natural language.

7.2 Biomedical discovery

The rest of my dissertation (Chapters IV-VI) focuses on the utility of Gene Ontology

concept recognition for biomedical discovery. There has been little work incorporating the

vast amount of knowledge contained in the biomedical literature into common computational

prediction methods. I explore the following questions concerning literature features within

two specific prediction tasks, pharmacogene predictions and protein function prediction:

1. What information should be mined from the literature?

2. How should it be combined with other of data, both literature and sequenced-based?

Another theme that runs throughout these chapters is the usefulness of text-mined

features not only for prediction but for validation. We show that these automatic NLP

pipelines could aid in speeding up manual curation.
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7.2.1 Pharmacogene prediction

In Chapter IV, I present a classifier based upon a set of enriched functions that known

pharmacogenes share to predict possible new pharmacogenes at a genome-wide scale. We

find that there is a set of enriched GO concepts – mostly related to pharmacodynamics

and pharmacokinetics. A multitude of features were explored along with combinations of

them through a variety of machine learning algorithms: curated GO concepts from GOA,

text-mined GO concepts, and bigrams from both abstract and full-text documents related

to proteins. We find that using text-mined GO concepts and bigrams from abstracts is

best able to separate known pharmacogenes from background genes. Using our classifier,

there were a total of 141 hypothesized uncurated pharmacogenes. In light of new knowledge

obtained since the original work was conducted, 6 out of the top 10 predicted pharmacogenes

now have annotations curated in PharmGKB. Not only did our classifier predict these genes,

but in the original work we provided literature support that now serves as evidence.

7.2.2 Protein function prediction

Chapters V and VI contains an evaluation of a variety of literature features effectiveness

on predicting protein function within the machine learning framework, GOstruct. Most of

the presented work is framed within the context of our participation in two community

challenges. Our work focuses on mining simple scalable features, with the main construct

being the co-mention, a co-occurrence of two entities in a predefined span of text. We

find that the most effective type of co-mention is a protein and GO concept – a proxy to

a relationship between the protein and its function. Another simple scalable feature text

feature that contributes to performance is a bag-of-words model that captures the context

around the protein mention. This work is set apart not only by the type of features mined

but also for the large size of the literature collection. Because we use such a large collection

of literature our features can consider many more implied relationships and signals will

rise from the noise. By comparing literature features versus commonly used sequence- and

network-based features, we find that these literature features approach the usefulness and

are complementary to commonly used biologically features – best performance is always

seen from the combination of all features.
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We return to the concept recognition task in Chapter VI and evaluate the rules intro-

duced in Chapter III within the function prediction task. We find that improving concept

recognition leads to more informative predictions. Additionally, a “medium-throughput”

pipeline is introduced to manually inspect co-mentions extracted from the literature. We

suggest that co-mentions manual inspection of prioritized co-mentions could speed up the

rate at which proteins are currently annotated.

7.3 Future directions

Research is never complete. In this section I describe the possible extensions for work

presented here.

7.3.1 Chapter III - improving Gene Ontology performance

As seen in distribution of new synonyms and through the examples presented, our rules

heavily favor the Biological Process branch, specifically the “regulation of” terms. Further

rules can and will be developed to apply to the many other types of composition seen

within GO. For this chapter, we chose to focus on the smallest subset that would have the

most direct impact. This involves converting more Obol grammars to recursive syntactic

rules and enumerating possible ways to express concepts. For the immediate next steps, it

makes sense to focus on specific areas/type of concepts depending on the user or intended

application.

There is previous work in creating lexical elementary synonym sets from the ontology

itself (Hamon and Grabar, 2008). These could be incorporated once we decompose the

concepts . Another place to explore for new synonyms would be the definition field within

the Gene Ontology. This field is manually curated and contains beneficial information that

could offer alternative ways and wording to express the concept.

Now that we are able to automatically generate synonyms we’d like other people to be

able to use them for text-mining. It is our desire to submit the “good” synonyms identified

within the text to the Gene Ontology Consortium for curation into the ontology. There

could possibly be a “text-mining” synonym category added or we can deposit them, for the

time being, within a larger application such as Freebase (Bollacker et al., 2008).
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7.3.2 Chapter IV - pharmacogene prediction

Because our method only predicts only genes and not individual variants, that is a

natural progression. This could be done through the use of text mining the literature

about the predicted genes and extracting mentions of individual variants, specific mutations,

along with mentions of disease or drugs. Another approach would be to combine the types

of features many other methods use, network topology and sequence features, with the

literature features explored here.

Another improvement that could be made would be to separate the prediction of disease

and drug response genes. The drug response genes could even be subdivided into those that

are display pharmacodynamics or pharmacokinetics. This could be done with the data we

have now, but by creating new positive and negative training sets.

7.3.3 Chapter V and VI - function prediction

This work marks only the beginning of incorporating text mining for protein function

prediction. There are always other more sophisticated or semantic features to explore,

but based upon these results, there are some natural next steps. Overall, we’ve shown

that literature is a very informative feature for function predictions and continued work to

develop more sophisticated methods for extracting protein-GO relations are required. This

includes incorporating negation along with the semantic role of the protein identified.

The first would be to incorporate larger spans for a bag-of-words model due to the sur-

prising performance of the non-sentence co-mentions. By including words from surrounding

sentences, or an entire paragraph, more context would be encoded and the model might

result in better predictions.

Secondly, we found that an enhanced dictionary produced more individual co-mentions

and fewer predictions, resulting in slightly increased performance. We explored several pos-

sible explanations as to why there is not a greater impact. It could be due to a large number

of competing co-mentions that prevent good patterns from emerging or the possibility of

introducing noise through ambiguous protein mentions. A filter or classifier that could

identify a “good” co-mention would be providing much higher quality co-mentions as input,

which would in turn likely lead to better predictions. Another way to potentially improve
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performance is to separate co-mentions found from synonyms from the original co-mentions,

thereby allowing the classifier to provide them with different weights.
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F. Ehrler, A. GeissbÔæÉÔohler, A. Jimeno, and P. Ruch. Data-poor categorization
and passage retrieval for gene ontology annotation in swiss-prot. BMC Bioinformatics,
6 Suppl 1, 2005. ISSN 1471-2105.

K. Eilbeck, S. E. Lewis, C. J. Mungall, M. Yandell, L. Stein, R. Durbin, and M. Ash-
burner. The sequence ontology: a tool for the unification of genome annotations.
Genome Biol, 6(5), 2005.

William E Evans and Mary V Relling. Pharmacogenomics: translating functional
genomics into rational therapeutics. Science, 286(5439):487–491, 1999.

C. Fellbaum. WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press, Cambridge, Massachusetts, May
1998a. URL http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}
path=ASIN/026206197X. Last accessed 2015-04-15.

D. Ferrucci and A. Lally. Building an example application with the unstructured
information management architecture. IBM Systems Journal, 43(3):455–475, July
2004. ISSN 0018-8670.

Lynne M Fox, Leslie A Williams, Lawrence Hunter, and Christophe Roeder. Ne-
gotiating a text mining license for faculty researchers. Information Technology and
Libraries, 33(3):5–21, 2014.

198

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=ASIN/026206197X
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=ASIN/026206197X


Marina Freytsis, Xueding Wang, Inga Peter, Chantal Guillemette, Suwagmani
Hazarika, Su X Duan, David J Greenblatt, William M Lee, et al. The udp-
glucuronosyltransferase (ugt) 1a polymorphism c. 2042c¿ g (rs8330) is associated with
increased human liver acetaminophen glucuronidation, increased ugt1a exon 5a/5b
splice variant mrna ratio, and decreased risk of unintentional acetaminophen-induced
acute liver failure. Journal of Pharmacology and Experimental Therapeutics, 345(2):
297–307, 2013.
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